Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Review Article

Medicinal Importance, Pharmacological Activities and Analytical Aspects of a Flavonoid Glycoside ‘Nicotiflorin’ in the Medicine

Author(s): Dinesh Kumar Patel*

Volume 15, Issue 1, 2022

Published on: 10 May, 2022

Page: [2 - 11] Pages: 10

DOI: 10.2174/1872312815666220404110200

Price: $65

Abstract

Background: Herbal products are derived from different natural sources, mainly used as a source of food material and medicine in the health sectors since ancient times. Herbal products have gained popularity in modern medicine due to their beneficial health properties and pharmacological activities. Flavonoids are an important class of secondary metabolites found to be present in medicinal plants and their derived products. Flavonoids have been known for their anti-allergic, anti-bacterial, anti-diabetic, anti-inflammatory, anti-viral, anti-proliferative, anti-mutagenic, antithrombotic, anti-carcinogenic, anti-oxidant and hepatoprotective activities in the medicine. Nicotiflorin is a flavonoidal class phytochemical, found in medicinal plants, including Traditional Chinese medicine.

Methods: Scientific data on the medicinal importance and pharmacological activities of nicotiflorin have been collected and analyzed in the present work in order to know the therapeutic importance of nicotiflorin in medicine. Scientific data have been collected from Google, Google Scholar, Science Direct, PubMed and Scopus and analyzed in the present work. Analytical techniques data of separation, isolation and identification of nicotiflorin have also been collected and presented in the current work. Further biological importance of flavonoidal class phytochemicals was also discussed in the present work to understand the biological importance of nicotiflorin in medicine as it belongs to the flavonoid class.

Results: Scientific data analysis revealed the therapeutic importance and pharmacological activities of nicotiflorin. Nicotiflorin has significant biological potential against coronavirus, ischemia, renal impairment, hepatic complication, memory dysfunction and myocardial infarction. The biological potential of nicotiflorin against α-glucosidase and α-amylase enzymes, multiple myeloma cells and insulin secretion has also been discussed in the present work. Analytical data revealed the significance of modern analytical tools in medicine for the isolation, separation and quantification of nicotiflorin.

Conclusion: Scientific data analysis of different research works revealed the biological importance and therapeutic potential of nicotiflorin in medicine.

Keywords: Flavonoid, nicotiflorin, coronavirus, ischemia, renal impairment, hepatic complication, memory dysfunction, myocardial infarction.

Graphical Abstract

[1]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Nutrient and bioactive compounds composition of the leaves and stems of Pandiaka heudelotii: A wild vegetable. Heliyon, 2019, 54, e01501.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01501] [PMID: 31025012]
[2]
Orief, Y.I.; Farghaly, N.F.; Ibrahim, M.I.A. Use of herbal medicines among pregnant women attending family health centers in Alexandria. Middle East Fertil. Soc. J., 2014, 191, 42-50.
[http://dx.doi.org/10.1016/j.mefs.2012.02.007]
[3]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Pat. Antiinfect Drug Discov., 2019, 141, 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[4]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 1910, 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[5]
Firenzuoli, F.; Gori, L. Herbal medicine today: Clinical and research issues. Evid. Based Complement. Alternat. Med., 2007, (4)(Suppl. 1), 37-40.
[http://dx.doi.org/10.1093/ecam/nem096] [PMID: 18227931]
[6]
Jang, G.H.; Kim, H.W.; Lee, M.K.; Jeong, S.Y.; Bak, A.R.; Lee, D.J.; Kim, J.B. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J. Biol. Sci., 2018, 258, 1622-1631.
[http://dx.doi.org/10.1016/j.sjbs.2016.08.001] [PMID: 30591779]
[7]
Patel, K.; Jain, A.; Patel, D.K. Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report. J. Acute Dis., 2013, 23, 169-178.
[http://dx.doi.org/10.1016/S2221-61891360123-7]
[8]
Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules, 2016, 215, 559.
[http://dx.doi.org/10.3390/molecules21050559] [PMID: 27136524]
[9]
Ma, Y-L.; Vedernikova, I.; Van den Heuvel, H.; Claeys, M. Internal glucose residue loss in protonated O-diglycosyl flavonoids upon low-energy collision-induced dissociation. J. Am. Soc. Mass Spectrom., 2000, 112, 136-144.
[http://dx.doi.org/10.1016/S1044-03059900133-6] [PMID: 10689666]
[10]
Singh, B.; Sahu, P.M.; Sharma, R.A. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II. Cytotechnology, 2017, 691, 103-115.
[http://dx.doi.org/10.1007/s10616-016-0041-8] [PMID: 27905025]
[11]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. New insights into the medicinal importance, physiological functions and bioana-lytical aspects of an important bioactive compound of foods ‘Hyperin’: Health benefits of the past, the present, the future. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 71, 31-42.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.009]
[12]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 42, 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[13]
Orhan, D.D.; Ozçelik, B.; Özgen, S.; Ergun, F. Antibacterial, antifungal, and antiviral activities of some flavonoids. Microbiol. Res., 2010, 1656, 496-504.
[http://dx.doi.org/10.1016/j.micres.2009.09.002] [PMID: 19840899]
[14]
Yuan, Y.; Wang, N.; Zhu, F.; Shen, M.; Chen, K. Exploration of the protein targets and function mechanism of tricetin based on surface plasmon resonance and reverse molecular docking. Front Drug, Chem. Clin. Res. (Alex.), 2019, 2, 1-9.
[15]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 247, 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[16]
Li, R.; Guo, M.; Zhang, G.; Xu, X.; Li, Q. Neuroprotection of nicotiflorin in permanent focal cerebral ischemia and in neuronal cultures. Biol. Pharm. Bull., 2006, 299, 1868-1872.
[http://dx.doi.org/10.1248/bpb.29.1868] [PMID: 16946500]
[17]
Nakayama, M.; Aihara, M.; Chen, Y-N.; Araie, M.; Tomita-Yokotani, K.; Iwashina, T. Neuroprotective effects of flavonoids on hypoxia-, glutamate-, and oxidative stress-induced retinal ganglion cell death. Mol. Vis., 2011, 17, 1784-1793.
[PMID: 21753864]
[18]
Dehaghani, Z.A.; Asghari, G.; Dinani, M.S. Isolation and identification of nicotiflorin and narcissin from the aerial parts of Peucedanum aucheri boiss. J. Agric. Sci. Technol. A, 2017, 7, 45-51.
[19]
Satoh, H.; Fuchikami, H.; Ohtani, H.; Tsujimoto, M.; Ohdo, S.; Sawada, A. Inhibitory effects and structure-activity relationship of flavo-noids with respect to human organic aniontransporting polypeptides, OATP2B1. Int. J. Pharm. Phytopharm. Res., 2015, 5, 33-40.
[20]
Özçelik, B.; Orhan, D.; Özgen, S.; Ergun, F. Antimicrobial activity of flavonoids against Extended-Spectrum β-Lactamase ESβL-Producing Klebsiella pneumoniae. Trop. J. Pharm. Res., 2008, 74, 1151.
[http://dx.doi.org/10.4314/tjpr.v7i4.14701]
[21]
Turgut-Kara, N.; Cakir, O.; Hasancebi, S.; Karabey, F.; Ari, S. Identification and production of phenolic nicotiflorin in Astragalus chryso-chlorus Callus. Farmacia, 2018, 663, 558-562.
[http://dx.doi.org/10.31925/farmacia.2018.3.25]
[22]
Wang, Y.; Zhang, S.; Ni, H.; Zhang, Y.; Yan, X.; Gao, Y.; He, B.; Wang, W.; Liu, C.; Guo, M. Autophagy is involved in the neuroprotective effect of nicotiflorin. J. Ethnopharmacol., 2021, 278, 114279.
[http://dx.doi.org/10.1016/j.jep.2021.114279] [PMID: 34087402]
[23]
Hu, G.Q.; Du, X.; Li, Y.J.; Gao, X.Q.; Chen, B.Q.; Yu, L. Inhibition of cerebral ischemia/reperfusion injury-induced apoptosis: Nicotiflor-in and JAK2/STAT3 pathway. Neural Regen. Res., 2017, 121, 96-102.
[http://dx.doi.org/10.4103/1673-5374.198992] [PMID: 28250754]
[24]
Zhao, J.; Zhang, S.; You, S.; Liu, T.; Xu, F.; Ji, T.; Gu, Z. Hepatoprotective effects of nicotiflorin from nymphaea candida against conca-navalin A-induced and D-galactosamine-induced liver injury in mice. Int. J. Mol. Sci., 2017, 183, 587.
[http://dx.doi.org/10.3390/ijms18030587] [PMID: 28282879]
[25]
Lal Shyaula, S.; Abbas, G.; Siddiqui, H.; Sattar, S.A.; Choudhary, M.I.; Basha, F.Z. Synthesis and antiglycation activity of kaempferol-3-O-rutinoside nicotiflorin. Med. Chem., 2012, 83, 415-420.
[http://dx.doi.org/10.2174/1573406411208030415] [PMID: 22530897]
[26]
Turgut Kara, N.; Çakır, Ö.; Arıkan, B.; Arı, Ş. Molecular cloning and biotic elicitation response of phenylalanine ammonia-lyase gene of Astragalus chrysochlorus. Cell. Mol. Biol., 2018, 645, 102-106.
[http://dx.doi.org/10.14715/cmb/2018.64.5.17] [PMID: 29729701]
[27]
Yu, S.; Guo, Q.; Jia, T.; Zhang, X.; Guo, D.; Jia, Y.; Li, J.; Sun, J. Mechanism of action of nicotiflorin from Tricyrtis maculata in the treat-ment of acute myocardial infarction: From network pharmacology to experimental pharmacology. Drug Des. Devel. Ther., 2021, 15, 2179-2191.
[http://dx.doi.org/10.2147/DDDT.S302617] [PMID: 34079221]
[28]
Liskova, A.; Samec, M.; Koklesova, L.; Samuel, S.M.; Zhai, K.; Al-Ishaq, R.K.; Abotaleb, M.; Nosal, V.; Kajo, K.; Ashrafizadeh, M.; Zarrabi, A.; Brockmueller, A.; Shakibaei, M.; Sabaka, P.; Mozos, I.; Ullrich, D.; Prosecky, R.; La Rocca, G.; Caprnda, M.; Büsselberg, D.; Rodrigo, L.; Kruzliak, P.; Kubatka, P. Flavonoids against the SARS-CoV-2 induced inflammatory storm. Biomed. Pharmacother., 2021, 138, 111430.
[http://dx.doi.org/10.1016/j.biopha.2021.111430] [PMID: 33662680]
[29]
Mouffouk, C.; Mouffouk, S.; Mouffouk, S.; Hambaba, L.; Haba, H. Flavonols as potential antiviral drugs targeting SARS-CoV-2 proteases 3CLpro and PLpro, spike protein, RNA-dependent RNA polymerase RdRp and angiotensin-converting enzyme II receptor ACE2. Eur. J. Pharmacol., 2021, 891, 173759.
[http://dx.doi.org/10.1016/j.ejphar.2020.173759] [PMID: 33249077]
[30]
Dubey, R.; Dubey, K. Molecular docking studies of bioactive nicotiflorin against 6W63 novel coronavirus 2019 COVID-19. Comb. Chem. High Throughput Screen., 2021, 246, 874-878.
[http://dx.doi.org/10.2174/1386207323999200820162551] [PMID: 33109057]
[31]
da Silva, F.M.A.; da Silva, K.P.A.; de Oliveira, L.P.M.; Costa, E.V.; Koolen, H.H.F.; Pinheiro, M.L.B.; de Souza, A.Q.L.; de Souza, A.D.L. Flavonoid glycosides and their putative human metabolites as potential inhibitors of the SARS-CoV-2 main protease Mpro and RNA-dependent RNA polymerase RdRp. Mem. Inst. Oswaldo Cruz, 2020, 115, e200207.
[http://dx.doi.org/10.1590/0074-02760200207] [PMID: 33027419]
[32]
Yañez, O.; Osorio, M.I.; Areche, C.; Vasquez-Espinal, A.; Bravo, J.; Sandoval-Aldana, A.; Pérez-Donoso, J.M.; González-Nilo, F.; Matos, M.J.; Osorio, E.; García-Beltrán, O.; Tiznado, W. Theobroma cacao L. compounds: Theoretical study and molecular modeling as inhibi-tors of main SARS-CoV-2 protease. Biomed. Pharmacother., 2021, 140, 111764.
[http://dx.doi.org/10.1016/j.biopha.2021.111764] [PMID: 34051617]
[33]
Li, R.; Guo, M.; Zhang, G.; Xu, X.; Li, Q. Nicotiflorin reduces cerebral ischemic damage and upregulates endothelial nitric oxide synthase in primarily cultured rat cerebral blood vessel endothelial cells. J. Ethnopharmacol., 2006, 1071, 143-150.
[http://dx.doi.org/10.1016/j.jep.2006.04.024] [PMID: 16806761]
[34]
Wang, L.; Li, C.; Guan, C.; Zhang, Y.; Yang, C.; Zhao, L.; Luan, H.; Zhou, B.; Che, L.; Wang, Y.; Zhang, W.; Zhang, H.; Man, X.; Jiang, W.; Xu, Y. Nicotiflorin attenuates cell apoptosis in renal ischemia-reperfusion injury through activating transcription factor 3. Nephrology (Carlton), 2021, 264, 358-368.
[http://dx.doi.org/10.1111/nep.13841] [PMID: 33295061]
[35]
Huang, J-L.; Fu, S-T.; Jiang, Y-Y.; Cao, Y-B.; Guo, M-L.; Wang, Y.; Xu, Z. Protective effects of Nicotiflorin on reducing memory dys-function, energy metabolism failure and oxidative stress in multi-infarct dementia model rats. Pharmacol. Biochem. Behav., 2007, 864, 741-748.
[http://dx.doi.org/10.1016/j.pbb.2007.03.003] [PMID: 17448528]
[36]
Cuc, N.T.; Cuong, N.T.; Anh, L.T.; Yen, D.T.H.; Tai, B.H.; Thu Trang, D. Dihydrostilbene glycosides from Camellia sasanqua and their α-glucosidase and α-amylase inhibitory activities. Nat. Prod. Res., 2020, 1-7.
[PMID: 32338065]
[37]
Cedeño, H.; Espinosa, S.; Andrade, J.M.; Cartuche, L.; Malagón, O. Novel flavonoid glycosides of quercetin from leaves and flowers of Gaiadendron punctatum G. Don. Violeta de Campo, used by the Saraguro Community in Southern Ecuador, inhibit α-Glucosidase en-zyme. Molecules, 2019, 2423, 4267.
[http://dx.doi.org/10.3390/molecules24234267]
[38]
Ben Bakrim, W.; El Bouzidi, L.; Nuzillard, J-M.; Cretton, S.; Saraux, N.; Monteillier, A.; Christen, P.; Cuendet, M.; Bekkouche, K. Bioac-tive metabolites from the leaves of Withania adpressa. Pharm. Biol., 2018, 561, 505-510.
[http://dx.doi.org/10.1080/13880209.2018.1499781] [PMID: 30451050]
[39]
Lee, D.; Qi, Y.; Kim, R.; Song, J.; Kim, H.; Kim, H.Y.; Jang, D.S.; Kang, K.S. Methyl caffeate isolated from the flowers of Prunus persica L. batsch enhances glucose-stimulated insulin secretion. Biomolecules, 2021, 112, 279.
[http://dx.doi.org/10.3390/biom11020279] [PMID: 33672801]
[40]
Nishina, A.; Itagaki, M.; Suzuki, Y.; Koketsu, M.; Ninomiya, M.; Sato, D.; Suzuki, T.; Hayakawa, S.; Kuroda, M.; Kimura, H. Effects of flavonoids and triterpene analogues from leaves of eleutherococcus sieboldianus Makino Koidz. ‘Himeukogi’ in 3T3-L1 Preadipocytes. Molecules, 2017, 224, 671.
[http://dx.doi.org/10.3390/molecules22040671]
[41]
Adhikari-Devkota, A.; Elbashir, S.M.I.; Watanabe, T.; Devkota, H.P. Chemical constituents from the flowers of Satsuma mandarin and their free radical scavenging and α-glucosidase inhibitory activities. Nat. Prod. Res., 2019, 3311, 1670-1673.
[http://dx.doi.org/10.1080/14786419.2018.1425856] [PMID: 29334238]
[42]
Chemam, Y.; Benayache, S.; Marchioni, E.; Zhao, M.; Mosset, P.; Benayache, F. On-line screening, isolation and identification of antioxi-dant compounds of helianthemum ruficomum. Molecules, 2017, 222, 239.
[http://dx.doi.org/10.3390/molecules22020239] [PMID: 28208718]
[43]
Tong, S.; Yan, J.; Chen, G.; Lou, J. Purification of rutin and nicotiflorin from the flowers of Edgeworthia chrysantha Lindl. by high-speed counter-current chromatography. J. Chromatogr. Sci., 2009, 475, 341-344.
[http://dx.doi.org/10.1093/chromsci/47.5.341] [PMID: 19476699]
[44]
Gürbüz, P. Flavonoid Glycosides from Heracleum pastinaca Fenzl. Turkish J. Pharm. Sci., 2019, 162, 191-195.
[http://dx.doi.org/10.4274/tjps.galenos.2018.53215] [PMID: 32454713]
[45]
Bouzghaia, B.; Ben Moussa, M.T.; Goudjil, R.; Harkat, H.; Pale, P. Chemical composition, in vitro antioxidant and antibacterial activities of Centaurea resupinata subsp. dufourii dostál greuter. Nat. Prod. Res., 2021. [Epub ahead of print].
[PMID: 31971020]
[46]
Xie, Z.; Sun, Y.; Lam, S.; Zhao, M.; Liang, Z.; Yu, X.; Yang, D.; Xu, X. Extraction and isolation of flavonoid glycosides from Flos Sopho-rae Immaturus using ultrasonic-assisted extraction followed by high-speed countercurrent chromatography. J. Sep. Sci., 2014, 378, 957-965.
[http://dx.doi.org/10.1002/jssc.201301340] [PMID: 24515421]
[47]
Ilhan, M.; Ali, Z.; Khan, I.A. Taştan, H.; Küpeli Akkol, E. Bioactivity-guided isolation of flavonoids from Urtica dioica L. and their effect on endometriosis rat model. J. Ethnopharmacol., 2019, 243, 112100.
[http://dx.doi.org/10.1016/j.jep.2019.112100] [PMID: 31325603]
[48]
Chahyadi, A. Elfahmi, The influence of extraction methods on rutin yield of Cassava leaves Manihot esculenta Crantz. Saudi Pharm. J., 2020, 2811, 1466-1473.
[http://dx.doi.org/10.1016/j.jsps.2020.09.012] [PMID: 33250654]
[49]
Nahrstedt, A.; Hungeling, M.; Petereit, F. Flavonoids from Acalypha indica. Fitoterapia, 2006, 776, 484-486.
[http://dx.doi.org/10.1016/j.fitote.2006.04.007] [PMID: 16828241]
[50]
Fan, S.; Yang, G.; Zhang, J.; Li, J.; Bai, B. Optimization of ultrasound-assisted extraction using response surface methodology for simulta-neous quantitation of six flavonoids in flos sophorae immaturus and antioxidant activity. Molecules, 2020, 258, 1767.
[http://dx.doi.org/10.3390/molecules25081767] [PMID: 32290627]
[51]
da Silva, R.G.; Almeida, T.C.; Reis, A.C.C.; Filho, S.A.V.; Brandão, G.C.; da Silva, G.N. In silico pharmacological prediction and cytotoxi-city of flavonoids glycosides identified by UPLC-DAD-ESI-MS/MS in extracts of Humulus lupulus leaves cultivated in Brazil. Nat. Prod. Res., 2021. [Epub ahead of print].
[PMID: 32762451]
[52]
Hefny Gad, M.; Tuenter, E.; El-Sawi, N.; Younes, S.; El-Ghadban, E-M.; Demeyer, K.; Pieters, L.; Vander Heyden, Y.; Mangelings, D. Identification of some bioactive metabolites in a fractionated methanol extract from Ipomoea aquatica Aerial Parts through TLC, HPLC, UPLC-ESI-QTOF-MS and LC-SPE-NMR fingerprints analyses. Phytochem. Anal., 2018, 291, 5-15.
[http://dx.doi.org/10.1002/pca.2709] [PMID: 28776774]
[53]
Krimplstätter, R.; Ma, B.; Spitaler, R.; Ellmerer, E.; Zidorn, C. Phenolics from Rhagadiolus stellatus Asteraceae, Cichorieae. Sci. Pharm., 2011, 791, 175-179.
[http://dx.doi.org/10.3797/scipharm.1011-12] [PMID: 21617781]
[54]
Christen, P.; Kapetanidis, I. Flavonoids from Lycium halimifolium 1. Planta Med., 1987, 536, 571-572.
[http://dx.doi.org/10.1055/s-2006-962816] [PMID: 17269102]
[55]
Tomczyk, M.; Gudej, J.; Sochacki, M. Flavonoids from Ficaria verna Huds. Z. Naturforsch. C J. Biosci., 2002, 575-6, 440-444.
[http://dx.doi.org/10.1515/znc-2002-5-606] [PMID: 12132681]
[56]
Shen, G.; Oh, S-R.; Min, B-S.; Lee, J.; Ahn, K.S.; Kim, Y.H.; Lee, H.K. Phytochemical investigation of Tiarella polyphylla. Arch. Pharm. Res., 2008, 311, 10-16.
[http://dx.doi.org/10.1007/s12272-008-1113-x] [PMID: 18277601]
[57]
Wang, G.; Cui, Q.; Yin, L-J.; Zheng, X.; Gao, M-Z.; Meng, Y.; Wang, W. Efficient extraction of flavonoids from Flos Sophorae Immaturus by tailored and sustainable deep eutectic solvent as green extraction media. J. Pharm. Biomed. Anal., 2019, 170, 285-294.
[http://dx.doi.org/10.1016/j.jpba.2018.12.032] [PMID: 30951994]
[58]
Yu, M.; Shin, Y.J.; Kim, N.; Yoo, G.; Park, S.; Kim, S.H. Determination of saponins and flavonoids in ivy leaf extracts using HPLC-DAD. J. Chromatogr. Sci., 2015, 534, 478-483.
[http://dx.doi.org/10.1093/chromsci/bmu068] [PMID: 24981979]
[59]
Hsieh, S-K.; Lo, Y-H.; Wu, C-C.; Chung, T.Y.; Tzen, J.T.C. Identification of biosynthetic intermediates of teaghrelins and teaghrelin-like compounds in oolong teas, and their molecular docking to the ghrelin receptor. J. Food Drug Anal, 2015, 234, 660-670.
[http://dx.doi.org/10.1016/j.jfda.2015.04.005] [PMID: 28911482]
[60]
Li, M-M.; Wang, K.; Pan, Z-H.; Chen, X-Q.; Peng, L-Y.; Li, Y.; Cheng, X.; Zhao, Q.S. Two new sesquiterpene glucosides from Dennstaed-tia scabra Wall. Moore. Chem. Pharm. Bull. Tokyo, 2009, 5710, 1123-1125.
[http://dx.doi.org/10.1248/cpb.57.1123] [PMID: 19801871]
[61]
Steffensen, S.K.; Pedersen, H.A.; Labouriau, R.; Mortensen, A.G.; Laursen, B.; de Troiani, R.M.; Noellemeyer, E.J.; Janovska, D.; Stavelikova, H.; Taberner, A.; Christophersen, C.; Fomsgaard, I.S. Variation of polyphenols and betaines in aerial parts of young, field-grown Amaranthus genotypes. J. Agric. Food Chem., 2011, 5922, 12073-12082.
[http://dx.doi.org/10.1021/jf202969e] [PMID: 22007946]
[62]
Ávila-Villarreal, G.; González-Trujano, M.E.; Carballo-Villalobos, A.I.; Aguilar-Guadarrama, B.; García-Jiménez, S.; Giles-Rivas, D.E.; Castillo-España, P.; Villalobos-Molina, R.; Estrada-Soto, S. Anxiolytic-like effects and toxicological studies of Brickellia cavanillesii Cass. A. Gray in experimental mice models. J. Ethnopharmacol., 2016, 192, 90-98.
[http://dx.doi.org/10.1016/j.jep.2016.07.006] [PMID: 27381041]
[63]
Saepou, S.; Pohmakotr, M.; Reutrakul, V.; Yoosook, C.; Kasisit, J.; Napaswad, C.; Tuchinda, P. Anti-HIV-1 diterpenoids from leaves and twigs of Polyalthia sclerophylla. Planta Med., 2010, 767, 721-725.
[http://dx.doi.org/10.1055/s-0029-1240683] [PMID: 20013639]
[64]
Zhang, J.; Li, X.; Ren, L.; Fang, C.; Wang, F. Chemical constituents from Exochorda racemosa. Zhongguo Zhongyao Zazhi, 2011, 369, 1198-1201.
[PMID: 21842649]
[65]
Brasil, G.A.; Ronchi, S.N.; do Nascimento, A.M.; de Lima, E.M.; Romão, W.; da Costa, H.B.; Scherer, R.; Ventura, J.A.; Lenz, D.; Bissoli, N.S.; Endringer, D.C.; de Andrade, T.U. Antihypertensive effect of Carica papaya via a reduction in ACE activity and improved barore-flex. Planta Med., 2014, 8017, 1580-1587.
[http://dx.doi.org/10.1055/s-0034-1383122] [PMID: 25295669]
[66]
Calzada, F.; Cedillo-Rivera, R.; Mata, R. Antiprotozoal activity of the constituents of Conyza filaginoides. J. Nat. Prod., 2001, 645, 671-673.
[http://dx.doi.org/10.1021/np000442o] [PMID: 11374974]
[67]
Yang, C.; Li, F.; Zhang, X.; Wang, L.; Zhou, Z.; Wang, M. Phenolic antioxidants from Rosa soulieana flowers. Nat. Prod. Res., 2013, 2721, 2055-2058.
[http://dx.doi.org/10.1080/14786419.2013.811660] [PMID: 23805936]
[68]
Kraujalis, P.; Venskutonis, P.R. Kraujalienė, V.; Pukalskas, A. Antioxidant properties and preliminary evaluation of phytochemical com-position of different anatomical parts of amaranth. Plant Foods Hum. Nutr., 2013, 683, 322-328.
[http://dx.doi.org/10.1007/s11130-013-0375-8] [PMID: 23912804]
[69]
Devkota, H.P.; Basnet, P.; Yahara, S. Diterpene esters and phenolic compounds from Sapium insigne ROYLE BENTH. ex HOOK. fil. Chem. Pharm. Bull. (Tokyo), 2009, 5711, 1289-1291.
[http://dx.doi.org/10.1248/cpb.57.1289] [PMID: 19881284]
[70]
Julianti, T.; De Mieri, M.; Zimmermann, S.; Ebrahimi, S.N.; Kaiser, M.; Neuburger, M.; Raith, M.; Brun, R.; Hamburger, M. HPLC-based activity profiling for antiplasmodial compounds in the traditional Indonesian medicinal plant Carica papaya L. J. Ethnopharmacol., 2014, 1551, 426-434.
[http://dx.doi.org/10.1016/j.jep.2014.05.050] [PMID: 24892830]
[71]
Papaioannou, P.; Lazari, D.; Karioti, A.; Souleles, C.; Heilmann, J.; Hadjipavlou-Litina, D.; Skaltsa, H. Phenolic compounds with antioxi-dant activity from Anthemis tinctoria L. Asteraceae. Z. Naturforsch. C J. Biosci., 2007, 625-6, 326-330.
[http://dx.doi.org/10.1515/znc-2007-5-603] [PMID: 17708435]
[72]
Soberón, J.R.; Sgariglia, M.A.; Sampietro, D.A.; Quiroga, E.N.; Vattuone, M.A. Free radical scavenging activities and inhibition of inflam-matory enzymes of phenolics isolated from Tripodanthus acutifolius. J. Ethnopharmacol., 2010, 1302, 329-333.
[http://dx.doi.org/10.1016/j.jep.2010.05.015] [PMID: 20488234]
[73]
Soberón, J.R.; Sgariglia, M.A.; Sampietro, D.A.; Quiroga, E.N.; Sierra, M.G.; Vattuone, M.A. Purification and identification of antibacterial phenolics from Tripodanthus acutifolius leaves. J. Appl. Microbiol., 2010, 1085, 1757-1768.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04579.x] [PMID: 19922598]
[74]
Kawano, M.; Otsuka, M.; Umeyama, K.; Yamazaki, M.; Shiota, T.; Satake, M.; Okuyama, E. Anti-inflammatory and analgesic components from “Hierba santa,” a traditional medicine in Peru. J. Nat. Med., 2009, 632, 147-158.
[http://dx.doi.org/10.1007/s11418-008-0302-8] [PMID: 19067116]
[75]
Barrau, E.; Fabre, N.; Fouraste, I.; Hoste, H. Effect of bioactive compounds from Sainfoin Onobrychis viciifolia Scop. on the in vitro larval migration of Haemonchus contortus: Role of tannins and flavonol glycosides. Parasitology, 2005, (131Pt 4), 531-538.
[http://dx.doi.org/10.1017/S0031182005008024] [PMID: 16174418]
[76]
Sawamura, S.; Sakane, I.; Satoh, E.; Ishii, T.; Shimizu, Y.; Nishimura, M.; Umehara, K. Isolation and determination of an antidote for botulinum neurotoxin from black tea extract. Nippon Yakurigaku Zasshi, 2002, 1201, 116P-118P.
[PMID: 12491801]
[77]
Tai, Z.G.; Yang, X.Q.; Cai, L.; Sun, W.J.; Ding, Z.T.; Yang, Y.B. Studies on the chemical constituents from the aerial parts of Gladiolus gandavensis. Zhong Yao Cai, 2010, 338, 1257-1259.
[PMID: 21213537]
[78]
Jia, S.S.; Ma, C.M.; Li, Y.H.; Hao, J.H. Glycosides of phenolic acid and flavonoids from the leaves of Glycyrrhiza uralensis Ficsh. Yao Xue Xue Bao, 1992, 276, 441-444.
[PMID: 1442071]
[79]
Iwashina, T.; Kokubugata, G. Flavonoid properties in the leaves of Barringtonia asiatica Lecythidaceae. Bull. Natl. Mus. Nat. Sci. Ser. B Bot., 2016, 42, 41-47.
[80]
Ekalu, A.; Habila, J.D. Flavonoids: Isolation, characterization, and health benefits. Beni. Suef Univ. J. Basic Appl. Sci., 2020, 91, 45.
[http://dx.doi.org/10.1186/s43088-020-00065-9]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy