Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Research Article

Downregulation of CHCHD2 may Contribute to Parkinson’s Disease by Reducing Expression of NFE2L2 and RQCD1

Author(s): Kelu Li, Pingping Ning, Bin Liu, Hongju Yang, Yongyun Zhu, WeiFang Yin, Chuanbin Zhou, Hui Ren* and Xinglong Yang*

Volume 19, Issue 1, 2022

Published on: 27 May, 2022

Page: [19 - 29] Pages: 11

DOI: 10.2174/1567202619666220406082221

Price: $65

Abstract

Background: Parkinson’s disease (PD) is associated with coiled-coil-helix-coiled-coilhelix domain containing 2 (CHCHD2) downregulation, which has been linked to reduced cyclocytase activity and increased levels of oxygen free radicals, leading to mitochondrial fragmentation and apoptosis. Little is known about how CHCHD2 normally functions in the cell and, therefore, how its downregulation may contribute to PD.

Objective: This study aimed to identify such target genes using chromatin immunoprecipitation sequencing from SH-SY5Y human neuroblastoma cells treated with neurotoxin 1-methyl-4- phenylpyridinium (MPP+) as a PD model.

Methods: In this study, we established a MPP+ -related SH-SY5Y cell model and evaluated the effects of CHCHD2 overexpression on cell proliferation and apoptosis. At the same time, we used high-throughput chromatin immunoprecipitation sequencing to identify its downstream target gene in SH-SY5Y cells. In addition, we verified the possible downstream target genes and discussed their mechanisms.

Results: The expression level of α-synuclein increased in SH-SY5Y cells treated with MPP+, while the protein expression level of CHCHD2 decreased significantly, especially after 24 h of treatment. Chip-IP results showed that CHCHD2 might regulate potential target genes such as HDX, ACP1, RAVER2, C1orf229, RN7SL130, GNPTG, erythroid 2 Like 2 (NFE2L2), required for cell differentiation 1 homologue (RQCD1), solute carrier family 5 member 7 (SLA5A7), and NAcetyltransferase 8 Like (NAT8L). NFE2L2 and RQCD1 were validated as targets using PCR and western blotting of immunoprecipitates, and these two genes together with SLA5A7 and NAT8L were upregulated in SH-SY5Y cells overexpressing CHCHD2. Downregulation of CHCHD2 may contribute to PD by leading to inadequate expression of NFE2L2 and RQCD1 as well as, potentially, SLA5A7 and NAT8L.

Conclusion: Our results suggest that CHCHD2 plays a protective role by maintaining mitochondrial homeostasis and promoting proliferation in neurons. In this study, the changes of CHCHD2 and downstream target genes such as NFE2L2/RQCD1 may have potential application prospects in the future. These findings provide leads to explore PD pathogenesis and potential treatments.

Keywords: CHCHD2, Chip-seq, NFE2L2, RQCD1, parkinson's disease, mechanism.

[1]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[2]
Tan EK, Chao YX, West A, Chan LL, Poewe W, Jankovic J. Parkinson disease and the immune system - associations, mechanisms and therapeutics. Nat Rev Neurol 2020; 16(6): 303-18.
[http://dx.doi.org/10.1038/s41582-020-0344-4] [PMID: 32332985]
[3]
Bandres-Ciga S, Saez-Atienzar S, Kim JJ, et al. Large-scale pathway specific polygenic risk and transcriptomic community network analy-sis identifies novel functional pathways in Parkinson disease. Acta Neuropathol 2020; 140(3): 341-58.
[http://dx.doi.org/10.1007/s00401-020-02181-3] [PMID: 32601912]
[4]
Song X, Long D. Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front in Neurosci 2020; 14(267)
[http://dx.doi.org/10.3389/fnins.2020.00267]
[5]
Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: A genome-wide linkage and sequencing study. Lancet Neurol 2015; 14(3): 274-82.
[http://dx.doi.org/10.1016/S1474-4422(14)70266-2] [PMID: 25662902]
[6]
Cornelissen T, Spinazzi M, Martin S, et al. CHCHD2 harboring Parkinson’s disease-linked T61I mutation precipitates inside mitochondria and induces precipitation of wild-type CHCHD2. Hum Mol Genet 2020; 29(7): 1096-106.
[http://dx.doi.org/10.1093/hmg/ddaa028] [PMID: 32068847]
[7]
Aras S, Bai M, Lee I, Springett R, Hüttemann M, Grossman L. MNRR1 (formerly CHCHD2) is a bi-organellar regulator of mitochondrial metabolism. Mitochondrion 2015; 20: 43-51.
[8]
Liu Y, Clegg HV, Leslie PL, et al. CHCHD2 inhibits apoptosis by interacting with Bcl-x L to regulate Bax activation. Cell Death Differ 2015; 22(6): 1035-46.
[http://dx.doi.org/10.1038/cdd.2014.194] [PMID: 25476776]
[9]
Kee T, Espinoza Gonzalez P, Wehinger J, et al. Mitochondrial CHCHD2: Disease-associated mutations, physiological functions, and cur-rent animal models. Front Aging Neurosci 2021; 13: 660843.
[10]
Meng H, Yamashita C, Shiba-Fukushima K, et al. Loss of Parkinson’s disease-associated protein CHCHD2 affects mitochondrial crista structure and destabilizes cytochrome C. Nat Commun 2017; 8: 15500.
[http://dx.doi.org/10.1038/ncomms15500]
[11]
Zhou W, Ma D, Tan EK. Mitochondrial CHCHD2 and CHCHD10: Roles in neurological diseases and therapeutic implications. Neuroscientist 2020; 26(2): 170-84.
[http://dx.doi.org/10.1177/1073858419871214] [PMID: 31526091]
[12]
Aras S, Pak O, Sommer N, et al. Oxygen-dependent expression of cytochrome C oxidase subunit 4-2 gene expression is mediated by transcription factors RBPJ, CXXC5 and CHCHD2. Nucleic Acids Res 2013; 41(4): 2255-66.
[http://dx.doi.org/10.1093/nar/gks1454] [PMID: 23303788]
[13]
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012; 9(4): 357-9.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[14]
Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol 2008; 9(9): R137.
[http://dx.doi.org/10.1186/gb-2008-9-9-r137] [PMID: 18798982]
[15]
Ramírez F, Ryan D, Grüning B, et al. deepTools2: A next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016; 44: W160-5.
[16]
Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements re-quired for macrophage and B cell identities. Mol Cell 2010; 38(4): 576-89.
[http://dx.doi.org/10.1016/j.molcel.2010.05.004] [PMID: 20513432]
[17]
Yang J, Mitra A, Dojer N, Fu S, Rowicka M, Brasier AR. A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq. Nucleic Acids Res 2013; 41(15): 7240-59.
[http://dx.doi.org/10.1093/nar/gkt493] [PMID: 23771139]
[18]
Xie C, Mao X, Huang J, et al. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 2011; 39: W316-22.
[19]
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method Methods 2001; 25(4): 402-8.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[20]
Liu X, Wang Q, Yang Y, et al. Reduced erythrocytic CHCHD2 mRNA is associated with brain pathology of Parkinson's disease. 2021; 9(1): 37.
[http://dx.doi.org/10.1186/s40478-021-01133-6]
[21]
Liu YT, Huang X, Nguyen D, et al. Loss of CHCHD2 and CHCHD10 activates OMA1 peptidase to disrupt mitochondrial cristae pheno-copying patient mutations. Hum Mol Genet 2020; 29(9): 1547-67.
[http://dx.doi.org/10.1093/hmg/ddaa077] [PMID: 32338760]
[22]
Liu W, Duan X, Xu L, et al. Chchd2 regulates mitochondrial morphology by modulating the levels of Opa1. Cell Death Differ 2020; 27(6): 2014-29.
[http://dx.doi.org/10.1038/s41418-019-0482-7] [PMID: 31907391]
[23]
Sato S, Noda S, Torii S, et al. Homeostatic p62 levels and inclusion body formation in CHCHD2 knockout mice. Hum Mol Genet 2021; 30(6): 443-53.
[http://dx.doi.org/10.1093/hmg/ddab057] [PMID: 33631794]
[24]
Harjuhaahto S, Rasila TS, Molchanova SM, et al. ALS and Parkinson’s disease genes CHCHD10 and CHCHD2 modify synaptic transcrip-tomes in human iPSC-derived motor neurons. Neurobiol Dis 2020; 141: 104940.
[http://dx.doi.org/10.1016/j.nbd.2020.104940]
[25]
Ikeda A, Nishioka K, Meng H, et al. Mutations in CHCHD2 cause α-synuclein aggregation. Hum Mol Genet 2019; 28(23): 3895-911.
[http://dx.doi.org/10.1093/hmg/ddz241] [PMID: 31600778]
[26]
Bento-Pereira C, Dinkova-Kostova AT. Activation of transcription factor Nrf2 to counteract mitochondrial dysfunction in Parkinson’s disease. Med Res Rev 2021; 41(2): 785-802.
[http://dx.doi.org/10.1002/med.21714]
[27]
Cuadrado A, Manda G, Hassan A, et al. Transcription factor NRF2 as a therapeutic target for chronic diseases: A systems medicine ap-proach. Pharmacol Rev 2018; 70(2): 348-83.
[http://dx.doi.org/10.1124/pr.117.014753] [PMID: 29507103]
[28]
Todorovic M, Wood S, Mellick G. Nrf2: A modulator of Parkinson's disease? Journal of Neural Transmission (Vienna, Austria : 1996) 2016; 123(6): 611-9.
[29]
Petrillo S, Schirinzi T, Di Lazzaro G, et al. Systemic activation of Nrf2 pathway in Parkinson’s disease. Mov Disord 2020; 35(1): 180-4.
[http://dx.doi.org/10.1002/mds.27878] [PMID: 31682033]
[30]
Kasai S, Shimizu S, Tatara Y, Mimura J, Itoh K. Regulation of Nrf2 by mitochondrial reactive oxygen species in physiology and patholo-gy. Biomolecules 2020; 10(2): E320.
[http://dx.doi.org/10.3390/biom10020320] [PMID: 32079324]
[31]
Niu Y, Zhang J, Dong M. Nrf2 as a potential target for Parkinson’s disease therapy. J Mol Med (Berl) 2021; 99(7): 917-31.
[http://dx.doi.org/10.1007/s00109-021-02071-5] [PMID: 33844027]
[32]
Abdalkader M, Lampinen R, Kanninen K, Malm T, Liddell J. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 2018; 12: 466.
[http://dx.doi.org/10.3389/fnins.2018.00466]
[33]
Kahroba H, Ramezani B, Maadi H, Sadeghi M, Jaberie H, Ramezani F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021; 65: 101211.
[34]
Duarte P, Michalska P, Crisman E, Cuadrado A, León R. Novel series of dual NRF2 inducers and selective MAO-B inhibitors for the treatment of Parkinson’s disease. Antioxidants 2022; 11(2): 247.
[35]
Wang G, Zhang B, He X, Li D, Shi J, Zhang F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol Res 2019; 139: 452-9.
[http://dx.doi.org/10.1016/j.phrs.2018.11.043]
[36]
Jayaram S, Krishnamurthy PT. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: The therapeutic role of Nrf2 activators. Neurochem Int 2021; 145: 105014.
[37]
Wong SQ, Behren A, Mar VJ, et al. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma. Oncotarget 2015; 6(2): 1115-27.
[http://dx.doi.org/10.18632/oncotarget.2747] [PMID: 25544760]
[38]
Ramirez CCA, Hubbe P, Mandel N, Béthune J. GIGYF2 mediates post-transcriptional mRNA repression through recruitment of the CCR4/NOT complex. bioRxiv 2017.: 181776.
[http://dx.doi.org/10.1101/181776]
[39]
Ajiro M, Nishidate T, Katagiri T, Nakamura Y. Critical involvement of RQCD1 in the EGFR-Akt pathway in mammary carcinogenesis. Int J Oncol 2010; 37(5): 1085-93.
[PMID: 20878056]
[40]
Rodríguez Cruz PM, Hughes I, Manzur A, et al. Presynaptic congenital myasthenic syndrome due to three novel mutations in SLC5A7 encoding the sodium-dependant high-affinity choline transporter. Neuromuscul Disord 2021; 31(1): 21-8.
[http://dx.doi.org/10.1016/j.nmd.2020.10.006] [PMID: 33250374]
[41]
Bazalakova M, Blakely R. The high-affinity choline transporter: A critical protein for sustaining cholinergic signaling as revealed in studies of genetically altered mice. In: Handbook of Experimental Pharmacology. 2006; 175: pp. 525-44.
[42]
Cui S, Sun H, Gu X, et al. Gene expression profiling analysis of locus coeruleus in idiopathic Parkinson’s disease by bioinformatics. Neurol Sci 2015; 36(1): 97-102.
[43]
Dong Y, Dani JA, Blakely RD. Choline transporter hemizygosity results in diminished basal extracellular dopamine levels in nucleus ac-cumbens and blunts dopamine elevations following cocaine or nicotine. Biochem Pharmacol 2013; 86(8): 1084-8.
[http://dx.doi.org/10.1016/j.bcp.2013.07.019] [PMID: 23939187]
[44]
Tsai G, Coyle JT. N-acetylaspartate in neuropsychiatric disorders. Prog Neurobiol 1995; 46(5): 531-40.
[http://dx.doi.org/10.1016/0301-0082(95)00014-M] [PMID: 8532851]
[45]
Kowalski R, Pikul P, Lewandowski K, Sakowicz-Burkiewicz M. Pawełczyk T, Zyśk MN. The cAMP inducers modify - acetylaspartate metabolism in wistar rat brain. Antioxidants 2021; 10(9): 1404.
[46]
Ariyannur P, Moffett J, Manickam P, et al. Methamphetamine-induced neuronal protein NAT8L is the NAA biosynthetic enzyme: Implica-tions for specialized acetyl coenzyme A metabolism in the CNS. Brain Res 2010; 1335: 1-13.
[http://dx.doi.org/10.1016/j.brainres.2010.04.008]
[47]
Wulaer B, Kunisawa K, Hada K, et al. Shati/Nat8l deficiency disrupts adult neurogenesis and causes attentional impairment through do-paminergic neuronal dysfunction in the dentate gyrus. J Neurochem 2021; 157(3): 642-55.
[http://dx.doi.org/10.1111/jnc.15022] [PMID: 32275776]
[48]
Haddar M, Azuma K, Izuo N, et al. Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice. Behav Brain Res 2021; 397: 112938.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy