Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Construction and Validation of a Protein-associated Prognostic Model for Gastrointestinal Cancer

Author(s): Yandong Miao*, Linjie Mu, Yonggang Chen, Xiaolong Tang, Jiangtao Wang, Wuxia Quan and Denghai Mi*

Volume 26, Issue 1, 2023

Published on: 28 June, 2022

Page: [191 - 206] Pages: 16

DOI: 10.2174/1386207325666220414105743

Price: $65

Abstract

Background Gastrointestinal cancer (GIC) is a prevalent and lethal malignant tumor. It is obligatory to investigate innovative biomarkers for the diagnosis and prognosis. Proteins play a crucial role in regulating the occurrence and progression of GIC. However, the prognostic value of proteins is unclear in GIC.

Objective: This paper aims to identify the hub prognosis-related proteins (PAPs) and construct a prognosis model for GIC patients for clinical application.

Methods: Protein expression data of GIC was obtained from The Cancer Proteome Atlas (TCPA) and downloaded the clinicopathological data from The Cancer Genome Atlas database (TCGA). Besides, hub proteins were filtrated via univariate and multivariate Cox regression analysis. Moreover, survival analysis and nomogram were used to predict overall survival (OS). We used the calibration curves to assess the consistency of predictive and actual survival rates. The consistency index (C-index) was used to evaluate the prognostic ability of the predictive model. Furthermore, functional enrichment analysis and protein co-expression of PAPs were used to explore their roles in GIC.

Results: Finally, a prognosis model was conducted based on ten PAPs (CYCLIND1, DVL3, NCADHERIN, SYK, ANNEXIN VII, CD20, CMET, RB, TFRC, and PREX1). The risk score calculated by the model was an independent prognostic predictor. Compared with the high-risk subgroup, the low-risk subgroup had better OS. In the TCGA cohort, the area under the curve value of the receiver operating characteristic curve of the prognostic model was 0.692. The expression of proteins and risk score had a significant association with the clinicopathological characteristics of GIC. Besides, a nomogram based on GIC clinicopathological features and risk scores could properly predict the OS of individual GIC patients. The C-index is 0.71 in the TCGA cohort and 0.73 in the GEO cohort.

Conclusion: The results indicate that the risk score is an independent prognostic biomarker and is related to the malignant clinical features of GIC patients. Besides, several PAPs associated with the survival and clinicopathological characteristics of GIC might be potential biomarkers for GIC diagnosis and treatment.

Keywords: Gastrointestinal cancer, Protein, Biomarker, Bioinformatic analysis, TCPA, TCGA.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 can-cers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Murphy, N.; Jenab, M.; Gunter, M.J. Adiposity and gastroin-testinal cancers: Epidemiology, mechanisms and future direc-tions. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(11), 659-670.
[http://dx.doi.org/10.1038/s41575-018-0038-1] [PMID: 29970888]
[3]
Tan, Y.E.; Wang, P.L.; Yin, S.C.; Zhang, C.; Hou, W.B.; Xu, H.M. Thirty-year trends in clinicopathologic characteristics and prognosis after gastrectomy for gastric cancer: A single institution in Northern China. J. Cancer, 2020, 11(5), 1056-1062.
[http://dx.doi.org/10.7150/jca.36927] [PMID: 31956352]
[4]
Sharma, R. An examination of colorectal cancer burden by socioeconomic status: Evidence from GLOBOCAN 2018. EPMA J., 2019, 11(1), 95-117.
[http://dx.doi.org/10.1007/s13167-019-00185-y] [PMID: 32140188]
[5]
Jung, G.; Hernández-Illán, E.; Moreira, L.; Balaguer, F.; Goel, A. Epigenetics of colorectal cancer: Biomarker and therapeu-tic potential. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(2), 111-130.
[http://dx.doi.org/10.1038/s41575-019-0230-y] [PMID: 31900466]
[6]
Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; Ye, X.S.; Do, I.G.; Liu, S.; Gong, L.; Fu, J.; Jin, J.G.; Choi, M.G.; Sohn, T.S.; Lee, J.H.; Bae, J.M.; Kim, S.T.; Park, S.H.; Sohn, I.; Jung, S.H.; Tan, P.; Chen, R.; Hardwick, J.; Kang, W.K.; Ayers, M.; Hongyue, D.; Reinhard, C.; Loboda, A.; Kim, S.; Aggarwal, A. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med., 2015, 21(5), 449-456.
[http://dx.doi.org/10.1038/nm.3850] [PMID: 25894828]
[7]
Wong, G.S.; Zhou, J.; Liu, J.B.; Wu, Z.; Xu, X.; Li, T.; Xu, D.; Schumacher, S.E.; Puschhof, J.; McFarland, J.; Zou, C.; Dulak, A.; Henderson, L.; Xu, P.; O’Day, E.; Rendak, R.; Liao, W.L.; Cecchi, F.; Hembrough, T.; Schwartz, S.; Szeto, C.; Rustgi, A.K.; Wong, K.K.; Diehl, J.A.; Jensen, K.; Grazi-ano, F.; Ruzzo, A.; Fereshetian, S.; Mertins, P.; Carr, S.A.; Beroukhim, R.; Nakamura, K.; Oki, E.; Watanabe, M.; Baba, H.; Imamura, Y.; Catenacci, D.; Bass, A.J. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med., 2018, 24(7), 968-977.
[http://dx.doi.org/10.1038/s41591-018-0022-x] [PMID: 29808010]
[8]
Reina-Campos, M.; Diaz-Meco, M.T.; Moscat, J. The dual roles of the atypical protein kinase Cs in cancer. Cancer Cell, 2019, 36(3), 218-235.
[http://dx.doi.org/10.1016/j.ccell.2019.07.010] [PMID: 31474570]
[9]
Bai, Y.; Wei, C.; Zhong, Y.; Zhang, Y.; Long, J.; Huang, S.; Xie, F.; Tian, Y.; Wang, X.; Zhao, H. Development and vali-dation of a prognostic nomogram for gastric cancer based on DNA methylation-driven differentially expressed genes. Int. J. Biol. Sci., 2020, 16(7), 1153-1165.
[http://dx.doi.org/10.7150/ijbs.41587] [PMID: 32174791]
[10]
Huang, W.; Zhao, S.; Zhang, C.; Li, Z.; Ge, S.; Lian, B.; Feng, H.; Wang, K.; Xu, R.; Ji, J.; Gao, J.; Shi, W.; Shen, L. Identifi-cation of “regulation of RhoA activity panel” as a prognostic and predictive biomarker for gastric cancer. Aging (Albany NY), 2020, 13(1), 714-734.
[http://dx.doi.org/10.18632/aging.202179] [PMID: 33288739]
[11]
Geng, L.; Chen, S.; Gong, Y.; Zhou, Y.; Yang, H.; Tang, L. Tumor endothelial marker TEM7 is a prognostic biomarker and correlating with immune infiltrates in gastric cancer. Int. J. Gen. Med., 2021, 14, 10155-10171.
[http://dx.doi.org/10.2147/IJGM.S347010] [PMID: 34992436]
[12]
Zhang, T.; Yu, S.; Zhao, S. ANXA9 as a novel prognostic biomarker associated with immune infiltrates in gastric can-cer. PeerJ, 2021, 9, e12605.
[http://dx.doi.org/10.7717/peerj.12605] [PMID: 35003923]
[13]
Yue, T.; Liu, C.; Zhu, J.; Huang, Z.; Guo, S.; Zhang, Y.; Xu, H.; Liu, Y.; Wang, P.; Chen, S. Identification of 6 hub pro-teins and protein risk signature of colorectal cancer. BioMed Res. Int., 2020, 2020, 6135060.
[http://dx.doi.org/10.1155/2020/6135060] [PMID: 33376727]
[14]
Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; An-tonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDon-ald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454.
[http://dx.doi.org/10.1056/NEJMoa1200690] [PMID: 22658127]
[15]
Sclafani, F. MEK and PD-L1 inhibition in colorectal cancer: A burning blaze turning into a flash in the pan. Lancet Oncol., 2019, 20(6), 752-753.
[http://dx.doi.org/10.1016/S1470-2045(19)30076-2] [PMID: 31003912]
[16]
Corcoran, R.B.; André, T.; Atreya, C.E.; Schellens, J.H.M.; Yoshino, T.; Bendell, J.C.; Hollebecque, A.; McRee, A.J.; Si-ena, S.; Middleton, G.; Muro, K.; Gordon, M.S.; Tabernero, J.; Yaeger, R.; O’Dwyer, P.J.; Humblet, Y.; De Vos, F.; Jung, A.S.; Brase, J.C.; Jaeger, S.; Bettinger, S.; Mookerjee, B.; Rangwala, F.; Van Cutsem, E. Combined BRAF, EGFR, and MEK Inhibition in Patients with BRAFV600E-Mutant Colorectal Cancer. Cancer Discov., 2018, 8(4), 428-443.
[http://dx.doi.org/10.1158/2159-8290.CD-17-1226] [PMID: 29431699]
[17]
Li, J.; Lu, Y.; Akbani, R.; Ju, Z.; Roebuck, P.L.; Liu, W.; Yang, J.Y.; Broom, B.M.; Verhaak, R.G.; Kane, D.W.; Wake-field, C.; Weinstein, J.N.; Mills, G.B.; Liang, H. TCPA: A re-source for cancer functional proteomics data. Nat. Methods, 2013, 10(11), 1046-1047.
[http://dx.doi.org/10.1038/nmeth.2650] [PMID: 24037243]
[18]
Miao, Y.; Li, Q.; Wang, J.; Quan, W.; Li, C.; Yang, Y.; Mi, D. Prognostic implications of metabolism-associated gene signa-tures in colorectal cancer. PeerJ, 2020, 8, e9847.
[http://dx.doi.org/10.7717/peerj.9847] [PMID: 32953273]
[19]
Liu, Y.; Wu, L.; Ao, H.; Zhao, M.; Leng, X.; Liu, M.; Ma, J.; Zhu, J. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer. Aging (Albany NY), 2019, 11(23), 11440-11462.
[http://dx.doi.org/10.18632/aging.102544] [PMID: 31811814]
[20]
Sachs, M.C. plotROC: A tool for plotting ROC curves. J. Stat. Softw., 2017, 79(Code Snippet 2), 79.
[http://dx.doi.org/10.18637/jss.v079.c02] [PMID: 30686944]
[21]
Marisa, L.; de Reyniès, A.; Duval, A.; Selves, J.; Gaub, M.P.; Vescovo, L.; Etienne-Grimaldi, M.C.; Schiappa, R.; Guenot, D.; Ayadi, M.; Kirzin, S.; Chazal, M.; Fléjou, J.F.; Benchimol, D.; Berger, A.; Lagarde, A.; Pencreach, E.; Piard, F.; Elias, D.; Parc, Y.; Olschwang, S.; Milano, G.; Laurent-Puig, P.; Boige, V. Gene expression classification of colon cancer into molec-ular subtypes: Characterization, validation, and prognostic value. PLoS Med., 2013, 10(5), e1001453.
[http://dx.doi.org/10.1371/journal.pmed.1001453] [PMID: 23700391]
[22]
Hu, Y.; Gaedcke, J.; Emons, G.; Beissbarth, T.; Grade, M.; Jo, P.; Yeager, M.; Chanock, S.J.; Wolff, H.; Camps, J.; Ghadimi, B.M.; Ried, T. Colorectal cancer susceptibility loci as predic-tive markers of rectal cancer prognosis after surgery. Genes Chromosomes Cancer, 2018, 57(3), 140-149.
[http://dx.doi.org/10.1002/gcc.22512] [PMID: 29119627]
[23]
Singh, A.V.; Maharjan, R.S.; Kromer, C.; Laux, P.; Luch, A.; Vats, T.; Chandrasekar, V.; Dakua, S.P.; Park, B.W. Advances in smoking related in vitro inhalation toxicology: A perspec-tive case of challenges and opportunities from progresses in lung-on-chip technologies. Chem. Res. Toxicol., 2021, 34(9), 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[24]
Liang, W.; Zhang, L.; Jiang, G.; Wang, Q.; Liu, L.; Liu, D.; Wang, Z.; Zhu, Z.; Deng, Q.; Xiong, X.; Shao, W.; Shi, X.; He, J. Development and validation of a nomogram for predicting survival in patients with resected non-small-cell lung cancer. J. Clin. Oncol., 2015, 33(8), 861-869.
[http://dx.doi.org/10.1200/JCO.2014.56.6661] [PMID: 25624438]
[25]
Miao, Y.; Zhang, H.; Su, B.; Wang, J.; Quan, W.; Li, Q.; Mi, D. Construction and validation of an RNA-binding protein-associated prognostic model for colorectal cancer. PeerJ, 2021, 9, e11219.
[http://dx.doi.org/10.7717/peerj.11219] [PMID: 33868829]
[26]
Singh, A.V.; Maharjan, R.S.; Kanase, A.; Siewert, K.; Rosenkranz, D.; Singh, R.; Laux, P.; Luch, A. Machine-learning-based approach to decode the influence of nano-material properties on their interaction with cells. ACS Appl. Mater. Interfaces, 2021, 13(1), 1943-1955.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[27]
Woo, S.M.; Min, K.J.; Chae, I.G.; Chun, K.S.; Kwon, T.K. Silymarin suppresses the PGE2 -induced cell migration through inhibition of EP2 activation; G protein-dependent PKA-CREB and G protein-independent Src-STAT3 signal pathways. Mol. Carcinog., 2015, 54(3), 216-228.
[http://dx.doi.org/10.1002/mc.22092] [PMID: 24127286]
[28]
Kim, W.; Zhao, F.; Wu, R.; Qin, S.; Nowsheen, S.; Huang, J.; Zhou, Q.; Chen, Y.; Deng, M.; Guo, G.; Luo, K.; Lou, Z.; Yu-an, J. ZFP161 regulates replication fork stability and mainte-nance of genomic stability by recruiting the ATR/ATRIP complex. Nat. Commun., 2019, 10(1), 5304.
[http://dx.doi.org/10.1038/s41467-019-13321-z] [PMID: 31757956]
[29]
Zhou, C.; Wang, M.; Yang, J.; Xiong, H.; Wang, Y.; Tang, J. Integral membrane protein 2A inhibits cell growth in human breast cancer via enhancing autophagy induction. Cell Commun. Signal., 2019, 17(1), 105.
[http://dx.doi.org/10.1186/s12964-019-0422-7] [PMID: 31438969]
[30]
Gessner, C.; Woischwill, C.; Schumacher, A.; Liebers, U.; Kuhn, H.; Stiehl, P.; Jürchott, K.; Royer, H.D.; Witt, C.; Wolff, G. Nuclear YB-1 expression as a negative prognostic marker in nonsmall cell lung cancer. Eur. Respir. J., 2004, 23(1), 14-19.
[http://dx.doi.org/10.1183/09031936.03.00033203] [PMID: 14738225]
[31]
Chen, D.; Sun, Y.; Wei, Y.; Zhang, P.; Rezaeian, A.H.; Teruya-Feldstein, J.; Gupta, S.; Liang, H.; Lin, H.K.; Hung, M.C.; Ma, L. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic mark-er. Nat. Med., 2012, 18(10), 1511-1517.
[http://dx.doi.org/10.1038/nm.2940] [PMID: 23001183]
[32]
Sun, Y.H.; Li, J.; Shu, H.J.; Li, Z.L.; Qian, J.M. Serum im-munoinflammation-related protein complexes discriminate between inflammatory bowel disease and colorectal cancer. Clin. Transl. Oncol., 2019, 21(12), 1680-1686.
[http://dx.doi.org/10.1007/s12094-019-02100-3]
[33]
Park, Y.; Freedman, A.N.; Gail, M.H.; Pee, D.; Hollenbeck, A.; Schatzkin, A.; Pfeiffer, R.M. Validation of a colorectal cancer risk prediction model among white patients age 50 years and older. J. Clin. Oncol., 2009, 27(5), 694-698.
[http://dx.doi.org/10.1200/JCO.2008.17.4813] [PMID: 19114700]
[34]
Peng, L.; Balavarca, Y.; Weigl, K.; Hoffmeister, M.; Brenner, H. Head-to-head comparison of the performance of 17 risk models for predicting presence of advanced neoplasms in colorectal cancer screening. Am. J. Gastroenterol., 2019, 114(9), 1520-1530.
[http://dx.doi.org/10.14309/ajg.0000000000000370] [PMID: 31464746]
[35]
Jeun, M.; Lee, H.J.; Park, S.; Do, E.J.; Choi, J.; Sung, Y.N. A novel blood-based colorectal cancer diagnostic technology using electrical detection of colon cancer secreted protein-2. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 2019, 6(11), 1802115.
[http://dx.doi.org/10.1002/advs.201802115]
[36]
Dueland, S.; Foss, A.; Solheim, J.M.; Hagness, M.; Line, P.D. Survival following liver transplantation for liver-only colorec-tal metastases compared with hepatocellular carcinoma. Br. J. Surg., 2018, 105(6), 736-742.
[http://dx.doi.org/10.1002/bjs.10769] [PMID: 29532908]
[37]
Laphanuwat, P.; Likasitwatanakul, P.; Sittithumcharee, G.; Thaphaengphan, A.; Chomanee, N.; Suppramote, O.; Keta-roonrut, N.; Charngkaew, K.; Lam, E.W.; Okada, S.; Panich, U.; Sampattavanich, S.; Jirawatnotai, S. Cyclin D1 depletion interferes with oxidative balance and promotes cancer cell se-nescence. J. Cell Sci., 2018, 131(12), jcs214726.
[http://dx.doi.org/10.1242/jcs.214726] [PMID: 29880532]
[38]
Liang, X.; Yuan, X.; Yu, J.; Wu, Y.; Li, K.; Sun, C.; Li, S.; Shen, L.; Kong, F.; Jia, J.; Björkholm, M.; Xu, D. Histone chaperone ASF1A predicts poor outcomes for patients with gastrointestinal cancer and drives cancer progression by stimulating transcription of β-catenin target genes. EBioMedicine, 2017, 21, 104-116.
[http://dx.doi.org/10.1016/j.ebiom.2017.06.007] [PMID: 28625518]
[39]
Gnad, T.; Feoktistova, M.; Leverkus, M.; Lendeckel, U.; Naumann, M. Helicobacter pylori-induced activation of beta-catenin involves low density lipoprotein receptor-related pro-tein 6 and Dishevelled. Mol. Cancer, 2010, 9(1), 31.
[http://dx.doi.org/10.1186/1476-4598-9-31] [PMID: 20137080]
[40]
Kishore, C.; Sundaram, S.; Karunagaran, D. Vitamin K3 (menadione) suppresses epithelial-mesenchymal-transition and Wnt signaling pathway in human colorectal cancer cells. Chem. Biol. Interact., 2019, 309, 108725.
[http://dx.doi.org/10.1016/j.cbi.2019.108725] [PMID: 31238027]
[41]
Saijo, N. Critical comments for roles of biomarkers in the diagnosis and treatment of cancer. Cancer Treat. Rev., 2012, 38(1), 63-67.
[http://dx.doi.org/10.1016/j.ctrv.2011.02.004] [PMID: 21652149]
[42]
Shao, Q.; Chen, Z.M. Feedback regulation between phospha-tidylinositol-3,4,5-trisphosphate dependent Rac exchange fac-tor 1 and transforming growth factor β1 and prognostic value in gastric cancer. World J. Gastroenterol., 2020, 26(1), 21-34.
[http://dx.doi.org/10.3748/wjg.v26.i1.21] [PMID: 31933512]
[43]
Wang, L.; Yin, J.; Wang, X.; Shao, M.; Duan, F.; Wu, W.; Peng, P.; Jin, J.; Tang, Y.; Ruan, Y.; Sun, Y.; Gu, J. C-type lectin-like receptor 2 suppresses AKT signaling and invasive activities of gastric cancer cells by blocking expression of phosphoinositide 3-kinase subunits. Gastroenterology, 2016, 150(5), 1183-1195.e16.
[http://dx.doi.org/10.1053/j.gastro.2016.01.034] [PMID: 26855187]
[44]
Malik, A.; Sharma, D.; Malireddi, R.K.S.; Guy, C.S.; Chang, T.C.; Olsen, S.R.; Neale, G.; Vogel, P.; Kanneganti, T.D. SYK-CARD9 signaling axis promotes gut fungi-mediated inflam-masome activation to restrict colitis and colon cancer. Immunity, 2018, 49(3), 515-530.e5.
[http://dx.doi.org/10.1016/j.immuni.2018.08.024] [PMID: 30231985]
[45]
Shin, JS; Cho, EJ; Choi, HE; Seo, JH; An, HJ; Park, HJ Antiinflammatory effect of a standardized triterpenoid-rich fraction isolated from Rubus coreanus on dextran sodium sulfate-induced acute colitis in mice and LPS-induced macrophages. J. Ethnopharmacol. 2014, 158 Pt A, 291-300.
[46]
Reichling, C.; Taieb, J.; Derangere, V.; Klopfenstein, Q.; Le Malicot, K.; Gornet, J.M. Artificial intelligence-guided tissue analysis combined with immune infiltrate assessment predicts stage III colon cancer outcomes in PETACC08 study. Gut, 2022, 69(4), 681-690.
[PMID: 31780575]
[47]
Sjoquist, K.M.; Renfro, L.A.; Simes, R.J.; Tebbutt, N.C.; Clarke, S.; Seymour, M.T.; Adams, R.; Maughan, T.S.; Saltz, L.; Goldberg, R.M.; Schmoll, H.J.; Van Cutsem, E.; Douillard, J.Y.; Hoff, P.M.; Hecht, J.R.; Tournigand, C.; Punt, C.J.A.; Koopman, M.; Hurwitz, H.; Heinemann, V.; Falcone, A.; Por-schen, R.; Fuchs, C.; Diaz-Rubio, E.; Aranda, E.; Bokemeyer, C.; Souglakos, I.; Kabbinavar, F.F.; Chibaudel, B.; Meyers, J.P.; Sargent, D.J.; de Gramont, A.; Zalcberg, J.R. Personaliz-ing survival predictions in advanced colorectal cancer: The ARCAD nomogram project. J. Natl. Cancer Inst., 2018, 110(6), 638-648.
[http://dx.doi.org/10.1093/jnci/djx253] [PMID: 29267900]
[48]
Mo, S.; Dai, W.; Xiang, W.; Li, Y.; Feng, Y.; Zhang, L.; Li, Q.; Cai, G. Prognostic and predictive value of an autophagy-related signature for early relapse in stages I-III colon cancer. Carcinogenesis, 2019, 40(7), 861-870.
[http://dx.doi.org/10.1093/carcin/bgz031] [PMID: 30933267]
[49]
Xiong, Y.; Wang, R.; Peng, L.; You, W.; Wei, J.; Zhang, S.; Wu, X.; Guo, J.; Xu, J.; Lv, Z.; Fu, Z. An integrated lncRNA, microRNA and mRNA signature to improve prognosis predic-tion of colorectal cancer. Oncotarget, 2017, 8(49), 85463-85478.
[http://dx.doi.org/10.18632/oncotarget.20013] [PMID: 29156733]
[50]
Tummers, B.; Green, D.R. Caspase-8: Regulating life and death. Immunol. Rev., 2017, 277(1), 76-89.
[http://dx.doi.org/10.1111/imr.12541] [PMID: 28462525]
[51]
Nishi, K.; Iwaihara, Y.; Tsunoda, T.; Doi, K.; Sakata, T.; Shirasawa, S.; Ishikura, S. ROS-induced cleavage of NHLRC2 by caspase-8 leads to apoptotic cell death in the HCT116 hu-man colon cancer cell line. Cell Death Dis., 2017, 8(12), 3218.
[http://dx.doi.org/10.1038/s41419-017-0006-7] [PMID: 29242562]
[52]
Zhao, R.; Huang, H.; Choi, B.Y.; Liu, X.; Zhang, M.; Zhou, S. Cell growth inhibition by 3-deoxysappanchalcone is mediated by directly targeting the TOPK signaling pathway in colon cancer. Phytomedicine: Intern. J. Phytother. Phytopharmacol., 2019, 61, 152813.
[53]
Li, C.; Wang, Y.; Wang, C.; Yi, X.; Li, M.; He, X. Anticancer activities of harmine by inducing a pro-death autophagy and apoptosis in human gastric cancer cells. Phytomedicine: In-tern. J. Phytother. Phytopharmacol., 2017, 28, 10-18.
[http://dx.doi.org/10.1016/j.phymed.2017.02.008]
[54]
Qin, Z.Y.; Wang, T.; Su, S.; Shen, L.T.; Zhu, G.X.; Liu, Q.; Zhang, L.; Liu, K.W.; Zhang, Y.; Zhou, Z.H.; Zhang, X.N.; Wen, L.Z.; Yao, Y.L.; Sun, W.J.; Guo, Y.; Liu, K.J.; Liu, L.; Wang, X.W.; Wei, Y.L.; Wang, J.; Xiao, H.L.; Liu, P.; Bian, X.W.; Chen, D.F.; Wang, B. BRD4 promotes gastric cancer progression and metastasis through acetylation-dependent stabilization of snail. Cancer Res., 2019, 79(19), 4869-4881.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0442] [PMID: 31311807]
[55]
Yusufu, A.; Shayimu, P.; Tuerdi, R.; Fang, C.; Wang, F.; Wang, H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of co-lon cancer by activating the EMT process. Int. J. Oncol., 2019, 55(4), 789-804.
[http://dx.doi.org/10.3892/ijo.2019.4854] [PMID: 31432157]
[56]
Kent, L.N.; Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer, 2019, 19(6), 326-338.
[http://dx.doi.org/10.1038/s41568-019-0143-7] [PMID: 31053804]
[57]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[58]
Glinsky, G.V. Genomic models of metastatic cancer: Func-tional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle, 2006, 5(11), 1208-1216.
[http://dx.doi.org/10.4161/cc.5.11.2796] [PMID: 16760651]
[59]
Cheng, T.Y.; Wu, M.S.; Hua, K.T.; Kuo, M.L.; Lin, M.T. Cyr61/CTGF/Nov family proteins in gastric carcinogenesis. World J. Gastroenterol., 2014, 20(7), 1694-1700.
[http://dx.doi.org/10.3748/wjg.v20.i7.1694] [PMID: 24587648]
[60]
Singh, A.V.; Maharjan, R.S.; Jungnickel, H.; Romanowski, H.; Hachenbergeret, Y.U.; Reichardtet, P. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain. Chem.& Eng., 2021, 9(35), 11724-11737.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]
[61]
Feng, L.; Huang, S.; An, G.; Wang, G.; Gu, S.; Zhao, X. Iden-tification of new cancer stem cell markers and signaling path-ways in HER 2 positive breast cancer by transcriptome se-quencing. Int. J. Oncol., 2019, 55(5), 1003-1018.
[http://dx.doi.org/10.3892/ijo.2019.4876] [PMID: 31545416]
[62]
Kharas, M.G.; Yusuf, I.; Scarfone, V.M.; Yang, V.W.; Segre, J.A.; Huettner, C.S.; Fruman, D.A. KLF4 suppresses trans-formation of pre-B cells by ABL oncogenes. Blood, 2007, 109(2), 747-755.
[http://dx.doi.org/10.1182/blood-2006-03-011106] [PMID: 16954505]
[63]
Nagano, H.; Tomida, C.; Yamagishi, N.; Teshima-kondo, S. VEGFR-1 regulates EGF-R to promote proliferation in colon cancer cells. Int. J. Mol. Sci., 2019, 20(22), E5608.
[http://dx.doi.org/10.3390/ijms20225608] [PMID: 31717527]
[64]
Rodriguez-Sanjuan, J.C.; Fontalba, A.; Mayorga, M.; Bordin, M.C.; Hyland, S.J.; Trugeda, S. A novel mutation in the E-cadherin gene in the first family with hereditary diffuse gas-tric cancer reported in Spain. Euro. J. Surg. Oncol.: Euro. Soc. Surgi. Oncol. British Assoc. Surg. Oncol., 2006, 32(10), 1110-1113.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy