Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Systematic Review Article

Software Measurements Using Machine Learning Techniques - A Review

Author(s): Somya Goyal*

Volume 16, Issue 1, 2023

Published on: 01 August, 2022

Article ID: e070422203243 Pages: 18

DOI: 10.2174/2666255815666220407101922

Price: $65

Abstract

Background: Software Measurement (SM) is pivotal for efficient planning, scheduling, tracking, and controlling software projects, which significantly affects the success or failure of a project. Machine Learning (ML) techniques have been applied for software measurements for the past three decades.

Objective: This review aims to synthesize the studies conducted from the years 1990 to 2020 to provide a broad picture of the role of machine learning in the world of software measurement.

Methods: The Systematic Literature Review (SLR) approach is adopted to conduct this review. Inclusion/exclusion criteria are defined to select the most relevant studies. The researcher searched the prominent databases and archives and obtained around 2310 studies, from which 108 studies were selected as primary studies, which were then summarized to accomplish the goals of this review.

Results: The distinguished contribution of this review is that it covers all aspects of software measurements from the perspective of the application of machine learning techniques. It guides the software practitioners regarding the journey of software measurements to date using machine learning techniques in a single synthesized study. It further provides future guidelines for the researchers working in this field.

Conclusion: Machine learning techniques have extensive applications for software measurements. Software fault prediction and software effort estimation are the most prevailing SM tasks harnessing the ML techniques. The most popular ML technique is the artificial neural network for SM. For empirical studies, NASA and promise datasets are extensively used. Over the last decade (2011-2020), SM paradigm has been shifting towards ensembles of individual ML models and deep learning models.

Keywords: Software measurements, software fault prediction, software effort estimation, machine learning, artificial neural networks, decision trees, accuracy.

Graphical Abstract

[1]
R. Pressman, Software Engineering: A Practitioner’s Approach., McGraw-Hill, 1997.
[2]
M. Jørgensen, and M. Shepperd, "A systematic review of software development cost estimation studies", IEEE Trans. Softw. Eng., vol. 33, no. 1, pp. 33-53, 2007.
[http://dx.doi.org/10.1109/TSE.2007.256943]
[3]
C. Catal, and B. Diri, "A systematic review of software fault prediction studies", Expert Syst. Appl., vol. 36, pp. 7346-7354, 2009.
[http://dx.doi.org/10.1016/j.eswa.2008.10.027]
[4]
J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, "Systematic literature review of machine learning based software development effort estimation models", Inf. Softw. Technol., vol. 54, pp. 41-59, 2012.
[http://dx.doi.org/10.1016/j.infsof.2011.09.002]
[5]
D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic, "Software fault prediction metrics: A systematic literature review", Inf. Softw. Technol., vol. 55, pp. 1397-1418, 2013.
[http://dx.doi.org/10.1016/j.infsof.2013.02.009]
[6]
R.C. Wahono, "A systematic literature review of software defect prediction: Research trends, datasets, methods and frameworks", J. Softw. Eng., vol. 1, no. 1, pp. 1-16, 2015.
[7]
A. Idri, F. Amazal, and A. Abran, "Analogy-based software development effort estimation: A systematic mapping and review", Inf. Softw. Technol., vol. 58, pp. 206-230, 2015.
[http://dx.doi.org/10.1016/j.infsof.2014.07.013]
[8]
R. Ozakıncı, and A. Tarhan, "Early software defect prediction: A systematic map and review", J. Syst. Softw., vol. 144, pp. 216-239, 2018.
[http://dx.doi.org/10.1016/j.jss.2018.06.025]
[9]
H. Alsolai, and M. Roper, "A systematic literature review of machine learning techniques for software maintainability prediction", Inform. Softw. Technol., vol. 119, p. 106214, 2020.
[http://dx.doi.org/10.1016/j.infsof.2019.106214]
[10]
B.A. Kitchenham, and S. Charters, "Guidelines for performing systematic literature reviews in software engineering", Lit. Rev. Softw. Eng, 2007. Available from:https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.117.471
[11]
A. Porter, and R. Selby, "Empirically-guided software development using metric-based classification trees", IEEE Softw., vol. 7, no. March, pp. 46-54, 1990.
[http://dx.doi.org/10.1109/52.50773]
[12]
L.C. Briand, V.R. Basili, and W.M. Thomas, "A pattern recognition approach for software engineering data analysis", IEEE Trans. Softw. Eng., vol. 18, no. 11, pp. 931-942, 1992.
[http://dx.doi.org/10.1109/32.177363]
[13]
J. Hakkarainen, P. Laamanen, and R. Rask, Neural Networks in Specification Level Software Size Estimation., IEEE, 1993.
[14]
L. Briand, V. Basili, and C. Hetmanski, "Developing interpretable models with optimized set reduction for identifying high-risk software components", IEEE Trans. SE, vol. 19, no. 11, pp. 1028-1043, 1993.
[http://dx.doi.org/10.1109/32.256851]
[15]
M. Jorgensen, "Experience with the accuracy of software maintenance task effort prediction models", IEEE Trans. SE, vol. 21, no. 8, pp. 674-681, 1995.
[http://dx.doi.org/10.1109/32.403791]
[16]
K. Srinivasan, and D. Fisher, "Machine learning approaches to estimating software development effort", IEEE Trans. SE, vol. 21, no. 2, pp. 126-137, 1995.
[http://dx.doi.org/10.1109/32.345828]
[17]
S.A. Sherer, "Software fault prediction", J. Syst. Softw., vol. 29, pp. 97-105, 1995.
[http://dx.doi.org/10.1016/0164-1212(94)00051-N]
[18]
M. Shepperd, and C. Schofield, "Estimating software project effort using analogies", IEEE Transac. Softw. Eng. SE, vol. 23, no. 12, pp. 736-743, 1997.
[http://dx.doi.org/10.1109/32.637387]
[19]
G.R. Finnie, G.E. Wittig, and J-M. Desharnais, "A comparison of software effort estimation techniques: using function points with neural networks, case based reasoning and regression models", J. Syst. Softw., vol. 39, no. 3, pp. 281-289, 1997.
[http://dx.doi.org/10.1016/S0164-1212(97)00055-1]
[20]
F. Lanubile, and G. Visaggio, "Evaluating predictive quality models derived from software measures: lessons learned", J. Syst. Softw., vol. 38, pp. 225-234, 1997.
[http://dx.doi.org/10.1016/S0164-1212(96)00153-7]
[21]
M.K. Taghi, and B.A. Edward, "Classification of fault-prone software modules: Prior probabilities, costs, and model evaluation", Empir. Softw. Eng., vol. 3, pp. 275-298, 1998.
[http://dx.doi.org/10.1023/A:1009736205722]
[22]
S. Chulani, B. Boehm, and B. Steece, "Bayesian analysis of empirical software engineering cost models", IEEE Trans. SE, vol. 25, no. 4, pp. 573-583, 1999.
[http://dx.doi.org/10.1109/32.799958]
[23]
N. Fenton, and M. Neil, "A critique of software defect prediction models", IEEE Trans. SE, vol. 25, no. 5, pp. 675-689, 1999.
[http://dx.doi.org/10.1109/32.815326]
[24]
K.K. Shukla, "Neuro-genetic prediction of software development effort", Inf. Softw. Technol., vol. 42, no. 10, pp. 701-713, 2000.
[http://dx.doi.org/10.1016/S0950-5849(00)00114-2]
[25]
M. Shin, and A.L. Goel, "Empirical data modeling in software engineering using radial basis functions", IEEE Trans. Softw. Eng., vol. 26, no. 6, pp. 567-576, 2000.
[http://dx.doi.org/10.1109/32.852743]
[26]
J. Dolado, "A validation of the component-based method for software size estimation", IEEE Trans. Softw. Eng., vol. 26, no. 10, pp. 1006-1021, 2000.
[http://dx.doi.org/10.1109/32.879821]
[27]
T.M. Khoshgoftaar, and E.B. Allen, "A practical classification-rule for software quality models", IEEE Transac. Relialib, vol. 49, no. 2, 2000.
[28]
J.J. Dolado, "On the problem of the software cost function", Inf. Softw. Technol., vol. 43, no. 1, pp. 61-72, 2001.
[http://dx.doi.org/10.1016/S0950-5849(00)00137-3]
[29]
E.S. Jun, and J.K. Lee, "Quasi-optimal case-selective neural network model for software effort estimation", Expert Syst. Appl., vol. 21, no. 1, pp. 1-14, 2001.
[http://dx.doi.org/10.1016/S0957-4174(01)00021-5]
[30]
F. Fioravanti, and P. Nesi, "Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems", IEEE Trans. Softw. Eng., vol. 27, no. 12, pp. 1062-1084, 2001.
[31]
H.K.N. Leung, Estimating Maintenance Effort by Analogy, Empirical Software Engineering, Springer, vol. 7, no. 2, pp. 157-175, 2002.
[32]
B.A. Kitchenham, S.L. Pfleeger, B. McColl, and S. Eagan, "An empirical study of maintenance and development estimation accuracy", J. Syst. Softw., vol. 64, no. 1, pp. 57-77, 2002.
[http://dx.doi.org/10.1016/S0164-1212(02)00021-3]
[33]
S.G. MacDonell, and M.J. Shepperd, "Combining techniques to optimize effort predictions in software project management", J. Syst. Softw., vol. 66, no. 2, pp. 91-98, 2003.
[http://dx.doi.org/10.1016/S0164-1212(02)00067-5]
[34]
E. Mendes, I. Watson, C. Triggs, N. Mosley, and S. Counsell, "A comparative study of cost estimation models for web hypermedia applications", Empir. Softw. Eng., vol. 8, no. 2, pp. 163-196, 2003.
[http://dx.doi.org/10.1023/A:1023062629183]
[35]
S.G. MacDonell, "Software source code sizing using fuzzy logic modeling", Inf. Softw. Technol., vol. 45, no. 7, pp. 389-404, 2003.
[http://dx.doi.org/10.1016/S0950-5849(03)00011-9]
[36]
T. Khoshgoftaar, and N. Seliya, "Analogy-based practical classification rules for software quality estimation", Empir. Softw. Eng., vol. 8, no. 4, pp. 325-350, 2003.
[http://dx.doi.org/10.1023/A:1025316301168]
[37]
A.G. Koru, and H. Liu, "Building effective defect-prediction models in practice", IEEE Softw., vol. 22, pp. 23-29, 2005.
[http://dx.doi.org/10.1109/MS.2005.149]
[38]
A.L. Oliveira, "Estimation of software project effort with support vector regression", Neuro Comput., vol. 69, no. 13-15, pp. 1749-1753, 2006.
[39]
S-J. Huang, and N-H. Chiu, "Optimization of analogy weights by genetic algorithm for software effort estimation", Inf. Softw. Technol., vol. 48, no. 11, pp. 1034-1045, 2006.
[http://dx.doi.org/10.1016/j.infsof.2005.12.020]
[40]
H. Park, and S. Baek, "An empirical validation of a neural network model for software effort estimation", Expert Syst. Appl., vol. 35, pp. 929-937, 2008.
[http://dx.doi.org/10.1016/j.eswa.2007.08.001]
[41]
K.V. Kumar, V. Ravi, M. Carr, and N.R. Kiran, "Software development cost estimation using wavelet neural networks", J. Syst. Softw., vol. 81, no. 11, pp. 1853-1867, 2008.
[http://dx.doi.org/10.1016/j.jss.2007.12.793]
[42]
E. Mendes, and N. Mosley, "Bayesian network models for web effort prediction: A comparative study", IEEE Trans. Softw. Eng., vol. 34, no. 6, pp. 723-737, 2008.
[http://dx.doi.org/10.1109/TSE.2008.64]
[43]
S. Bibi, G. Tsoumakas, I. Stamelos, and I. Vlahvas, "Regression via classification applied on software defect estimation", Expert Syst. Appl., vol. 34, no. 3, pp. 2091-2101, 2008.
[http://dx.doi.org/10.1016/j.eswa.2007.02.012]
[44]
Y. Jiang, Y. Ma, and B. Cukic, "Techniques for evaluating fault prediction models", Empir. Softw. Eng., vol. 13, pp. 561-595, 2008.
[http://dx.doi.org/10.1007/s10664-008-9079-3]
[45]
I. Gondra, "Applying machine learning to software fault-proneness prediction", J. Syst. Softw., vol. 81, pp. 186-195, 2008.
[http://dx.doi.org/10.1016/j.jss.2007.05.035]
[46]
A. Emad, "El-Sebakhy, Software reliability identification using functional networks: A comparative study", Expert Syst. Appl., vol. 36, pp. 4013-4020, 2009.
[http://dx.doi.org/10.1016/j.eswa.2008.02.053]
[47]
M.O. Elish, "Improved estimation of software project effort using multiple additive regression trees", Expert Syst. Appl., vol. 36, no. 7, pp. 10774-10778, 2009.
[http://dx.doi.org/10.1016/j.eswa.2009.02.013]
[48]
Y.F. Li, M. Xie, and T.N. Goh, "A study of the non-linear adjustment for analogy based software cost estimation", Empir. Softw. Eng., vol. 14, no. 6, pp. 603-643, 2009.
[http://dx.doi.org/10.1007/s10664-008-9104-6]
[49]
J. Zheng, "Predicting software reliability with neural network ensembles", Expert Syst. Appl, vol. 36 no. 2, Part 1,, pp. 2116-2122, 2009.
[http://dx.doi.org/10.1016/j.eswa.2007.12.029]
[50]
S. Berlin, T. Raz, C. Glezer, and M. Zviran, "Comparison of estimation methods of cost and duration in IT projects", Inf. Softw. Technol., vol. 51, pp. 738-748, 2009.
[http://dx.doi.org/10.1016/j.infsof.2008.09.007]
[51]
B. Turhan, T. Menzies, J.D. Stefano, and A.B. Bener, "On the relative value of cross-company and within company data for defect prediction", Empir. Softw. Eng., vol. 14, pp. 540-578, 2009.
[http://dx.doi.org/10.1007/s10664-008-9103-7]
[52]
D. Azar, H. Harmanani, and R. Korkmaz, "A hybrid hueristic to optimize rule-based software quality estimation models", Inf. Softw. Technol., vol. 51, no. 9, pp. 1365-1376, 2009.
[http://dx.doi.org/10.1016/j.infsof.2009.05.003]
[53]
A.L.I. Oliveira, P.L. Braga, R.M.F. Lima, and M.L. Cornélio, "GA-based method for feature selection and parameters optimization for machine learning regression applied to software effort estimation", Inf. Softw. Technol., vol. 52, no. 11, pp. 1155-1166, 2010.
[http://dx.doi.org/10.1016/j.infsof.2010.05.009]
[54]
M. Azzeh, D. Neagu, and P.I. Cowling, "Fuzzy grey relational analysis for software effort estimation", Empir. Softw. Eng., vol. 15, no. 1, pp. 60-90, 2010.
[http://dx.doi.org/10.1007/s10664-009-9113-0]
[55]
J. Zheng, "Cost-sensitive boosting neural networks for software defect prediction", Expert Systems with Applications, vol. 37, no. 6, pp. 4537-4543, 2010.
[56]
M. Azzeh, D. Neagu, and P.I. Cowling, "Analogy-based software effort estimation using Fuzzy numbers", J. Syst. Softw., vol. 84, no. 2, pp. 270-284, 2011.
[http://dx.doi.org/10.1016/j.jss.2010.09.028]
[57]
A. Corazza, S. Di Martino, F. Ferrucci, C. Gravino, and E. Mendes, "Investigating the use of Support Vector Regression for web effort estimation", Empir. Softw. Eng., vol. 16, no. 2, pp. 211-243, 2011.
[http://dx.doi.org/10.1007/s10664-010-9138-4]
[58]
D. Azar, and J. Vybihal, "An ant colony optimization algorithm to improve software quality prediction models: Case of class stability", Inf. Softw. Technol., vol. 53, pp. 388-393, 2011.
[http://dx.doi.org/10.1016/j.infsof.2010.11.013]
[59]
Q. Song, Z. Jia, M. Shepperd, S. Ying, and J. Liu, "A general software defect-proneness prediction framework", IEEE Trans. Softw. Eng., vol. 37, pp. 356-370, 2011.
[http://dx.doi.org/10.1109/TSE.2010.90]
[60]
C. López-Martín, and C. Isaza, "Chavoya, Software development effort prediction of industrial projects applying a general regression neural network, A", Empir. Softw. Eng., vol. 17, pp. 738-756, 2012.
[http://dx.doi.org/10.1007/s10664-011-9192-6]
[61]
E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy, "Active learning and effort estimation: Finding the essential content of software effort estimation data", IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1040-1053, 2013.
[http://dx.doi.org/10.1109/TSE.2012.88]
[62]
V.K. Bardsiri, D.N.A. Jawawi, S.Z.M. Hashim, and E. Bardsiri, "A PSO-based model to increase the accuracy of software development effort estimation", Softw. Qual. J., vol. 21, no. 3, pp. 501-526, 2013.
[http://dx.doi.org/10.1007/s11219-012-9183-x]
[63]
L. Minku, and X. Yao, "Ensembles and locality: Insight on improving software effort estimation", Inf. Softw. Technol., vol. 55, no. 8, pp. 1512-1528, 2013.
[http://dx.doi.org/10.1016/j.infsof.2012.09.012]
[64]
K. Dejaeger, T. Verbraken, and B. Baesens, "Toward compre-hensible software fault prediction models using bayesian network classifiers", IEEE Trans. Softw. Eng., vol. 39, pp. 237-257, 2013.
[http://dx.doi.org/10.1109/TSE.2012.20]
[65]
N. Mittas, and L. Angelis, "Ranking and clustering software cost estimation models through a multiple comparisons algorithm", IEEE Trans. Softw. Eng., vol. 39, no. 4, pp. 537-551, 2013.
[http://dx.doi.org/10.1109/TSE.2012.45]
[66]
A. Corazza, S.D. Martino, F. Ferrucci, C. Gravino, F. Sarro, and E. Mendes, "Using tabu search to configure support vector regression for effort estimation", Empir. Softw. Eng., vol. 18, no. 3, pp. 506-546, 2013.
[http://dx.doi.org/10.1007/s10664-011-9187-3]
[67]
A. Bou Nassif, D. Ho, and L.F. Capretz, "Towards an early software estimation using log-linear regression and a multilayer perceptron model", J. Syst. Softw., vol. 86, no. 1, pp. 144-160, 2013.
[http://dx.doi.org/10.1016/j.jss.2012.07.050]
[68]
M. Liu, L. Miao, and D. Zhang, "Two-stage cost-sensitive learning for software defect prediction", IEEE Trans. Reliab., vol. 63, no. 2, pp. 676-686, 2014.
[http://dx.doi.org/10.1109/TR.2014.2316951]
[69]
V.S. Dave, and K. Dutta, "Neural network based models for software effort estimation: A review", Artif. Intell. Rev., vol. 42, pp. 295-308, 2014.
[http://dx.doi.org/10.1007/s10462-012-9339-x]
[70]
J. Moeyersoms, E. Junque de Fortuny, K. ´Dejaeger, B. Baesens, and D. Martens, "Comprehensible software fault and effort prediction: A data mining approach", J. Syst. Softw., vol. 100, pp. 80-90, 2015.
[http://dx.doi.org/10.1016/j.jss.2014.10.032]
[71]
C. López-Martín, "Predictive accuracy comparison between neural networks and statistical regression for development effort of software projects", Appl. Soft Comput., vol. 27, pp. 434-449, 2015.
[http://dx.doi.org/10.1016/j.asoc.2014.10.033]
[72]
C. López-Martína, and A. Abranb, "Neural networks for predicting the duration of new software projects", J. Syst. Softw., vol. 101, pp. 127-135, 2015.
[http://dx.doi.org/10.1016/j.jss.2014.12.002]
[73]
M. Azzeh, A.B. Nassif, and L.L. Minku, "An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation", J. Syst. Softw., vol. 103, pp. 36-52, 2015.
[http://dx.doi.org/10.1016/j.jss.2015.01.028]
[74]
W. Zhang, Y. Yang, and Q. Wang, "Using bayesian regression and EM algorithm with missing handling for software effort prediction", Inf. Softw. Technol., vol. 58, pp. 58-70, 2015.
[http://dx.doi.org/10.1016/j.infsof.2014.10.005]
[75]
P.C. Pendharkar, "Ensemble based point and confidence interval forecasting in software engineering", Expert Syst. Appl., vol. 42, no. 24, pp. 9441-9448, 2015.
[http://dx.doi.org/10.1016/j.eswa.2015.08.002]
[76]
N. Mittas, E. Papatheocharous, L. Angelis, and A.S. Andreou, "Integrating non-parametric models with linear components for producing software cost estimations", J. Syst. Softw., vol. 99, pp. 120-134, 2015.
[http://dx.doi.org/10.1016/j.jss.2014.09.025]
[77]
Y. Abdi, S. Parsa, and Y. Seyfari, "A hybrid one-class rule learning approach based on swarm intelligence for software fault prediction", Innov. Syst. Softw. Eng., vol. 11, no. 4, pp. 289-301, 2015.
[http://dx.doi.org/10.1007/s11334-015-0258-2]
[78]
Ö.F. Arar, and K. Ayan, "Software defect prediction using cost-sensitive neural network", Appl. Soft Comput., vol. 33, pp. 263-277, 2015.
[http://dx.doi.org/10.1016/j.asoc.2015.04.045]
[79]
X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang, "ELBlocker: Predicting blocking bugs with ensemble imbalance learning", Inf. Softw. Technol., vol. 61, pp. 93-106, 2015.
[http://dx.doi.org/10.1016/j.infsof.2014.12.006]
[80]
H.B. Yadav, and D.K. Yadav, "A fuzzy logic based approach for phase-wise software defects prediction using software metrics", Inf. Softw. Technol., vol. 63, pp. 44-57, 2015.
[http://dx.doi.org/10.1016/j.infsof.2015.03.001]
[81]
M.J. Siers, and M.Z. Islam, "Software defect prediction using a cost sensitive decision forest and voting, and a potential solution to the class imbalance problem", Inf. Syst., vol. 51, pp. 62-71, 2015.
[http://dx.doi.org/10.1016/j.is.2015.02.006]
[82]
T. Wang, Z. Zhang, X. Jing, and L. Zhang, "Multiple kernel ensemble learning for software defect prediction", Autom. Softw. Eng., vol. 23, pp. 569-590, 2015.
[http://dx.doi.org/10.1007/s10515-015-0179-1]
[83]
H. Issam, L. Mohammad, and L. Ghouti, "Software defect prediction using ensemble learning on selected features", Inf. Softw. Technol., vol. 58, pp. 388-402, 2015.
[http://dx.doi.org/10.1016/j.infsof.2014.07.005]
[84]
J. Murillo-Morera, C. Castro-Herrera, J. Arroyo, and R. Fuentes-Fernández, "An automated defect prediction framework using genetic algorithms: A validation of empirical studies", Intel Artif, vol. 19, no. 57, pp. 114-137, 2016.
[http://dx.doi.org/10.4114/IA.V18I56.1159]
[85]
E. Erturk, and E. Akcapinar Sezer, "Iterative software fault prediction with a hybrid approach", Appl. Soft Comput., vol. 49, pp. 1020-1033, 2016.
[http://dx.doi.org/10.1016/j.asoc.2016.08.025]
[86]
D. Ryu, and J. Baik, "2016, Effective multi-objective naïve Bayes learning for cross-project defect prediction", J. Appl. Soft Comput., vol. 49, no. C, pp. 1062-1077, 2016.
[http://dx.doi.org/10.1016/j.asoc.2016.04.009]
[87]
A.A. Ricardo de, A.L.I. Oliveira, and S. Meira, "A class of hybrid multilayer perceptrons for software development effort estimation problems", J. Expert Syst. Appl., vol. 90, pp. 1-12, 2017.
[88]
S.S. Rathore, and S. Kumar, "Linear and non-linear heterogeneous ensemble methods to predict the number of faults in software systems", Knowl. Base. Syst., vol. 119, pp. 232-256, 2017.
[http://dx.doi.org/10.1016/j.knosys.2016.12.017]
[89]
X. Jing, F. Wu, X. Dong, and B. Xu, "An improved SDA based defect prediction framework for both within-project and cross-project class-imbalance problems", IEEE Trans. Softw. Eng., vol. 43, no. 4, pp. 321-339, 2017.
[http://dx.doi.org/10.1109/TSE.2016.2597849]
[90]
L.D. Xinli, X. Xia, and S. Jianling, "A two-layer ensemble learning approach for just-in-time defect prediction", J. Inf. Softw. Technol., vol. 87, pp. 206-220, 2017.
[http://dx.doi.org/10.1016/j.infsof.2017.03.007]
[91]
R. Moussa, and D. Azar, "A PSO-GA approach targeting fault-prone software modules", J. Syst. Softw., vol. 132, pp. 41-49, 2017.
[http://dx.doi.org/10.1016/j.jss.2017.06.059]
[92]
Ö.F. Arar, and K. Ayan, "A feature dependent Naive Bayes approach and its application to the software defect prediction problem", Appl. Soft Comput., vol. 59, pp. 197-209, 2017.
[http://dx.doi.org/10.1016/j.asoc.2017.05.043]
[93]
M. Hosni, A. Idri, A. Abran, and A.B. Nassif, "On the value of parameter tuning in heterogeneous ensembles effort estimation", Soft Comput., vol. 22, no. 18, pp. 5977-6010, 2017.
[http://dx.doi.org/10.1007/s00500-017-2945-4]
[94]
A. García-Floriano, C. López-Martín, C. Yáñez-Márquez, and A. Abran, "Support vector regression for predicting software enhancement effort", Inf. Softw. Technol., vol. 97, pp. 99-109, 2018.
[http://dx.doi.org/10.1016/j.infsof.2018.01.003]
[95]
L. Kumar, S.K. Sripada, A. Sureka, and S.K. Rath, "Effective fault prediction model developed using Least Square Support Vector Machine (LSSVM)", J. Syst. Softw., vol. 137, pp. 686-712, 2018.
[http://dx.doi.org/10.1016/j.jss.2017.04.016]
[96]
H. Tong, B. Liu, and S. Wang, "Software defect prediction using stacked denoising autoencoders and two-stage ensemble learning", Inf. Softw. Technol., vol. 96, pp. 94-111, 2018.
[http://dx.doi.org/10.1016/j.infsof.2017.11.008]
[97]
D-L. Miholca, G. Czibula, and I.G. Czibula, "A novel approach for software defect prediction through hybridizing gradual relational association rules with artificial neural networks", J. Inf. Sci., vol. 441, pp. 152-170, 2018.
[http://dx.doi.org/10.1016/j.ins.2018.02.027]
[98]
C. Manjula, and L. Florence, "Deep neural network based hybrid approach for software defect prediction using software metrics", Cluster Comput., vol. 22, pp. 9847-9863, 2018.
[http://dx.doi.org/10.1007/s10586-018-1696-z]
[99]
S. Huda, K. Liu, M. Abdelrazek, A. Ibrahim, S. Alyahya, H. Al-Dossari, and S. Ahmad, "An ensemble oversampling model for class imbalance problem in software defect prediction", IEEE Access, vol. 6, pp. 24184-24195, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2817572]
[100]
F.A. Batarseh, and A.J. Gonzalez, "Predicting failures in agile software development through data analytics", Softw. Qual. J., vol. 26, no. 1, pp. 49-66, 2018.
[http://dx.doi.org/10.1007/s11219-015-9285-3]
[101]
D. Bowes, T. Hall, and J. Petrić, "Software defect prediction: Do different classifiers find the same defects?", Softw. Qual. J, vol. 26, no. 2, pp. 525-552, 2018.
[http://dx.doi.org/10.1007/s11219-016-9353-3]
[102]
P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, "An effective approach for software project effort and duration estimation with machine learning algorithms", J. Syst. Softw., vol. 137, pp. 184-196, 2018.
[http://dx.doi.org/10.1016/j.jss.2017.11.066]
[103]
X. Chen, Y. Zhao, Q. Wang, and Z. Yuan, "MULTI: Multi-objective effort-aware just-in-time software defect prediction", Inf. Softw. Technol., vol. 93, pp. 1-13, 2018.
[http://dx.doi.org/10.1016/j.infsof.2017.08.004]
[104]
Z. Mahmood, D. Bowes, T. Hall, P.C.R. Lane, and J. Petrić, "Reproducibility and replicability of software defect prediction studies", Inform. Softw. Technol., vol. 99, pp. 148-163, 2018.
[http://dx.doi.org/10.1016/j.infsof.2018.02.003]
[105]
Y. Shao, B. Liu, S. Wang, and G. Li, "A novel software defect prediction based on atomic class-association rule mining", Expert Syst. Appl., vol. 114, pp. 237-254, 2018.
[http://dx.doi.org/10.1016/j.eswa.2018.07.042]
[106]
L. Chen, B. Fang, Z. Shang, and Y. Tang, "Tackling class overlap and imbalance problems in software defect prediction", Softw. Qual. J., vol. 26, no. 1, pp. 97-125, 2018.
[http://dx.doi.org/10.1007/s11219-016-9342-6]
[107]
J. Nam, W. Fu, S. Kim, T. Menzies, and L. Tan, "Heterogeneous defect prediction", IEEE Trans. Softw. Eng., vol. 44, no. 9, pp. 874-896, 2018.
[http://dx.doi.org/10.1109/TSE.2017.2720603]
[108]
Z. Li, X-Y. Jing, X. Zhu, H. Zhang, B. Xu, and S. Ying, "Heterogeneous defect prediction with two-stage ensemble learning", Autom. Softw. Eng., vol. 26, p. 599, 2019.
[http://dx.doi.org/10.1007/s10515-019-00259-1]
[109]
S.K. Sehra, Y.S. Brar, N. Kaur, and S.S. Sehra, "Software effort estimation using FAHP and weighted kernel LSSVM machine", Soft Comput., vol. 23, no. 21, pp. 10881-10900, 2019.
[http://dx.doi.org/10.1007/s00500-018-3639-2]
[110]
Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, "An empirical study on the effectiveness of feature selection for cross-project defect prediction", Access IEEE, vol. 7, pp. 35710-35718, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2895614]
[111]
L. Romeo, J. Loncarski, M. Paolanti, G. Bocchini, A. Mancini, and E. Frontoni, "Machine learning-based design support system for the prediction of heterogeneous machine parameters in industry 4.0", Expert Syst. Appli., vol. 140, p. 112869, 2020.
[http://dx.doi.org/10.1016/j.eswa.2019.112869]
[112]
S.K. Pandey, R.B. Mishra, and A.K. Tripathi, "BPDET: An effective software bug prediction model using deep representation and ensemble learning techniques", Expert Syst. Appl., vol. 144, p. 113085, 2020.
[http://dx.doi.org/10.1016/j.eswa.2019.113085]
[113]
Z. Yuan, X. Chen, Z. Cui, and Y. Mu, "ALTRA: Cross-project software defect prediction via active learning and tradaboost", IEEE Access, vol. 8, pp. 30037-30049, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2972644]
[114]
H. Xiao, M. Cao, and R. Peng, "Artificial neural network based software fault detection and correction prediction models considering testing effort", Appl. Soft Comput., vol. 94, p. 106491, 2020.
[http://dx.doi.org/10.1016/j.asoc.2020.106491]
[115]
C. López-Martín, Y. Villuendas-Rey, M. Azzeh, A.B. Nassif, and S. Banitaan, "Transformed k-nearest neighborhood output distance minimization for predicting the defect density of software projects", J. Syst. Softw., vol. 167, p. 110592, 2020.
[http://dx.doi.org/10.1016/j.jss.2020.110592]
[116]
L. Sheng, L. Lu, and J. Lin, "An adversarial discriminative convolutional neural network for cross-project defect prediction", IEEE Access, vol. 8, pp. 55241-55253, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2981869]
[117]
H. Wang, W. Zhuang, and X. Zhang, "Software defect prediction based on gated hierarchical LSTMs", IEEE Trans. Reliab., vol. 70. no. 2, pp. 711-727.
[http://dx.doi.org/10.1109/TR.2020.3047396]
[118]
T. Chakraborty, and A.K. Chakraborty, "Hellinger net: A hybrid imbalance learning model to improve software defect prediction", IEEE Trans. Reliab., 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy