Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Core Prescription and Underlying Mechanism of Traditional Chinese Medicine in Treating Allergic Rhinitis in Children: A Real- World Study Based on an Illustrious Senior Traditional Chinese Medicine Practitioner

Author(s): Changyong Luo, Yuhan Wang, Bing He, Yu He*, Yurou Yan, Junhong Wang and Xiaohong Gu*

Volume 26, Issue 1, 2023

Published on: 06 July, 2022

Page: [207 - 223] Pages: 17

DOI: 10.2174/1386207325666220406105633

Price: $65

Abstract

Background: Traditional Chinese medicine (TCM) is widely used to treat allergic rhinitis (AR) in China, especially in children. However, due to the complicated composition rules and unclear underlying mechanisms, effective herbal prescriptions’ popularization and application are limited.

Purpose: This study tried to detect the core prescription of herbs in treating AR in children, reveal its mechanism based on the ingredients’ network, and explore the main signaling pathways.

Methods: We screened medical records of children patients with AR who were treated by TCM in DongZhiMen Hospital from Aug 2009 to Jan 2020 and adopted a descriptive analysis method on herbal characteristics. We used association rules to mine core prescriptions and used network pharmacology to establish the ingredient-target-pathway network through online databases and TCMSP, Genecards, KEGG pathway, Excel, R-Studio, and Cytoscape software.

Results: The analysis of 1,092 clinical visits highlighted that the principle of formulating prescription was as follows: ‘pungent and warm herbs were used more frequently while cold-natured herbs were paid equal attention as warm-natured herbs.’ The core prescription was formed by FangFeng, BaiZhi, CangErzi, and ChanTui. These herbs covered 130 underlying targets and 141 signaling pathways of AR, which mainly had an effect on signal transduction and immunoregulation.

Conclusion: The core prescription based on these real-world clinical records includes FangFeng, BaiZhi, CangErzi, and ChanTui. It principally acts on targets of signal transduction pathways and immune pathways.

Keywords: Allergic rhinitis, traditional chinese medicine, core prescription, underlying mechanism, apriori algorithm, network pharmacology.

Graphical Abstract

[1]
Mansi, N.; D’Agostino, G.; Scirè, A.S.; Morpurgo, G.; Gre-gori, D.; Gulati, A.; Damiani, V. Allergic rhinitis in children: A randomized clinical trial targeted at symptoms. Indian J. Otolaryngol. Head Neck Surg., 2014, 66(4), 386-393.
[http://dx.doi.org/10.1007/s12070-014-0708-4] [PMID: 26396949]
[2]
Zhang, Y.; Zhang, L. Prevalence of allergic rhinitis in china. Allergy Asthma Immunol. Res., 2014, 6(2), 105-113.
[http://dx.doi.org/10.4168/aair.2014.6.2.105] [PMID: 24587945]
[3]
Brożek, J.L.; Bousquet, J.; Agache, I.; Agarwal, A.; Bachert, C.; Bosnic-Anticevich, S.; Brignardello-Petersen, R.; Canoni-ca, G.W.; Casale, T.; Chavannes, N.H.; Correia de Sousa, J.; Cruz, A.A.; Cuello-Garcia, C.A.; Demoly, P.; Dykewicz, M.; Etxeandia-Ikobaltzeta, I.; Florez, I.D.; Fokkens, W.; Fonseca, J.; Hellings, P.W.; Klimek, L.; Kowalski, S.; Kuna, P.; Laisaar, K.T.; Larenas-Linnemann, D.E.; Lødrup Carlsen, K.C.; Man-ning, P.J.; Meltzer, E.; Mullol, J.; Muraro, A.; O’Hehir, R.; Ohta, K.; Panzner, P.; Papadopoulos, N.; Park, H.S.; Passa-lacqua, G.; Pawankar, R.; Price, D.; Riva, J.J.; Roldán, Y.; Ryan, D.; Sadeghirad, B.; Samolinski, B.; Schmid-Grendelmeier, P.; Sheikh, A.; Togias, A.; Valero, A.; Valiulis, A.; Valovirta, E.; Ventresca, M.; Wallace, D.; Waserman, S.; Wickman, M.; Wiercioch, W.; Yepes-Nuñez, J.J.; Zhang, L.; Zhang, Y.; Zidarn, M.; Zuberbier, T.; Schünemann, H.J. Al-lergic Rhinitis and its Impact on Asthma (ARIA) guidelines-2016 revision. J. Allergy Clin. Immunol., 2017, 140(4), 950-958.
[http://dx.doi.org/10.1016/j.jaci.2017.03.050] [PMID: 28602936]
[4]
Varshney, J.; Varshney, H. Allergic rhinitis: An overview. Indian J. Otolaryngol. Head Neck Surg., 2015, 67(2), 143-149.
[http://dx.doi.org/10.1007/s12070-015-0828-5] [PMID: 26075169]
[5]
Wang, M.; Gu, Z.; Yang, J.; Zhao, H.; Cao, Z. Changes among TGF-β1+ Breg cells and helper T cell subsets in a murine model of allergic rhinitis with prolonged OVA challenge. Int. Immunopharmacol., 2019, 69, 347-357.
[http://dx.doi.org/10.1016/j.intimp.2019.01.009] [PMID: 30776643]
[6]
Zielen, S.; Plückhahn, K.; Akboga, Y.; Rieker-Schwienbacher, J.; Thieme, U.; Rosewich, M. Fast up-dosing with a birch al-lergoid is safe and well tolerated in allergic rhinitis patients with or without asthma. Immunotherapy, 2019, 11(3), 177-187.
[http://dx.doi.org/10.2217/imt-2018-0143] [PMID: 30730274]
[7]
Leynaert, B.; Neukirch, C.; Liard, R.; Bousquet, J.; Neukirch, F. Quality of life in allergic rhinitis and asthma. A population-based study of young adults. Am. J. Respir. Crit. Care Med., 2000, 162(4 Pt 1), 1391-1396.
[http://dx.doi.org/10.1164/ajrccm.162.4.9912033] [PMID: 11029350]
[8]
Dykewicz, M.S.; Hamilos, D.L.; Daniel, L.; Hamilos, M.D. Rhinitis and sinusitis. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S103-S115.
[http://dx.doi.org/10.1016/j.jaci.2009.12.989] [PMID: 20176255]
[9]
Ozdoganoglu, T.; Songu, M. The burden of allergic rhinitis and asthma. Ther. Adv. Respir. Dis., 2012, 6(1), 11-23.
[http://dx.doi.org/10.1177/1753465811431975] [PMID: 22179899]
[10]
Davidson, P.; Hancock, K.; Leung, D.; Ang, E.; Chang, E.; Thompson, D.R.; Daly, J. Traditional Chinese medicine and heart disease: What does Western medicine and nursing sci-ence know about it? Eur. J. Cardiovasc. Nurs., 2003, 2(3), 171-181.
[http://dx.doi.org/10.1016/S1474-5151(03)00057-4] [PMID: 14622624]
[11]
Almeida, M.S.C.; Sousa Filho, L.F.; Rabello, P.M.; Santiago, B.M. International Classification of Diseases - 11th revision: From design to implementation. Rev. Saude Publica, 2020, 54, 104.
[http://dx.doi.org/10.11606/s1518-8787.2020054002120] [PMID: 33175024]
[12]
Peng, W.; Han, P.; Yu, L.; Chen, Y.; Ye, B.; Qin, L.; Xin, H.; Han, T. Anti-allergic rhinitis effects of caffeoylquinic acids from the fruits of xanthium strumarium in rodent animals via alleviating allergic and inflammatory reactions. Rev. Bras. Farmacogn., 2019, 29(1), 46-53.
[http://dx.doi.org/10.1016/j.bjp.2018.10.004] [PMID: 32287507]
[13]
Yamprasert, R.; Chanvimalueng, W.; Mukkasombut, N.; Itha-rat, A. Ginger extract versus Loratadine in the treatment of al-lergic rhinitis: A randomized controlled trial. BMC Comple-ment Med Ther., 2020, 20(1), 119.
[http://dx.doi.org/10.1186/s12906-020-2875-z] [PMID: 32312261]
[14]
Chen, X.; Wang, R.; Meng, W.; Zhang, X. Exploration of the molecular mechanism of FUZI (Aconiti Lateralis Radix Prae-parata) in allergic rhinitis treatment based on network phar-macology. Med. Sci. Monit., 2020, 26, e920872.
[http://dx.doi.org/10.12659/MSM.920872] [PMID: 32114589]
[15]
Tang, F.; Tang, Q.; Tian, Y.; Fan, Q.; Huang, Y.; Tan, X. Net-work pharmacology-based prediction of the active ingredients and potential targets of Mahuang Fuzi Xixin decoction for ap-plication to allergic rhinitis. J. Ethnopharmacol., 2015, 176, 402-412.
[http://dx.doi.org/10.1016/j.jep.2015.10.040] [PMID: 26545458]
[16]
Huang, X.; Liu, B.; Tian, L. Intranasal concentration gradient of yupingfeng promotes induction of microRNA-21 by PTEN to reverse activation of OVA mimicking allergic rhinitis. Rev. Fr. Allergol., 2019, 59(7), 481-486.
[http://dx.doi.org/10.1016/j.reval.2019.03.007]
[17]
Fu, Y.; Kong, Y.; Li, J.; Wang, Y.; Li, M.; Wang, Y.; Wang, Y.; Ren, F.; Ni, J.; Li, Y.; Chang, Z. Mesenchymal stem cells combined with traditional Chinese medicine (qi-fang-bi-min-tang) alleviates rodent allergic rhinitis. J. Cell. Biochem., 2020, 121(2), 1541-1551.
[http://dx.doi.org/10.1002/jcb.29389] [PMID: 31535402]
[18]
Zheng, W.; Wu, J.; Gu, J.; Weng, H.; Wang, J.; Wang, T.; Liang, X.; Cao, L. Modular characteristics and mechanism of action of herbs for endometriosis treatment in Chinese medi-cine: A data mining and network pharmacology-based identi-fication. Front. Pharmacol., 2020, 11, 147.
[http://dx.doi.org/10.3389/fphar.2020.00147] [PMID: 32210799]
[19]
Yang, X.; Xu, L.; Zhong, F.; Zhu, Y. Data mining-based de-tection of acupuncture treatment on juvenile myopia. J. Tradit. Chin. Med., 2012, 32(3), 372-376.
[http://dx.doi.org/10.1016/S0254-6272(13)60040-0] [PMID: 23297558]
[20]
National Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China medical Science and Technology Press: Beijing, China, , 2020.
[21]
Wang, J.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Deng, Q.; Lu, C.; Qian, H.; Yang, X.; Sun, Y.; Sundell, J.; Norbäck, D. Asthma and allergic rhinitis among young par-ents in China in relation to outdoor air pollution, climate and home environment. Sci. Total Environ., 2021, 751, 141734.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141734] [PMID: 32882555]
[22]
Norbäck, D.; Lu, C.; Wang, J.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y.; Sundell, J.; Deng, Q. Asthma and rhinitis among Chinese children - Indoor and outdoor air pollution and indicators of socioeconomic status (SES). Environ. Int., 2018, 115, 1-8.
[http://dx.doi.org/10.1016/j.envint.2018.02.023] [PMID: 29529393]
[23]
Norbäck, D.; Lu, C.; Zhang, Y.; Li, B.; Zhao, Z.; Huang, C.; Zhang, X.; Qian, H.; Sun, Y.; Wang, J.; Liu, W.; Sundell, J.; Deng, Q. Sources of indoor particulate matter (PM) and out-door air pollution in China in relation to asthma, wheeze, rhi-nitis and eczema among pre-school children: Synergistic ef-fects between antibiotics use and PM10 and second hand smoke. Environ. Int., 2019, 125, 252-260.
[http://dx.doi.org/10.1016/j.envint.2019.01.036] [PMID: 30731375]
[24]
Pinkerton, K.E.; Joad, J.P. The mammalian respiratory system and critical windows of exposure for children’s health. Environ. Health Perspect., 2000, 108(Suppl. 3), 457-462.
[25]
Zhang, W.; Tang, R.; Ba, G.; Li, M.; Lin, H. Anti-allergic and anti-inflammatory effects of resveratrol via inhibiting TXNIP-oxidative stress pathway in a mouse model of allergic rhinitis. World Allergy Organ. J., 2020, 13(10), 100473.
[http://dx.doi.org/10.1016/j.waojou.2020.100473] [PMID: 33133334]
[26]
Akuthota, P.; Wang, H.; Weller, P.F. Eosinophils as antigen-presenting cells in allergic upper airway disease. Curr. Opin. Allergy Clin. Immunol., 2010, 10(1), 14-19.
[http://dx.doi.org/10.1097/ACI.0b013e328334f693] [PMID: 19949323]
[27]
Kong, W.J. Otorhinolaryngology head and neck surgery, 2nd ed; People's Medical Publishing House: Beijing, 2013, p. 11.
[28]
Fu, J.; Pang, J.; Zhao, X.; Han, J. The Quantitative ideas and methods in assessment of four properties of Chinese medici-nal herbs. Cell Biochem. Biophys., 2015, 71(3), 1307-1312.
[http://dx.doi.org/10.1007/s12013-014-0349-y] [PMID: 25395193]
[29]
Wang, X.; Zhang, Y.L.; Wang, Y.; Ren, Z.Z.; Bao, H.J.; Qiao, Y.J. Study on relations between transient receptor potential vanilloid 1 and pungent property of traditional Chinese medi-cines. Zhongguo Zhongyao Zazhi, 2014, 39(13), 2422-2427.
[PMID: 25276957]
[30]
Zhang, X.X.; Wang, Z.G. A discussion on the reason of dif-ferences between property and flavor of Chinese Materia Medica of ancient and modern times. Zhonghua Yi Shi Za Zhi, 2009, 39(3), 164-167.
[PMID: 19930924]
[31]
Ni, X.Q.; Han, X.M.; Yin, D.Q.; Liu, C.Q. Study on medica-tion regularity of traditional Chinese medicines in treating at-tention deficit hyperactivity disorder based on data mining. Zhongguo Zhongyao Zazhi, 2015, 40(6), 1185-1191.
[PMID: 26226768]
[32]
Fu, X.; Mervin, L.H.; Li, X.; Yu, H.; Li, J.; Mohamad Zobir, S.Z.; Zoufir, A.; Zhou, Y.; Song, Y.; Wang, Z.; Bender, A. Toward understanding the cold, hot, and neutral nature of chinese medicines using in silico mode-of-action analysis. J. Chem. Inf. Model., 2017, 57(3), 468-483.
[http://dx.doi.org/10.1021/acs.jcim.6b00725] [PMID: 28257573]
[33]
Liu, Y.Q.; Cheng, M.C.; Wang, L.X.; Zhao, N.; Xiao, H.B.; Wang, Z.T. Functional analysis of cultured neural cells for evaluating cold/cool- and hot/warm-natured Chinese herbs. Am. J. Chin. Med., 2008, 36(4), 771-781.
[http://dx.doi.org/10.1142/S0192415X08006223] [PMID: 18711773]
[34]
Li, P.P. Toward an integrative framework of indigenous re-search: The geocentric implications of Yin-Yang balance. Asia Pac. J. Manage., 2012, 29(4), 849-872.
[http://dx.doi.org/10.1007/s10490-011-9250-z]
[35]
Maina, I.W.; Workman, A.D.; Cohen, N.A. The role of bitter and sweet taste receptors in upper airway innate immunity: Recent advances and future directions. World J. Otorhinolaryngol. Head Neck Surg., 2018, 4(3), 200-208.
[http://dx.doi.org/10.1016/j.wjorl.2018.07.003] [PMID: 30506052]
[36]
Deshpande, D.A.; Wang, W.C.; McIlmoyle, E.L.; Robinett, K.S.; Schillinger, R.M.; An, S.S.; Sham, J.S.; Liggett, S.B. Bit-ter taste receptors on airway smooth muscle bronchodilate by localized calcium signaling and reverse obstruction. Nat. Med., 2010, 16(11), 1299-1304.
[http://dx.doi.org/10.1038/nm.2237] [PMID: 20972434]
[37]
Zhang, Y.; Wang, X.; Wang, S.; Zhang, Q.; Peng, S.; Li, X.; Zhang, Y.; Qiao, Y. In silico investigation of the association of the TRPM8 ion channel with the pungent flavor of Chinese herbs. J. Trad. Chinese Med. Sci., 2016, 3(4), 248-255.
[http://dx.doi.org/10.1016/j.jtcms.2016.12.005]
[38]
Zhuang, Y.; Qin, K.; Yu, B.; Liu, X.; Cai, B.; Cai, H. A metabolomics research based on UHPLC-ESI-Q-TOF-MS coupled with metabolic pathway analysis: Treatment effects of stir-frying Xanthii fructus on allergic rhinitis in mice mod-el. Biomed. Chromatogr., 2018, 32(12), e4352.
[http://dx.doi.org/10.1002/bmc.4352] [PMID: 30062682]
[39]
Zhuang, Y.; Qin, K.; Liu, X.; Cai, B.; Cai, H. Ultra-high-performance liquid chromatography with tandem mass spec-trometry method for determination of four compounds in rat plasma after oral administration of Xanthii fructus and stir-fried Xanthii fructus extracts. Biomed. Chromatogr., 2019, 33(4), e4464.
[PMID: 30536751]
[40]
Li, D.; Wu, L. Coumarins from the roots of Angelica dahuri-ca cause anti-allergic inflammation. Exp. Ther. Med., 2017, 14(1), 874-880.
[http://dx.doi.org/10.3892/etm.2017.4569] [PMID: 28673013]
[41]
Zhou, J.; Sun, Y.Y.; Sun, M.Y.; Mao, W.A.; Wang, L.; Zhang, J.; Zhang, H. Prim-O-glucosylcimifugin attenuates lipopoly-saccharide induced inflammatory response in RAW264.7 macrophages. Pharmacogn. Mag., 2017, 13(51), 378-384.
[http://dx.doi.org/10.4103/pm.pm_323_16] [PMID: 28839360]
[42]
Xu, M.Z.; Lee, W.S.; Han, J.M.; Oh, H.W.; Park, D.S.; Tian, G.R.; Jeong, T.S.; Park, H.Y. Antioxidant and anti-inflammatory activities of N-acetyldopamine dimers from Periostracum Cicadae. Bioorg. Med. Chem., 2006, 14(23), 7826-7834.
[http://dx.doi.org/10.1016/j.bmc.2006.07.063] [PMID: 16919462]
[43]
Morgan, D.; Garg, M.; Tergaonkar, V.; Tan, S.Y.; Sethi, G. Pharmacological significance of the non-canonical NF-κB pathway in tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188449.
[http://dx.doi.org/10.1016/j.bbcan.2020.188449] [PMID: 33058996]
[44]
Tian, S.H.; Yu, D.J.; Li, Z.Y.; Zhang, W.L. The inhibition of microRNA-203 on ischemic reperfusion injury after total knee arthroplasty via suppressing MYD88-mdiated toll-like receptor signaling pathway. Gene, 2019, 697, 175-183.
[http://dx.doi.org/10.1016/j.gene.2019.02.030] [PMID: 30772517]
[45]
Deguine, J.; Barton, G.M. MyD88: A central player in innate immune signaling. F1000Prime Rep., 2014, 6, 97.
[http://dx.doi.org/10.12703/P6-97] [PMID: 25580251]
[46]
De Nardo, D. Toll-like receptors: Activation, signalling and transcriptional modulation. Cytokine, 2015, 74(2), 181-189.
[http://dx.doi.org/10.1016/j.cyto.2015.02.025] [PMID: 25846205]
[47]
Vo, N.T. Sasaki, S.; Miyake, Y.; Nguyen, N.T.; Dang, P.H.; Thi Nguyen, M.T.; Kataoka, T. α-Conidendrin inhibits the expression of intercellular adhesion molecule-1 induced by tumor necrosis factor-α in human lung adenocarcinoma A549 cells. Eur. J. Pharmacol., 2021, 890, 173651.
[http://dx.doi.org/10.1016/j.ejphar.2020.173651] [PMID: 33049301]
[48]
Bercier, P.; Grenier, D. TNF-α disrupts the integrity of the porcine respiratory epithelial barrier. Res. Vet. Sci., 2019, 124, 13-17.
[http://dx.doi.org/10.1016/j.rvsc.2019.01.029] [PMID: 30782567]
[49]
Sykes, A.; Edwards, M.R.; Macintyre, J.; Del Rosario, A.; Gielen, V.; Haas, J.; Kon, O.M.; McHale, M.; Johnston, S.L. TLR3, TLR4 and TLRs7-9 induced interferons are not im-paired in airway and blood cells in well controlled asthma. PLoS One, 2013, 8(6), e65921.
[http://dx.doi.org/10.1371/journal.pone.0065921] [PMID: 23824215]
[50]
Ioannidis, I.; Ye, F.; McNally, B.; Willette, M.; Flaño, E. Toll-like receptor expression and induction of type I and type III interferons in primary airway epithelial cells. J. Virol., 2013, 87(6), 3261-3270.
[http://dx.doi.org/10.1128/JVI.01956-12] [PMID: 23302870]
[51]
Chen, X.; Xu, F. Progress in the studies of JAK-STAT signal pathway. Chin J Nature., 2003, 7(3), 149-152.
[52]
Hamilton, L.M.; Davies, D.E.; Wilson, S.J.; Kimber, I.; Dear-man, R.J.; Holgate, S.T. The bronchial epithelium in asthma-much more than a passive barrier. Monaldi Arch. Chest Dis., 2001, 56(1), 48-54.
[PMID: 11407210]
[53]
Wu, H.M.; Fang, L.; Shen, Q.Y.; Liu, R.Y. SP600125 pro-motes resolution of allergic airway inflammation via TLR9 in an OVA-induced murine acute asthma model. Mol. Immunol., 2015, 67(2)(2 Pt B), 311-316.
[http://dx.doi.org/10.1016/j.molimm.2015.06.016] [PMID: 26139014]
[54]
Wang, Z.; Li, R.; Zhong, R. Extracellular matrix promotes proliferation, migration and adhesion of airway smooth mus-cle cells in a rat model of chronic obstructive pulmonary dis-ease via upregulation of the PI3K/AKT signaling pathway. Mol. Med. Rep., 2018, 18(3), 3143-3152.
[http://dx.doi.org/10.3892/mmr.2018.9320] [PMID: 30066869]
[55]
Cuppari, C.; Leonardi, S.; Manti, S.; Filippelli, M.; Alterio, T.; Spicuzza, L.; Rigoli, L.; Arrigo, T.; Lougaris, V.; Salpietro, C. Allergen immunotherapy, routes of administration and cyto-kine networks: An update. Immunotherapy, 2014, 6(6), 775-786.
[http://dx.doi.org/10.2217/imt.14.47] [PMID: 25186606]
[56]
Sugitharini, V.; Shahana, P.; Prema, A.; Berla Thangam, E. TLR2 and TLR4 co-activation utilizes distinct signaling path-ways for the production of Th1/Th2/Th17 cytokines in neo-natal immune cells. Cytokine, 2016, 85, 191-200.
[http://dx.doi.org/10.1016/j.cyto.2016.06.024] [PMID: 27380627]
[57]
Liu, G.; Liu, F. Advances of IL-33/ST2 signaling pathway in allergic rhinitis. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi., 2020, 34(6), 565-568.
[http://dx.doi.org/10.13201/j.issn.2096-7993.2020.06.020] [PMID: 32842193]
[58]
Chen, H.Y.; Lin, Y.H.; Huang, J.W.; Chen, Y.C. Chinese herbal medicine network and core treatments for allergic skin diseases: Implications from a nationwide database. J. Ethnopharmacol., 2015, 168, 260-267.
[http://dx.doi.org/10.1016/j.jep.2015.04.002] [PMID: 25865681]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy