[1]
Maiese K. Regeneration in the nervous system with erythropoietin. Frontiers in bioscience (Landmark edition) 2016; 21: 561-96.
[2]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[3]
Theoharides TC. Could SARS-CoV-2 Spike Protein Be Responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 1-12.
[4]
Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021; 240: 1-8.
[5]
Pereira G, Leão A, Erustes AG, Morais IBM, Vrechi TAM, Zamarioli LDS, et al. Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. Int J Mol Sci 2021; 22(8)
[6]
Ghasemnejad-Berenji M. mTOR inhibition: A double-edged sword in patients with COVID-19? Hum Cell 2021; 34(2): 698-9.
[7]
Khan N. mTOR: A possible therapeutic target against SARS-CoV-2 infection. Arch Stem Cell Ther 2021; 2(1): 5-7.
[8]
Khan N, Chen X, Geiger JD. Possible Therapeutic Use of Natural Compounds Against COVID-19. J Cell Signal 2021; 2(1): 63-79.
[9]
Lally MA, Tsoukas P, Halladay CW, O’Neill E, Gravenstein S, Rudolph JL. Metformin is Associated with Decreased 30-Day Mortality Among Nursing Home Residents Infected with SARS-CoV2. J Am Med Dir Assoc 2021; 22(1): 193-8.
[10]
Philips AM, Khan N. Amino acid sensing pathway: A major check point in the pathogenesis of obesity and COVID-19. Obes Rev 2021; 22(4): e13221.
[11]
Shi G, Chiramel AI, Majdoul S, Lai KK, Das S, Beare PA, et al. Rapalogs downmodulate intrinsic immunity and promote cell entry of SARS-CoV-2. bioRxiv 2021.
[12]
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 neuronal invasion and complications: Potential mechanisms and therapeutic approaches. J Neurosci 2021; 41(25): 5338-49.
[13]
Maiese K. The Mechanistic Target of Rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[14]
Maiese K. Circadian clock genes: Targeting innate immunity for antiviral strategies against COVID-19. Curr Neurovasc Res 2020.
[15]
Maiese K. Nicotinamide: Oversight of metabolic dysfunction through SIRT1, mTOR, and clock genes. Curr Neurovasc Res 2020; 17(5)
[16]
Tang B, Zeng W, Song LL, Wang HM, Qu LQ, Lo HH, et al. Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an Alzheimer’s Disease mouse model. Pharmaceuticals (Basel, Switzerland) 2022; 15(1)
[17]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[18]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and Alzheimer’s Disease: Probing therapeutic potential. Neurochem Res 2021.
[19]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regenerat Res 2014; 9(15): 1413-7.
[20]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4(3): 187-201.
[21]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[22]
Wang H, Li Q, Sun S, Chen S. Neuroprotective Effects of Salidroside in a Mouse Model of Alzheimer’s Disease. Cell Mol Neurobiol 2020; 40(7)
[23]
Cardoso S, López IP, Piñeiro-Hermida S, Pichel JG, Moreira PI. IGF1R deficiency modulates brain signaling pathways and disturbs mitochondria and redox homeostasis. Biomedicines 2021; 9(2)
[24]
Dai C, Xiao X, Zhang Y, et al. Curcumin attenuates colistin-induced peripheral neurotoxicity in mice. ACS Infect Dis 2020; 6(4): 715-24.
[25]
Deng D, Yan J, Wu Y, Wu K, Li W. Morroniside suppresses hydrogen peroxide-stimulated autophagy and apoptosis in rat ovarian granulosa cells through the PI3K/AKT/mTOR pathway Human Experiment Toxicol. 2020; 960327120960768.
[26]
Maiese K. Warming Up to New Possibilities with the Capsaicin Receptor TRPV1: mTOR, AMPK, and Erythropoietin. Curr Neurovasc Res 2017; 14(2): 184-9.
[27]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in Diabetes Mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[28]
Meng J, Chen Y, Wang J, et al. EGCG protects vascular endothelial cells from oxidative stress-induced damage by targeting the autophagy-dependent PI3K-AKT-mTOR pathway. Ann Transl Med 2020; 8(5): 200.
[29]
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116: 102012.
[30]
Tabibzadeh S. Signaling pathways and effectors of aging. Front Biosci (Landmark edition) 2021; 26: 50-96.
[31]
Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020; 145: 111714.
[32]
Zhao HY, Li HY, Jin J, et al. L-carnitine treatment attenuates renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. Korean J Intern Med 2020.
[33]
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: A novel therapeutic strategy for human diseases. J Drug Target 2021; 1-44.
[34]
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in Cancer treatments. BMC Cancer 2022; 22(1): 105.
[35]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[37]
Saltykova IV, Elahi A, Pitale PM, Gorbatyuk OS, Athar M, Gorbatyuk MS. Tribbles homolog 3-mediated targeting the AKT/mTOR axis in mice with retinal degeneration. Cell Death Disease 2021; 12(7): 664.
[38]
Tian Y, Xiao YH, Geng T, et al. Clusterin suppresses spermatogenic cell apoptosis to alleviate diabetes-induced testicular damage by inhibiting autophagy via the PI3K/AKT/mTOR axis. Biol Cell 2020.
[39]
Wang Y, Gao S, Zheng V, et al. A Novel PDE4D Inhibitor BPN14770 reverses scopolamine-induced cognitive deficits via cAMP/SIRT1/Akt/Bcl-2 pathway. Front Cell Dev Biol 2020; 8: 599389.
[40]
Zeng Z, Liang J, Wu L, Zhang H, Lv J, Chen N. Exercise-Induced autophagy suppresses sarcopenia through Akt/mTOR and Akt/FoxO3a signal pathways and AMPK-Mediated mitochondrial quality control. Front Physiol 2020; 11: 583478.
[41]
Zhou Q, Zhou S, Wang H, Li Y, Xiao X, Yang J. Stable silencing of ROR1 regulates cell cycle, apoptosis, and autophagy in a lung adenocarcinoma cell line. Int J Clin Exp Pathol 2020; 13(5): 1108-20.
[42]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021; 1-382.
[43]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Therapeut Targets 2012; 16(12): 1203-14.
[44]
Fernandez-Ruiz R, García-Alamán A, Esteban Y, et al. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Communicat 2020; 11(1): 5982.
[45]
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant huntingtin impairs pancreatic β-cells by recruiting IRS-2 and disturbing the PI3K/AKT/FoxO1 Signaling Pathway in Huntington’s Disease. J Mol Neurosci 2021.
[46]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regenerat Res 2016; 11(3): 372-85.
[47]
Maiese K. New Insights for nicotinamide: Metabolic disease, autophagy, and mTOR. Front Biosci(Landmark edition) 2020; 25: 1925-73.
[48]
Beker MC, Caglayan B, Yalcin E, Caglayan AB, Turkseven S, Gurel B, et al. Time-of-Day dependent neuronal injury after ischemic stroke: Implication of circadian clock transcriptional factor bmal1 and survival kinase AKT. Mol Neurobiol 2018; 55(3): 2565-76.
[49]
Chen B, Tan Y, Liang Y, Li Y, Chen L, Wu S, et al. Per2 participates in AKT-mediated drug resistance in A549/DDP lung adenocarcinoma cells. Oncol Lett 2017; 13(1): 423-8.
[50]
Wu X, Li D, Liu J, et al. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight. Front Pharmacol 2017; 8: 315.
[51]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[52]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1-18.
[53]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Front Biosci (Landmark edition). 2021; 26(9): 614-27.
[54]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 2002; 106(23): 2973-9.
[55]
Maiese K. Charting a course for erythropoietin in traumatic brain injury. J Transl Sci 2016; 2(2): 140-4.
[56]
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: New directions for the nervous system. Int J Mol Sci 2012; 13(9): 11102-29.
[57]
Pan Y, Yang XH, Guo LL, Gu YH, Qiao QY, Jin HM. Erythropoietin reduces insulin resistance via regulation of its receptor-mediated signaling pathways in db/db mice skeletal muscle. Int J Biol Sci 2017; 13(10): 1329-40.
[58]
Tang Z, Yang G, Wang X, et al. AKT/GSK-3β/β-catenin signaling pathway participates in erythropoietin-promoted glioma proliferation. J Neurooncol 2020; 149(2): 231-42.
[59]
Ma R, Xiong N, Huang C, et al. Erythropoietin protects PC12 cells from beta-amyloid(25-35)-induced apoptosis via PI3K/Akt signaling pathway. Neuropharmacology 2009; 56(6-7): 1027-34.
[60]
Maiese K. The challenges for drug development: Cytokines, Genes, and Stem cells. Curr Neurovasc Res 2012; 9(4): 231-2.
[61]
Maurice T, Mustafa MH, Desrumaux C, et al. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Abeta(2)(5)(-)(3)(5) non-transgenic mouse model of Alzheimer’s disease. J Psychopharmacol 2013; 27(11): 1044-57.
[62]
Chong ZZ, Shang YC, Wang S, Maiese K. PRAS40 Is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7(9): e45456.
[63]
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 Govern Pathways of mTOR, Apaf-1, and XIAP in Inflammatory Microglia. Curr Neurovasc Res 2011; 8(4): 270-85.
[64]
Terraneo L, Samaja M. Comparative Response of Brain to Chronic Hypoxia and Hyperoxia. Int J Mol Sci 2017; 18(9)
[65]
Wang ZY, Shen LJ, Tu L, Hu DN, Liu GY, Zhou ZL, et al. Erythropoietin protects retinal pigment epithelial cells from oxidative damage. Free Radic Biol Med 2009; 46(8): 1032-41.
[66]
Maiese K. Erythropoietin and mTOR: A “One-Two Punch” for aging-related disorders accompanied by enhanced life expectancy. Curr Neurovasc Res 2016; 13(4): 329-40.
[67]
Yu Y, Shiou SR, Guo Y, et al. Erythropoietin protects epithelial cells from excessive autophagy and apoptosis in experimental neonatal necrotizing enterocolitis. PLoS One 2013; 8(7): e69620.
[68]
Chong ZZ, Maiese K. Erythropoietin involves the phosphatidylinositol 3-kinase pathway, 14-3-3 protein and FOXO3a nuclear trafficking to preserve endothelial cell integrity. Br J Pharmacol 2007; 150(7): 839-50.
[69]
Hou J, Chong ZZ, Shang YC, Maiese K. FoxO3a governs early and late apoptotic endothelial programs during elevated glucose through mitochondrial and caspase signaling. Mol Cell Endocrinol 2010; 321(2): 194-206.
[70]
Saleem S, Biswas SC. Tribbles Pseudokinase 3 induces both apoptosis and autophagy in amyloid-beta-induced neuronal death. J Biol Chem 2017; 292(7): 2571-85.
[71]
Chong ZZ, Hou J, Shang YC, Wang S, Maiese K. EPO Relies upon novel signaling of Wnt1 that requires Akt1, FoxO3a, GSK-3beta, and beta-Catenin to Foster Vascular Integrity During Experimental Diabetes. Curr Neurovasc Res 2011; 8(2): 103-20.
[72]
Mahmud DL. M GA, Deb DK, Platanias LC, Uddin S, Wickrema A. Phosphorylation of forkhead transcription factors by erythropoietin and stem cell factor prevents acetylation and their interaction with coactivator p300 in erythroid progenitor cells. Oncogene 2002; 21(10): 1556-62.
[73]
Maiese K, Li F, Chong ZZ. Erythropoietin in the brain: Can the promise to protect be fulfilled? Trends Pharmacol Sci 2004; 25(11): 577-83.
[74]
Hou J, Wang S, Shang YC, Chong ZZ, Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res 2011; 8(3): 220-35.
[75]
Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014; 11(4): 378-89.
[76]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[77]
Chen S, Li B. MiR-128-3p Post-Transcriptionally inhibits WISP1 to suppress apoptosis and inflammation in human articular chondrocytes via the PI3K/AKT/NF-κB signaling pathway. Cell Transplant 2020; 29: 963689720939131.
[78]
Cai D, Hong S, Yang J, San P. The Effects of microRNA-515-5p on the Toll-Like Receptor 4 (TLR4)/JNK signaling pathway and WNT1-Inducible-signaling pathway protein 1 (WISP-1) expression in Rheumatoid Arthritis Fibroblast-Like Synovial (RAFLS) cells following treatment with receptor activator of nuclear factor-kappa-B Ligand (RANKL). Med Sci Monit 2020; 26: e920611.
[79]
Wang S, Chong ZZ, Shang YC, Maiese K. WISP1 (CCN4) autoregulates its expression and nuclear trafficking of beta-catenin during oxidant stress with limited effects upon neuronal autophagy. Curr Neurovasc Res 2012; 9(2): 89-99.
[80]
Maiese K. Picking a bone with WISP1 (CCN4): New strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.