Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phenolic Content and Scavenging Activity in Moringa oleifera Lam. with Two Types of Leaf Color

Author(s): Silvia Radice*, Federico Gómez Castro, Miriam Elisabet Arena* and Edgardo Giordani

Volume 19, Issue 1, 2023

Published on: 23 August, 2022

Article ID: e070422203249 Pages: 7

DOI: 10.2174/1573407218666220407105239

Price: $65

Abstract

Background: Mostly, Moringa plants (Moringa oleifera Lam.) are commercially propagated by seeds; however, there are some plantations from stem cuttings. Thus, seedling populations show a high morphological diversity level due to segregation. In particular, differences in leaf color can be commonly observed. This work aimed to characterize leaf color from different moringa plants and relate it to phenolic leaf content, including some flavonoids, and to the DPPH radical scavenging activity of leaf extracts.

Methods: Three plants with red leaf petioles and three plants with green leaf petioles were randomly chosen among a plot of 50 potted 3-year-old, 2m-high seed plants grown in the city of Morón (Argentina) (34º 64’ 62.61'' SL; 58º 62' 09.69'' WL). Leaves were harvested from the basal, medial, and apical parts of the plant stem (3 leaves per section) in April, and subsequently, each leaf was also divided into basal, medial, and apical sections. Leaf color, total phenol content, individual phenol composition, and DDPH radical scavenging activity were determined.

Results: Petiole and leaflet color were significantly different for a* and b* values. Consequently, ΔE* was -0.12 and 0.27 for red leaf plants, but it was higher (-3.09) for red and green leaves. Interestingly, leaflets from the red leaf type had more green and yellow dyes than those of the green leaf type. Phenolic content and DPPH radical scavenging activity were significantly higher in red leaf plants (10.9 mg tannic acid and 45.6%, respectively) than in green plant leaves (9.1 mg tannic acid and 31.1%, respectively). The red leaf type had the smallest amounts of rutin and naringenin content, which were not present in the green leaf type. Nevertheless, the green leaf type showed more catechin hydrate content than the red leaf type.

Conclusion: Phenolic content and antioxidant activity are modified with sampling and leaf color, so these factors must be considered as well as the selection of red leaf plants.

Keywords: life tree, L*a*b* color space, secondary metabolites, catechin hydrate, stem position, leaf section

Graphical Abstract

[1]
Agricultural Research Service (ARS), United States Department of Agriculture (USDA). Moringa oleifera., Germplasm Resources Information Network (GRIN). Report on Science. Washington, D.C. 2017.
[2]
Arena, M.E.; Radice, S. Seasonal variation in leaf growth and antioxidant content of Moringa oleifera cultivated at Buenos Aires, Argentina. Int. J. Agric. Biol., 2016, 18(4), 719-725.
[http://dx.doi.org/10.17957/IJAB/15.0156]
[3]
Radice, S.; Giordani, E. Flower development and pollen vitality of Moringa oleifera lam. Grown in a humid temperate climatic condition. Adv. Hortic. Sci., 2018, 32, 549-556.
[http://dx.doi.org/10.13128/ahs-23504]
[4]
Falasca, S.; Bernabé, A. Potenciales usos y delimitación del área de cultivo de Moringa oleifera en Argentina; Rev. Virtual REDEMESA, 2008, pp. 1-16.
[5]
Bakre, A.G.; Aderibigbe, A.O.; Ademowo, O.G. Studies on neuropharmacological profile of ethanol extract of Moringa oleifera leaves in mice. J. Ethnopharmacol., 2013, 149(3), 783-789.
[http://dx.doi.org/10.1016/j.jep.2013.08.006] [PMID: 23933316]
[6]
Joy, A.E.; Kunhikatta, S.B.; Manikkoth, S. Anti-convulsant activity of ethanolic extract of Moringa concanensis leaves in Swiss albino mice. Arch. Med. Health Sci., 2013, 1(1), 6-9.
[http://dx.doi.org/10.4103/2321-4848.113548]
[7]
Bukar, A.; Uba, A.; Oyeyi, T. Antimicrobial profile of Moringa oleifera lam. Extracts against some food – borne microorganisms. Bayero J. Pure Appl. Sci., 2010, 3(1), 43-48.
[http://dx.doi.org/10.4314/bajopas.v3i1.58706]
[8]
Thilza, I.B.; Sanni, S.; Isah, Z.A.; Sanni, F.S.; Talle, M.; Joseph, M.B. In vitro antimicrobial activity of water extract of Moringa oleifera leaf stalk on bacteria normally implicated in eye diseases. Acad. Arena, 2010, 2, 80-82.
[9]
Prasad, T.N.V.K.V.; Elumalai, E.K. PBiofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity. Asian Pac. J. Trop. Biomed., 2011, 1, 439-442.
[10]
Rastogi, T.; Bhutda, V.; Moon, K.; Aswar, P.B.; Khadabadi, S.S. Comparative studies on anthelmintic activity of Moringa oleifera and Vitex negundo. Asian J. Res. Chem, 2009, 2(2), 181-182.
[11]
Coppin, J.P.; Xu, Y.; Chen, H.; Pan, M.H.; Ho, C.T.; Juliani, R.; Simon, J.E.; Wu, Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods, 2020, 5(4), 1892-1899.
[http://dx.doi.org/10.1016/j.jff.2013.09.010]
[12]
Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem., 2003, 51(8), 2144-2155.
[http://dx.doi.org/10.1021/jf020444+] [PMID: 12670148]
[13]
Leone, A.; Fiorillo, G.; Criscuoli, F.; Ravasenghi, S.; Santagostini, L.; Fico, G.; Spadafranca, A.; Battezzati, A.; Schiraldi, A.; Pozzi, F.; di Lello, S.; Filippini, S.; Bertoli, S. Nutritional characterization and phenolic profiling of Moringa oleifera leaves grown in chad, sahrawi refugee camps, and Haiti. Int. J. Mol. Sci., 2015, 16(8), 18923-18937.
[http://dx.doi.org/10.3390/ijms160818923] [PMID: 26274956]
[14]
Antwi-Boasiako, C.; Enninful, R. Effects of growth medium, a hormone, and stem-cutting maturity and length on sprouting in Moringa oleifera Lam. J. Hortic. Sci. Biotechnol., 2011, 86(6), 619-625.
[http://dx.doi.org/10.1080/14620316.2011.11512813]
[15]
Rufai, S.; Hanafi, M.M.; Rafii, M.Y.; Mohidin, H.; Omar, S.R.S. Growth and development of moringa (Moringa oleifera L.) stem cuttings as affected by diameter magnitude, growth media, and indole-3-butyric acid. Ann. For. Res., 2016, 59(2), 209-218.
[http://dx.doi.org/10.15287/afr.2016.686]
[16]
Materechera, S.A. Influence of pre-sowing seed treatments on the germination of moringa (Moringa oleifera Lam.). I International Symposium on Moringa 1158, 2015, pp. 149-158.
[17]
Stefanizzi, V.; Pecchioli, S.; Picardi, E.; Nin, S.; Radice, S.; Giordani, E. Genotype and substrate effects on moringa seed germination and plant growth in Tuscany (Italy). II International Symposium on Moringa 1306, 2019, pp. 67-74.
[18]
Liu, X.; Ardo, S.; Bunning, M.; Parry, J.; Zhou, K.; Stushnoff, C.; Stoniker, F.; Yu, L.; Kendall, P. Total phenolic content and DPPH radical scavenging activity of lettuce (Lactuca sativa L.) grown in Colorado. LWT - Food. Lebensm. Wiss. Technol., 2007, 40(3), 552-557.
[http://dx.doi.org/10.1016/j.lwt.2005.09.007]
[19]
Złotek, U.; Świeca, M.; Jakubczyk, A. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chem., 2014, 148, 253-260.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.031] [PMID: 24262554]
[20]
Wasonowati, C.; Sulistyaningsih, E.; Indradewa, D.; Kurniasih, B. Morphophysiology and the yield of two types of moringa (Moringa oleifera Lam.) cultivated in two different regions in Madura. IOP Conf. Ser. Earth Environ. Sci., 2019, 250(1), 012004.
[http://dx.doi.org/10.1088/1755-1315/250/1/012004]
[21]
Köppen, W. The geographic system of climates. In: Handbook of Climatology; In: W. Köppen, W.; Geiger, G.; Eds.; Borntraeger, Berlin, Bd. 1, Teil. C. 1936, 1, pp. 1-44.
[22]
Makkar, H.P.S.; Bluemmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric., 1993, 61(2), 161-165.
[http://dx.doi.org/10.1002/jsfa.2740610205]
[23]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of Xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 6(6), 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[24]
Torres, C.A.; Davies, N.M.; Yañez, J.A.; Andrews, P.K. Disposition of selected flavonoids in fruit tissues of various tomato (lycopersicon esculentum mill.). Genotypes. J. Agric. Food Chem., 2005, 53(24), 9536-9543.
[http://dx.doi.org/10.1021/jf051176t] [PMID: 16302774]
[25]
Fitriana, W.D.; Ersam, T.; Shimizu, K.; Fatmawati, S. Antioxidant activity of Moringa oleifera extracts. Indones. J. Chem., 2016, 16(3), 297-301.
[http://dx.doi.org/10.22146/ijc.21145]
[26]
Wright, R.J.; Lee, K.S.; Hyacinth, H.I.; Hibbert, J.M.; Reid, M.E.; Wheatley, A.O.; Asemota, H.N. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants, 2017, 6(4), 2-9.
[http://dx.doi.org/10.3390/plants6040048] [PMID: 29065510]
[27]
Jahan, I.A.; Hossain, M.H.; Ahmed, K.S.; Sultana, Z.; Biswas, P.K.; Nada, K. Antioxidant activity of Moringa oleifera seed extracts. Orient. Pharm. Exp. Med., 2018, 18(4), 299-307.
[http://dx.doi.org/10.1007/s13596-018-0333-y]
[28]
Giordani, E.; Radice, S.; Arena, M.E.; Gómez Castro, F. Phenol content and scavenging activity on DPPH radicals in Moringa leaves grown in Argentina. II International Symposium on Moringa, November 10-13, 2019Pretoria, South Africa2019.
[29]
Han, F.; Ju, Y.; Ruan, X.; Zhao, X.; Yue, X.; Zhuang, X.; Qin, M.; Fang, Y. Color, anthocyanin, and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Food Nutr. Res., 2017, 61(1), 1339552.
[http://dx.doi.org/10.1080/16546628.2017.1339552] [PMID: 28804435]
[30]
Dumitriu, G.D.; de Lerma Extremera, N.L.; Cotea, V.V.; Peinado, R.A. Antioxidant activity, phenolic compounds and colour of red wines treated with new fining agents. Vitis, 2018, 57(2), 61-68.
[31]
Cömert, E.D.; Mogol, B.A.; Gökmen, V. Relationship between color and antioxidant capacity of fruits and vegetables. Curr. Res. Nutr. Food Sci., 2019, 2, 1-10.
[http://dx.doi.org/10.1016/j.crfs.2019.11.001] [PMID: 32914105]
[32]
Sarker, U.; Oba, S. Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sci. Rep., 2019, 9(1), 18233.
[http://dx.doi.org/10.1038/s41598-019-52033-8] [PMID: 31796754]
[33]
Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. J. Funct. Foods, 2015, 18, 820-897.
[http://dx.doi.org/10.1016/j.jff.2015.06.018]
[34]
Lin, M.; Zhang, J.; Chen, X. Bioactive flavonoids in Moringa oleifera and their health-promoting properties. J. Funct. Foods, 2018, 47, 469-479.
[http://dx.doi.org/10.1016/j.jff.2018.06.011]
[35]
Onsare, J.G.; Arora, D.S. Antibiofilm potential of flavonoids extracted from Moringa oleifera seed coat against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. J. Appl. Microbiol., 2015, 118(2), 313-325.
[http://dx.doi.org/10.1111/jam.12701] [PMID: 25410525]
[36]
Sankhalkar, S.; Vernekar, V. Quantitative and qualitative analysis of phenolic and flavonoid content in Moringa oleifera Lam and Ocimum tenuiflorum L. Pharmacognosy Res., 2016, 8(1), 16-21.
[http://dx.doi.org/10.4103/0974-8490.171095] [PMID: 26941531]
[37]
Wang, Y.; Gao, Y.; Ding, H.; Liu, S.; Han, X.; Gui, J.; Liu, D. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity. Food Chem., 2017, 218, 152-158.
[http://dx.doi.org/10.1016/j.foodchem.2016.09.058] [PMID: 27719892]
[38]
Habtemariam, S.; Varghese, G.K. Extractability of rutin in herbal tea preparations of Moringa stenopetala leaves. Beverages, 2015, 1(3), 169-182.
[http://dx.doi.org/10.3390/beverages1030169]
[39]
Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int., 2014, 2014, 480258.
[http://dx.doi.org/10.1155/2014/480258]
[40]
Salehi, B.; Fokou, P.V.T.; Sharifi-Rad, M.; Zucca, P.; Pezzani, R.; Martins, N.; Sharifi-Rad, J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals (Basel), 2019, 12(1), 11.
[http://dx.doi.org/10.3390/ph12010011] [PMID: 30634637]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy