Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Kinetic and Mechanistic Study of Oxidative Degradation and Detoxification of Fast Yellow Azo Dye Using Surfactant Assisted Ir-Ni Bimetallic Nanocatalyst

Author(s): Anjali Goel and Shikha*

Volume 9, Issue 4, 2022

Published on: 29 August, 2022

Page: [305 - 317] Pages: 13

DOI: 10.2174/2213337209666220407113453

Price: $65

conference banner
Abstract

Aims: Catalytic degradation of azo dye.

Background: Azo dyes are toxic agents and pollutants, and the degradation of these dyes has an important application in the treatment of textile industry wastes.Catalytic decolorization of fast yellow dye by hexacyanoferrate (III), abbreviated as HCF(III) using polyvinylpyrrolidone abbreviated as PVP stabilized Ir-Ni bimetallic nanocrystals has been evaluated by kinetic spectrophotometric method at 440nm wavelength of the reaction mixture.

Methods: The impact of various operational factors such as fast yellow dye abbreviated as [FY], oxidant [HCF(III)] ions, promoter iridium-nickel bimetallic nanoparticles abbreviated as [(Ir-Ni)] BMNPs, and solution pH on the rate of the reaction have been examined.

Results: The results represent that the reaction follows the first-order kinetics model with respect to [oxidant] at optimum pH 8 and fix temperature 40 ± 0.1°C. Thermodynamic parameters such as activation energy (Ea), enthalpy (ΔH#), entropy (ΔS#), frequency factor (A), and free energy of activation (ΔF#) have been evaluated by examining the reaction rate at four temperatures i.e., 40°C, 45°C, 50°C, and 55°C. On the basis of experimental outcomes, an appropriate mechanism involving complex formation has been proposed.

Conclusion: Analytical techniques such as UV-Vis spectroscopy, FTIR, and LCMS of degraded products represent the formation of easier and less harmful compounds.

Keywords: Fast yellow dye, Hexacyanoferrate (III) ion, Ir-Ni bimetallic nanoparticles, polyvinypyrrolidone, nanocatalyst, decolorization, and oxidation

Graphical Abstract

[1]
Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov., 2019, 3(2), 275-290.
[http://dx.doi.org/10.1016/j.biori.2019.09.001]
[2]
Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol., 2019, 16(2), 1193-1226.
[http://dx.doi.org/10.1007/s13762-018-2130-z]
[3]
Jamee, R.; Siddique, R. Biodegradation of synthetic dyes of textile effluent by microorganisms: An environmentally and economically sustainable approach. Eur. J. Microbiol. Immunol. (Bp.), 2019, 9(4), 114-118.
[http://dx.doi.org/10.1556/1886.2019.00018] [PMID: 31934362]
[4]
Singh, L.; Singh, V.P. Decolourization of azo (acid red) and anthraquinonic (basic blue) dyes by the fungus aspergillus flavus. Int. J. Biomed. Eng. Clin. Sci., 2017, 3(1), 1-5.
[http://dx.doi.org/10.11648/j.ijbecs.20160301.11]
[5]
Sheela, T.; Sadasivam, S.K. Dye degradation potential and its degradative enzymes synthesis of Bacillus cereus SKB12 isolated from a textile industrial effluent. J. Appl. Biol. Biotechnol., 2020, 8(03), 42-46.
[http://dx.doi.org/10.7324/JABB.2020.80308]
[6]
Salahshoor, Z.; Shahbazi, A. Review of the use of mesoporous silicas for removing dye from textile wastewater. Eur. J. Environ. Sci., 2014, 4(2), 116-130.
[http://dx.doi.org/10.14712/23361964.2014.7]
[7]
Ghotekar, S. A review on plant extract mediated biogenic synthesis of CdO nanoparticles and their recent applications. Asian J. Green Chem., 2019, 3(2), 187-200.
[8]
Lu, H.; Wang, J.; Stoller, M.; Wang, T.; Bao, Y.; Hao, H. An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng., 2016, 2016, 4964828.
[http://dx.doi.org/10.1155/2016/4964828]
[9]
Liu, X.; Wang, D.; Li, Y. Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today, 2012, 7(5), 448-466.
[http://dx.doi.org/10.1016/j.nantod.2012.08.003]
[10]
Stowell, C.A.; Korgel, B.A. Iridium nanocrystal synthesis and surface coating-dependent catalytic activity. Nano Lett., 2005, 5(7), 1203-1207.
[http://dx.doi.org/10.1021/nl050648f] [PMID: 16178211]
[11]
Heilmann, M.; Kulla, H.; Prinz, C.; Bienert, R.; Reinholz, U.; Guilherme Buzanich, A.; Emmerling, F. Advances in nickel nanoparticle syn-thesis via oleylamine route. Nanomaterials (Basel), 2020, 10(4), 713.
[http://dx.doi.org/10.3390/nano10040713] [PMID: 32283789]
[12]
Ibargüen-López, H.; López-Balanta, B.; Betancourt-Buitrago, L.; Serna-Galvis, E.A.; Torres-Palma, R.A.; Machuca-Martínez, F.; Castilla-Acevedo, S.F. Degradation of hexacyanoferrate (III) ion by the coupling of the ultraviolet light and the activation of persulfate at basic pH. J. Environ. Chem. Eng., 2021, 9(5), 106233.
[http://dx.doi.org/10.1016/j.jece.2021.106233]
[13]
Meti, M.D.; Byadagi, K.S.; Nandibewoor, S.T.; Chimatadar, S.A. Mechanistic studies of uncatalyzed and ruthenium(III)-catalyzed oxida-tion of the antibiotic drug chloramphenicol by hexacyanoferrate(III) in aqueous alkaline medium: A comparative kinetic study. Monatsh. Chem., 2014, 145(10), 1561-1573.
[http://dx.doi.org/10.1007/s00706-014-1208-7] [PMID: 26166888]
[14]
Goel, A.; Shikha, S.; Shivani, S.; Tomar, S. Ir-Ni based mono and bimetallic nanocrystals: Synthesis, characterization and effect of cation-ic, anionic, and non-ionic stabilizers. Curr. Chem. Lett, 2021, 10(3), 209-220.
[http://dx.doi.org/10.5267/j.ccl.2021.1.005]
[15]
Goel, A.; Chaudhary, M. Highly dispersed PVP-supported Ir-Ni bimetallic nanoparticles as high performance catalyst for degradation of metanil yellow. Bull. Mater. Sci., 2018, 41(3), 1-8.
[http://dx.doi.org/10.1007/s12034-018-1591-5]
[16]
Goel, A.; Lasyal, R. Degradation of Orange G dye by hexacyanoferrate (III) ions in the presence of Iridium nanoparticles: Effect of sys-tem parameters and kinetic study. Desalination Water Treat., 2016, 57(37), 17547-17556.
[http://dx.doi.org/10.1080/19443994.2015.1086694]
[17]
Laidler, K.J. Chemical Kinetics, 2nd edi; Tata Mcgraw-Hill Publishing Company LTD: Delhi, 1980.
[18]
Rohman, A.; Ghazali, M.A.B.; Windarsih, A. Irnawati.; Riyanto, S.; Yusof, F.M.; Mustafa, S. Comprehensive review on application of FTIR spectroscopy coupled with chemometrics for authentication analysis of fats and oils in the food products. Molecules, 2020, 25(22), 5485.
[http://dx.doi.org/10.3390/molecules25225485] [PMID: 33238638]
[19]
Gipson, K.; Stevens, K.; Brown, P.; Ballato, J. Infrared spectroscopic characterization of photoluminescent polymer nanocomposites. J. Spectrosc., 2015, 2015, 489162.
[http://dx.doi.org/10.1155/2015/489162]
[20]
Yang, L.; May, P.W.; Yin, L.; Smith, J.A.; Rosser, K.N. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solu-tion. J. Nanopart. Res., 2007, 9(6), 1181-1185.
[http://dx.doi.org/10.1007/s11051-006-9192-4]
[21]
Simonova, D.; Karamancheva, I. Application of fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol. Biotechnol. Equip., 2013, 27(6), 4200-4207.
[http://dx.doi.org/10.5504/BBEQ.2013.0106]
[22]
Nicholls, R.A.; Craft, G.; Perez, Y.; Pellissier, M.; Stock, J.A.; Testemale, M.; Kull, K.; Eubank, J.; Harmon, J.P. Thermomechanical char-acterization of thermoplastic polyimide to improve the chain interaction via crystalline domains. Polym. Eng. Sci., 2019, 59(9), 1919-1932.
[http://dx.doi.org/10.1002/pen.25194]
[23]
Dhasmana, A.; Singh, L.; Roy, P.; Mishra, N.C. Honey incorporated antibacterial acellular dermal matrix for full-thickness wound healing. Angiogenesis, 2018, 1, 8-10.
[24]
Karimi, L.; Zohoori, S.; Yazdanshenas, M.E. Photocatalytic degradation of azo dyes in aqueous solutions under UV irradiation using nano-strontium titanate as the nanophotocatalyst. J. Saudi Chem. Soc., 2014, 18(5), 581-588.
[http://dx.doi.org/10.1016/j.jscs.2011.11.010]
[25]
Mattheis, J.P.; Rudell, D.R. Diphenylamine metabolism in ‘braeburn’ apples stored under conditions conducive to the development of internal browning. J. Agric. Food Chem., 2008, 56(9), 3381-3385.
[http://dx.doi.org/10.1021/jf703768w] [PMID: 18380463]
[26]
Goel, A.; Sharma, S. Mechanistic study of the oxidation of L-phenylalanine by hexacyanoferrate (III) catalyzed by iridium (III) in aque-ous alkaline medium. Transit. Met. Chem., 2010, 35, 549-554.
[http://dx.doi.org/10.1007/s11243-010-9362-1]
[27]
Sun, S.P.; Li, C.J.; Sun, J.H.; Shi, S.H.; Fan, M.H.; Zhou, Q. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxida-tion process: Effect of system parameters and kinetic study. J. Hazard. Mater., 2009, 161(2-3), 1052-1057.
[http://dx.doi.org/10.1016/j.jhazmat.2008.04.080] [PMID: 18538927]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy