Abstract
Background Gastrointestinal cancer (GIC) is a prevalent and lethal malignant tumor. It is obligatory to investigate innovative biomarkers for the diagnosis and prognosis. Proteins play a crucial role in regulating the occurrence and progression of GIC. However, the prognostic value of proteins is unclear in GIC.
Objective: This paper aims to identify the hub prognosis-related proteins (PAPs) and construct a prognosis model for GIC patients for clinical application.
Methods: Protein expression data of GIC was obtained from The Cancer Proteome Atlas (TCPA) and downloaded the clinicopathological data from The Cancer Genome Atlas database (TCGA). Besides, hub proteins were filtrated via univariate and multivariate Cox regression analysis. Moreover, survival analysis and nomogram were used to predict overall survival (OS). We used the calibration curves to assess the consistency of predictive and actual survival rates. The consistency index (C-index) was used to evaluate the prognostic ability of the predictive model. Furthermore, functional enrichment analysis and protein co-expression of PAPs were used to explore their roles in GIC.
Results: Finally, a prognosis model was conducted based on ten PAPs (CYCLIND1, DVL3, NCADHERIN, SYK, ANNEXIN VII, CD20, CMET, RB, TFRC, and PREX1). The risk score calculated by the model was an independent prognostic predictor. Compared with the high-risk subgroup, the low-risk subgroup had better OS. In the TCGA cohort, the area under the curve value of the receiver operating characteristic curve of the prognostic model was 0.692. The expression of proteins and risk score had a significant association with the clinicopathological characteristics of GIC. Besides, a nomogram based on GIC clinicopathological features and risk scores could properly predict the OS of individual GIC patients. The C-index is 0.71 in the TCGA cohort and 0.73 in the GEO cohort.
Conclusion: The results indicate that the risk score is an independent prognostic biomarker and is related to the malignant clinical features of GIC patients. Besides, several PAPs associated with the survival and clinicopathological characteristics of GIC might be potential biomarkers for GIC diagnosis and treatment.
Keywords: Gastrointestinal cancer, Protein, Biomarker, Bioinformatic analysis, TCPA, TCGA.
Graphical Abstract
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[http://dx.doi.org/10.1038/s41575-018-0038-1] [PMID: 29970888]
[http://dx.doi.org/10.7150/jca.36927] [PMID: 31956352]
[http://dx.doi.org/10.1007/s13167-019-00185-y] [PMID: 32140188]
[http://dx.doi.org/10.1038/s41575-019-0230-y] [PMID: 31900466]
[http://dx.doi.org/10.1038/nm.3850] [PMID: 25894828]
[http://dx.doi.org/10.1038/s41591-018-0022-x] [PMID: 29808010]
[http://dx.doi.org/10.1016/j.ccell.2019.07.010] [PMID: 31474570]
[http://dx.doi.org/10.7150/ijbs.41587] [PMID: 32174791]
[http://dx.doi.org/10.18632/aging.202179] [PMID: 33288739]
[http://dx.doi.org/10.2147/IJGM.S347010] [PMID: 34992436]
[http://dx.doi.org/10.7717/peerj.12605] [PMID: 35003923]
[http://dx.doi.org/10.1155/2020/6135060] [PMID: 33376727]
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[http://dx.doi.org/10.1016/S1470-2045(19)30076-2] [PMID: 31003912]
[http://dx.doi.org/10.1158/2159-8290.CD-17-1226] [PMID: 29431699]
[http://dx.doi.org/10.1038/nmeth.2650] [PMID: 24037243]
[http://dx.doi.org/10.7717/peerj.9847] [PMID: 32953273]
[http://dx.doi.org/10.18632/aging.102544] [PMID: 31811814]
[http://dx.doi.org/10.18637/jss.v079.c02] [PMID: 30686944]
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[http://dx.doi.org/10.1002/gcc.22512] [PMID: 29119627]
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[http://dx.doi.org/10.1200/JCO.2014.56.6661] [PMID: 25624438]
[http://dx.doi.org/10.7717/peerj.11219] [PMID: 33868829]
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[http://dx.doi.org/10.1002/mc.22092] [PMID: 24127286]
[http://dx.doi.org/10.1038/s41467-019-13321-z] [PMID: 31757956]
[http://dx.doi.org/10.1186/s12964-019-0422-7] [PMID: 31438969]
[http://dx.doi.org/10.1183/09031936.03.00033203] [PMID: 14738225]
[http://dx.doi.org/10.1038/nm.2940] [PMID: 23001183]
[http://dx.doi.org/10.1007/s12094-019-02100-3]
[http://dx.doi.org/10.1200/JCO.2008.17.4813] [PMID: 19114700]
[http://dx.doi.org/10.14309/ajg.0000000000000370] [PMID: 31464746]
[http://dx.doi.org/10.1002/advs.201802115]
[http://dx.doi.org/10.1002/bjs.10769] [PMID: 29532908]
[http://dx.doi.org/10.1242/jcs.214726] [PMID: 29880532]
[http://dx.doi.org/10.1016/j.ebiom.2017.06.007] [PMID: 28625518]
[http://dx.doi.org/10.1186/1476-4598-9-31] [PMID: 20137080]
[http://dx.doi.org/10.1016/j.cbi.2019.108725] [PMID: 31238027]
[http://dx.doi.org/10.1016/j.ctrv.2011.02.004] [PMID: 21652149]
[http://dx.doi.org/10.3748/wjg.v26.i1.21] [PMID: 31933512]
[http://dx.doi.org/10.1053/j.gastro.2016.01.034] [PMID: 26855187]
[http://dx.doi.org/10.1016/j.immuni.2018.08.024] [PMID: 30231985]
[PMID: 31780575]
[http://dx.doi.org/10.1093/jnci/djx253] [PMID: 29267900]
[http://dx.doi.org/10.1093/carcin/bgz031] [PMID: 30933267]
[http://dx.doi.org/10.18632/oncotarget.20013] [PMID: 29156733]
[http://dx.doi.org/10.1111/imr.12541] [PMID: 28462525]
[http://dx.doi.org/10.1038/s41419-017-0006-7] [PMID: 29242562]
[http://dx.doi.org/10.1016/j.phymed.2017.02.008]
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0442] [PMID: 31311807]
[http://dx.doi.org/10.3892/ijo.2019.4854] [PMID: 31432157]
[http://dx.doi.org/10.1038/s41568-019-0143-7] [PMID: 31053804]
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[http://dx.doi.org/10.4161/cc.5.11.2796] [PMID: 16760651]
[http://dx.doi.org/10.3748/wjg.v20.i7.1694] [PMID: 24587648]
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[http://dx.doi.org/10.3892/ijo.2019.4876] [PMID: 31545416]
[http://dx.doi.org/10.1182/blood-2006-03-011106] [PMID: 16954505]
[http://dx.doi.org/10.3390/ijms20225608] [PMID: 31717527]