Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Bioactivity of Natural Polyphenols as Antiparasitic Agents and their Biochemical Targets

Author(s): Jacqueline Soto-Sánchez*

Volume 22, Issue 20, 2022

Published on: 02 June, 2022

Page: [2661 - 2677] Pages: 17

DOI: 10.2174/1389557522666220404090429

Price: $65

Abstract

Background: Leishmaniasis and trypanosomiasis are diseases that affect public health worldwide due to their high incidence, morbidity, and mortality. Available treatments are costly, prolonged, and toxic, not to mention the problem of parasite resistance. The development of alternative treatments is justified and polyphenols show promising activity.

Objective: The main aim of this mini-review was to analyze the most promising phenolic compounds with reported antileishmanial and antitrypanosomal activity as well as their mechanisms of action.

Results: We found that the mode of action of these natural compounds, mainly lignans, neolignans, and flavonoids depends on the organism they act on and includes macrophage activation, induction of morphological changes such as chromatin condensation, DNA fragmentation, accumulation of acidocalcisomes, and glycosomes, Golgi damage and mitochondrial dysfunction as well as negative regulation of mitochondrial enzymes and other essential enzymes for parasite survival such as arginase. This gives a wide scope for future research toward the rational development of anti-kinetoplastid drugs.

Conclusion: Although the specific molecular targets, bioavailability, route of administration, and dosages of some of these natural compounds need to be determined, polyphenols and their combinations represent a very promising and safe strategy to be considered for use against Leishmania spp and Trypanosoma spp. In addition, these compounds may provide a scaffold for developing new, more potent, and more selective antiprotozoal agents.

Keywords: Polyphenols, leishmaniasis, trypanosomiasis, molecular targets, biological activity, flavonoids.

« Previous
Graphical Abstract

[1]
Leishmaniasis. Available from: www.who.int/leishmaniasis/en/ (Accessed Nov 17, 2021).
[2]
Turcano, L.; Torrente, E.; Missineo, A.; Andreini, M.; Gramiccia, M.; Di Muccio, T.; Genovese, I.; Fiorillo, A.; Harper, S.; Bresciani, A.; Colotti, G.; Ilari, A. Identification and binding mode of a novel Leishmania trypanothione reductase inhibitor from high throughput scree-ning. PLoS Negl. Trop. Dis., 2018, 12(11), e0006969.
[http://dx.doi.org/10.1371/journal.pntd.0006969] [PMID: 30475811]
[3]
Matadamas-Martínez, F.; Hernández-Campos, A.; Téllez-Valencia, A.; Vázquez-Raygoza, A.; Comparán-Alarcón, S.; Yépez-Mulia, L.; Castillo, R. Leishmania mexicana Trypanothione reductase inhibitors: Computational and biological studies. Molecules, 2019, 24(18), 3216.
[http://dx.doi.org/10.3390/molecules24183216] [PMID: 31487860]
[4]
Trypanosomiasis, human African (sleeping sickness). Available from: www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness) (Accessed Nov 22, 2021).
[5]
Fazel Nabavi, S.; Sureda, A.; Daglia, M.; Izadi, M.; Rastrelli, L.; Mohammad Nabavi, S. Flavonoids and chagas’; disease: The story so far! Curr. Top. Med. Chem., 2016, 17(4), 460-466.
[http://dx.doi.org/10.2174/1568026616666160824110141] [PMID: 26268338]
[6]
What is Chagas disease? Available from: https://dndi.org/diseases/chagas/facts/ (Accessed Nov 22, 2021).
[7]
Barrett, M.P.; Croft, S.L. Management of trypanosomiasis and leishmaniasis. Br. Med. Bull., 2012, 104(1), 175-196.
[http://dx.doi.org/10.1093/bmb/lds031] [PMID: 23137768]
[8]
Askarizadeh, A.; Badiee, A.; Khamesipour, A. Development of nano-carriers for Leishmania vaccine delivery. Expert Opin. Drug Deliv., 2020, 17(2), 167-187.
[http://dx.doi.org/10.1080/17425247.2020.1713746] [PMID: 31914821]
[9]
Soto-Sánchez, J.; Ospina-Villa, J.D. Current status of quinoxaline and quinoxaline 1,4-di-N-oxides derivatives as potential antiparasitic agents. Chem. Biol. Drug Des., 2021, 98(4), 683-699.
[http://dx.doi.org/10.1111/cbdd.13921] [PMID: 34289242]
[10]
Ramirez-Moreno, E.; Soto-Sanchez, J.; Rivera, G.; Marchat, L.A. Mexican medicinal plants as an alternative for the development of new compounds against protozoan parasites. In: Natural Remedies in the Fight Against Para-sites; Khater, H.F.; Govindarajan, M.; Benelli, G., Eds.; InTech: London, 2017.
[http://dx.doi.org/10.5772/67259]
[11]
Ohashi, M.; Amoa-Bosompem, M.; Kwofie, K.D.; Agyapong, J.; Adegle, R.; Sakyiamah, M.M.; Ayertey, F.; Owusu, K.B-A.; Tuffour, I.; Atchoglo, P.; Tung, N.H.; Uto, T.; Aboagye, F.; Appiah, A.A.; Appiah-Opong, R.; Nyarko, A.K.; Anyan, W.K.; Ayi, I.; Boakye, D.A.; Koram, K.A.; Edoh, D.; Yamaoka, S.; Shoyama, Y.; Ohta, N. In vitro antiprotozoan activity and mechanisms of action of selected G Ha-naian medicinal plants against trypanosoma, leishmania, and plasmodium parasites: anti-protozoan activity of selected ghanaian medicinal plants and mechanisms of action. Phytother. Res., 2018, 32(8), 1617-1630.
[http://dx.doi.org/10.1002/ptr.6093] [PMID: 29733118]
[12]
Passero, L.F.D.; Laurenti, M.D.; Santos-Gomes, G.; Soares Campos, B.L.; Sartorelli, P.; Lago, J.H.G. Plants used in traditional medicine: Extracts and secondary metabolites exhibiting antileishmanial activity. Curr. Clin. Pharmacol., 2014, 9(3), 187-204.
[http://dx.doi.org/10.2174/1574884709999140606161413] [PMID: 23173968]
[13]
Weniger, B.; Robledo, S.; Arango, G.J.; Deharo, E.; Aragón, R.; Muñoz, V.; Callapa, J.; Lobstein, A.; Anton, R. Antiprotozoal activities of Colombian plants. J. Ethnopharmacol., 2001, 78(2-3), 193-200.
[http://dx.doi.org/10.1016/S0378-8741(01)00346-4] [PMID: 11694364]
[14]
Zhang, T.; Zhong, S.; Li, T.; Zhang, J. Saponins as modulators of nuclear receptors. Crit. Rev. Food Sci. Nutr., 2020, 60(1), 94-107.
[http://dx.doi.org/10.1080/10408398.2018.1514580] [PMID: 30582348]
[15]
Liang, Y.; Zhang, T.; Zhao, J.; Li, C.; Zou, H.; Li, F.; Zhang, J.; Ren, L. Glucocorticoid receptor-mediated alleviation of inflammation by berberine: In vitro, in silico and in vivo investigations. Food Funct., 2021, 12(23), 11974-11986.
[http://dx.doi.org/10.1039/D1FO01612A] [PMID: 34747965]
[16]
Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528.
[http://dx.doi.org/10.1039/C8FO01997E] [PMID: 30746536]
[17]
Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy effects of plant polyphenols: Mole-cular mechanisms. Int. J. Mol. Sci., 2020, 21(4), 1250.
[http://dx.doi.org/10.3390/ijms21041250] [PMID: 32070025]
[18]
Vestergaard, M.; Ingmer, H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents, 2019, 53(6), 716-723.
[http://dx.doi.org/10.1016/j.ijantimicag.2019.02.015] [PMID: 30825504]
[19]
Russo, M.; Moccia, S.; Spagnuolo, C.; Tedesco, I.; Russo, G.L. Roles of flavonoids against coronavirus infection. Chem. Biol. Interact., 2020, 328, 109211.
[http://dx.doi.org/10.1016/j.cbi.2020.109211] [PMID: 32735799]
[20]
Tajuddeen, N.; Isah, M.B.; Suleiman, M.A.; van Heerden, F.R.; Ibrahim, M.A. The chemotherapeutic potential of chalcones against leish-maniases: A review. Int. J. Antimicrob. Agents, 2018, 51(3), 311-318.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.06.010] [PMID: 28668673]
[21]
Ioset, J. R.; Brun, R.; Wenzler, T.; Kaiser, M.; Yardley, V. Drug screening for kinetoplastids diseases. A Training Manual for Screening in Neglected Diseases. 2009.
[22]
de Castro Oliveira, L.G.; Brito, L.M.; de Moraes Alves, M.M.; Amorim, L.V.; Sobrinho-Júnior, E.P.C.; de Carvalho, C.E.S.; da Franca Rodrigues, K.A.; Arcanjo, D.D.R. das Graças Lopes Citó, A.M.; de Amorim Carvalho, F.A. In vitro effects of the neolignan 2,3-dihydrobenzofuran against Leishmania amazonensis. Basic Clin. Pharmacol. Toxicol., 2017, 120(1), 52-58.
[http://dx.doi.org/10.1111/bcpt.12639] [PMID: 27398818]
[23]
Saleeb, M.; Mojica, S.; Eriksson, A.U.; Andersson, C.D.; Gylfe, Å.; Elofsson, M. Natural product inspired library synthesis - Identifica-tion of 2,3-diarylbenzofuran and 2,3-dihydrobenzofuran based inhibitors of Chlamydia trachomatis. Eur. J. Med. Chem., 2018, 143, 1077-1089.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.099] [PMID: 29232584]
[24]
Sahid, E.D.N.; Claudino, J.C.; Oda, F.B.; Carvalho, F.A.; Santos, A.G.D.; Graminha, M.A.S.; Clementino, L.D.C. Baccharis trimera (Less.) DC leaf derivatives and eupatorin activities against Leishmania amazonensis. Nat. Prod. Res., 2021, 1-5.
[http://dx.doi.org/10.1080/14786419.2021.1887175] [PMID: 33586545]
[25]
Beer, M.F.; Frank, F.M.; Germán Elso, O.; Ernesto Bivona, A.; Cerny, N.; Giberti, G.; Luis Malchiodi, E.; Susana Martino, V.; Alonso, M.R.; Patricia Sülsen, V.; Cazorla, S.I. Trypanocidal and leishmanicidal activities of flavonoids isolated from Stevia satureiifolia var. satu-reiifolia. Pharm. Biol., 2016, 54(10), 2188-2195.
[http://dx.doi.org/10.3109/13880209.2016.1150304] [PMID: 26983579]
[26]
Zeouk, I.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Bethencourt-Estrella, C.J.; Bazzocchi, I.L.; Bekhti, K.; Lorenzo-Morales, J.; Jiménez, I.A.; Piñero, J.E. Sesquiterpenoids and flavonoids from Inula viscosa induce programmed cell death in kinetoplastids. Biomed. Pharmacother., 2020, 130, 110518.
[http://dx.doi.org/10.1016/j.biopha.2020.110518] [PMID: 32674017]
[27]
Abugri, D.A.; Witola, W.H.; Russell, A.E.; Troy, R.M. In vitro activity of the interaction between taxifolin (dihydroquercetin) and pyrimet-hamine against Toxoplasma gondii. Chem. Biol. Drug Des., 2018, 91(1), 194-201.
[http://dx.doi.org/10.1111/cbdd.13070] [PMID: 28696589]
[28]
Quintanilla-Licea, R.; Vargas-Villarreal, J.; Verde-Star, M.J.; Rivas-Galindo, V.M.; Torres-Hernández, Á.D. Antiprotozoal activity against Entamoeba histolytica of flavonoids isolated from Lippia graveolens Kunth. Molecules, 2020, 25(11), 2464.
[http://dx.doi.org/10.3390/molecules25112464] [PMID: 32466359]
[29]
Chaipukdee, N.; Kanokmedhakul, S.; Lekphrom, R.; Kanokmedhakul, K. Two new flavanonols from the bark of Akschindlium godefroya-num. Nat. Prod. Res., 2014, 28(3), 191-195.
[http://dx.doi.org/10.1080/14786419.2013.866113] [PMID: 24354343]
[30]
Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as anticancer agents. Nutrients, 2020, 12(2), 457.
[http://dx.doi.org/10.3390/nu12020457] [PMID: 32059369]
[31]
Catorce, M.N.; Gevorkian, G. Evaluation of anti-inflammatory nutraceuticals in lps-induced mouse neuroinflammation model: An update. Curr. Neuropharmacol., 2020, 18(7), 636-654.
[http://dx.doi.org/10.2174/1570159X18666200114125628] [PMID: 31934839]
[32]
Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A, 2004, 1054(1-2), 95-111.
[http://dx.doi.org/10.1016/S0021-9673(04)01409-8] [PMID: 15553136]
[33]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[34]
Alsayari, A.; Muhsinah, A.B.; Hassan, M.Z.; Ahsan, M.J.; Alshehri, J.A.; Begum, N. Aurone: A biologically attractive scaffold as antican-cer agent. Eur. J. Med. Chem., 2019, 166, 417-431.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.078] [PMID: 30739824]
[35]
Kite, G.C.; Green, P.W.C.; Veitch, N.C.; Groves, M.C.; Gasson, P.E.; Simmonds, M.S.J. Dalnigrin, a neoflavonoid marker for the identifi-cation of Brazilian rosewood (Dalbergia nigra) in CITES enforcement. Phytochemistry, 2010, 71(10), 1122-1131.
[http://dx.doi.org/10.1016/j.phytochem.2010.04.011] [PMID: 20457458]
[36]
Le Pogam, P.; Boustie, J. Xanthones of lichen source: A 2016 update. Molecules, 2016, 21(3), 294.
[http://dx.doi.org/10.3390/molecules21030294] [PMID: 26950106]
[37]
Miftakhova, A.F.; Burasheva, G.S.; Abilov, Z.A.; Ahmad, V.U.; Zahid, M. Coumarins from the aerial part of Halocnemum strobilaceum. Fitoterapia, 2001, 72(3), 319-321.
[http://dx.doi.org/10.1016/S0367-326X(00)00301-4] [PMID: 11295318]
[38]
Pereira, I.A.G.; Mendonça, D.V.C.; Tavares, G.S.V.; Lage, D.P.; Ramos, F.F.; Oliveira-da-Silva, J.A.; Antinarelli, L.M.R.; Machado, A.S.; Carvalho, L.M.; Carvalho, A.M.R.S.; Salustiano, I.V.; Reis, T.A.R.; Bandeira, R.S.; Silva, A.M.; Martins, V.T.; Chávez-Fumagalli, M.A.; Humbert, M.V.; Roatt, B.M.; Duarte, M.C.; Menezes-Souza, D.; Coimbra, E.S.; Leite, J.P.V.; Coelho, E.A.F.; Gonçalves, D.U. Parasitologi-cal and immunological evaluation of a novel chemotherapeutic agent against visceral leishmaniasis. Parasite Immunol., 2020, 42(12), e12784.
[http://dx.doi.org/10.1111/pim.12784] [PMID: 32772379]
[39]
Clavin, M.; Cazorla, S.; Spina, R.; Sosa, M.A.; Malchiodi, E.; Martino, V.; Frank, F.; Muschietti, L. Antiprotozoal activity of flavonoids from Eupatorium arnottianum. J. Parasit. Dis. Diagn. Ther, 2017, 1(2), 1-6.
[40]
Mamoon-Ur-Rashid Ali, S.; Alamzeb, M.; Igoli, J.; Clements, C.; Shah, S.Q.; Ferro, V.A.; Gray, A.I.; Khan, M.R. Phytochemical and antitrypanosomal investigation of the fractions and compounds isolated from Artemisia elegantissima. Pharm. Biol., 2014, 52(8), 983-987.
[http://dx.doi.org/10.3109/13880209.2013.874534] [PMID: 24597622]
[41]
Palacios-Espinosa, J.F.; Núñez-Aragón, P.N.; Gomez-Chang, E.; Linares, E.; Bye, R.; Romero, I. Anti-Helicobacter pylori activity of Arte-misia ludoviciana subsp. Mexicana and two of its bioactive components, estafiatin and eupatilin. Molecules, 2021, 26(12), 3654.
[http://dx.doi.org/10.3390/molecules26123654] [PMID: 34203927]
[42]
Zater, H.; Huet, J.; Fontaine, V.; Benayache, S.; Stévigny, C.; Duez, P.; Benayache, F. Chemical constituents, cytotoxic, antifungal and antimicrobial properties of Centaurea diluta Ait. subsp. algeriensis (Coss. & Dur.). Maire. Asian Pac. J. Trop. Med., 2016, 9(6), 554-561.
[http://dx.doi.org/10.1016/j.apjtm.2016.04.016] [PMID: 27262066]
[43]
Rocha, V.P.C.; Quintino da Rocha, C.; Ferreira Queiroz, E.; Marcourt, L.; Vilegas, W.; Grimaldi, G.B.; Furrer, P.; Allémann, É.; Wolfender, J-L.; Soares, M.B.P. Antileishmanial activity of dimeric flavonoids isolated from Arrabidaea brachypoda. Molecules, 2018, 24(1), 1.
[http://dx.doi.org/10.3390/molecules24010001] [PMID: 30577423]
[44]
de Sousa Andrade, L.M.; de Oliveira, A.B.M.; Leal, A.L.A.B.; de Alcântara Oliveira, F.A.; Portela, A.L.; de Sousa Lima Neto, J. de Siquei-ra-Júnior, J.P.; Kaatz, G.W.; da Rocha, C.Q.; Barreto, H.M. Antimicrobial activity and inhibition of the NorA efflux pump of Staphylococ-cus aureus by extract and isolated compounds from Arrabidaea brachypoda. Microb. Pathog., 2020, 140, 103935.
[http://dx.doi.org/10.1016/j.micpath.2019.103935] [PMID: 31857236]
[45]
Mahmoud, A.B.; Danton, O.; Kaiser, M.; Han, S.; Moreno, A.; Abd Algaffar, S.; Khalid, S.; Oh, W.K.; Hamburger, M.; Mäser, P. Lignans, amides, and saponins from Haplophyllum tuberculatum and their antiprotozoal activity. Molecules, 2020, 25(12), 2825.
[http://dx.doi.org/10.3390/molecules25122825] [PMID: 32575379]
[46]
Cho, J.Y.; Choi, G.J.; Son, S.W.; Jang, K.S.; Lim, H.K.; Lee, S.O.; Sung, N.D.; Cho, K.Y.; Kim, J-C. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Manag. Sci., 2007, 63(9), 935-940.
[http://dx.doi.org/10.1002/ps.1420] [PMID: 17659535]
[47]
Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal com-pounds in Croton gratissimus and Cuscuta hyalina. Front. Pharmacol., 2020, 11, 1246.
[http://dx.doi.org/10.3389/fphar.2020.01246] [PMID: 32922290]
[48]
Chepkirui, C.; Ochieng, P.J.; Sarkar, B.; Hussain, A.; Pal, C.; Yang, L.J.; Coghi, P.; Akala, H.M.; Derese, S.; Ndakala, A.; Heydenreich, M.; Wong, V.K.W.; Erdélyi, M.; Yenesew, A. Antiplasmodial and antileishmanial flavonoids from Mundulea sericea. Fitoterapia, 2021, 149, 104796.
[http://dx.doi.org/10.1016/j.fitote.2020.104796] [PMID: 33271256]
[49]
Sutthivaiyakit, S.; Thongnak, O.; Lhinhatrakool, T.; Yodchun, O.; Srimark, R.; Dowtaisong, P.; Chuankamnerdkarn, M. Cytotoxic and antimycobacterial prenylated flavonoids from the roots of Eriosema chinense. J. Nat. Prod., 2009, 72(6), 1092-1096.
[http://dx.doi.org/10.1021/np900021h] [PMID: 19555123]
[50]
dos Santos Maia, M.; Raimundo e Silva, J.P.; de Lima Nunes, T.A.; Saraiva de Sousa, J.M.; Soares Rodrigues, G.C.; Messias Monteiro, A.F.; Fechine Tavares, J.; da Franca Rodrigues, K.A.; Mendonça-Junior, B.; Scotti, L.; Scotti, M.T. Virtual screening and the in vitro as-sessment of the antileishmanial activity of lignans. Molecules, 2020, 25(10), 2281.
[http://dx.doi.org/10.3390/molecules25102281]
[51]
Navrátilová, A.; Nešuta, O.; Vančatová, I.; Čížek, A.; Varela-M, R.E.; López-Abán, J.; Villa-Pulgarin, J.A.; Mollinedo, F.; Muro, A.; Žem-ličková, H.; Kadlecová, D. Šmejkal, K. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and sy-nergistic activity with antibiotics. Pharm. Biol., 2016, 54(8), 1398-1407.
[http://dx.doi.org/10.3109/13880209.2015.1103755] [PMID: 26789098]
[52]
da Rocha, C.Q.; Queiroz, E.F.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Marcourt, L.; Vilegas, W.; Wolfender, J-L. Dimeric flavo-noids from Arrabidaea brachypoda and assessment of their anti-Trypanosoma cruzi activity. J. Nat. Prod., 2014, 77(6), 1345-1350.
[http://dx.doi.org/10.1021/np401060j] [PMID: 24871307]
[53]
van Baren, C.; Anao, I.; Leo Di Lira, P.; Debenedetti, S.; Houghton, P.; Croft, S.; Martino, V. Evaluation of their antiprotozoal activity. Triterpenic acids and flavonoids from Satureja parvifolia. Evaluation of their antiprotozoal activity. Z. Naturforsch. C J. Biosci., 2006, 61(3-4), 189-192.
[http://dx.doi.org/10.1515/znc-2006-3-406] [PMID: 16729575]
[54]
Wu, L-L.; Yang, X-B.; Huang, Z-M.; Liu, H-Z.; Wu, G-X. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol. Sin., 2007, 28(3), 404-409.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00510.x] [PMID: 17303004]
[55]
Adinehbeigi, K.; Razi Jalali, M.H.; Shahriari, A.; Bahrami, S. In vitro antileishmanial activity of fisetin flavonoid via inhibition of glutat-hione biosynthesis and arginase activity in Leishmania infantum. Pathog. Glob. Health, 2017, 111(4), 176-185.
[http://dx.doi.org/10.1080/20477724.2017.1312777] [PMID: 28385129]
[56]
Tasdemir, D.; Lack, G.; Brun, R.; Rüedi, P.; Scapozza, L.; Perozzo, R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: Eva-luation of FabG, FabZ, and FabI as drug targets for flavonoids. J. Med. Chem., 2006, 49(11), 3345-3353.
[http://dx.doi.org/10.1021/jm0600545] [PMID: 16722653]
[57]
da Costa, M.P.; Bozinis, M.C.V.; Andrade, W.M.; Costa, C.R.; da Silva, A.L.; Alves de Oliveira, C.M.; Kato, L.; Fernandes, O.F.; Souza, L.K.; Silva, M.R. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin. BMC Complement. Altern. Med., 2014, 14(1), 245.
[http://dx.doi.org/10.1186/1472-6882-14-245] [PMID: 25027026]
[58]
Raorane, C.J.; Lee, J-H.; Kim, Y-G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and antivirulence efficacies of flavo-noids and curcumin against Acinetobacter baumannii. Front. Microbiol., 2019, 10, 990.
[http://dx.doi.org/10.3389/fmicb.2019.00990] [PMID: 31134028]
[59]
Rizk, Y.S.; Santos-Pereira, S.; Gervazoni, L.; Hardoim, D.J.; Cardoso, F.O.; de Souza, C.D.S.F.; Pelajo-Machado, M.; Carollo, C.A.; de Arruda, C.C.P.; Almeida-Amaral, E.E.; Zaverucha-do-Valle, T.; Calabrese, K.D.S. Amentoflavone as an Ally in the treatment of cutaneous leishmaniasis: Analysis of its antioxidant/prooxidant mechanisms. Front. Cell. Infect. Microbiol., 2021, 11, 615814.
[http://dx.doi.org/10.3389/fcimb.2021.615814] [PMID: 33718267]
[60]
Conrado, G.G.; Grazzia, N.; de Oliveira, A.D.S.S.; Franco, C.H.; Moraes, C.B.; Gadelha, F.R.; Miguel, D.C.; Garcia, V.L. Prospecting and identifying Phyllanthus amarus lignans with antileishmanial and antitrypanosomal activity. Planta Med., 2020, 86(11), 782-789.
[http://dx.doi.org/10.1055/a-1179-1003] [PMID: 32512613]
[61]
Morais, L.S.; Dusi, R.G.; Demarque, D.P.; Silva, R.L.; Albernaz, L.C.; Báo, S.N.; Merten, C.; Antinarelli, L.M.R.; Coimbra, E.S.; Espindo-la, L.S. Antileishmanial compounds from Connarus suberosus: Metabolomics, isolation and mechanism of action. PLoS One, 2020, 15(11), e0241855.
[http://dx.doi.org/10.1371/journal.pone.0241855] [PMID: 33156835]
[62]
Gervazoni, L.F.O.; Gonçalves-Ozório, G.; Almeida-Amaral, E.E. 2′-Hydroxyflavanone activity in vitro and in vivo against wild-type and antimony-resistant Leishmania amazonensis. PLoS Negl. Trop. Dis., 2018, 12(12), e0006930.
[http://dx.doi.org/10.1371/journal.pntd.0006930] [PMID: 30521527]
[63]
Monzote, L.; Lackova, A.; Staniek, K.; Steinbauer, S.; Pichler, G.; Jäger, W.; Gille, L. The antileishmanial activity of xanthohumol is me-diated by mitochondrial inhibition. Parasitology, 2017, 144(6), 747-759.
[http://dx.doi.org/10.1017/S0031182016002389] [PMID: 27938439]
[64]
Mofidi Tabatabaei, S.; Moridi Farimani, M.; Nejad-Ebrahimi, S.; Salehi, P. Phytochemical study of Tanacetum sonbolii aerial parts and the antiprotozoal activity of its components. Iran. J. Pharm. Res., 2020, 19(1), 77-83.
[PMID: 32922471]
[65]
Faria, R.X.; Souza, A.L.A.; Lima, B.; Tietbohl, L.A.C.; Fernandes, C.P.; Amaral, R.R.; Ruppelt, B.M.; Santos, M.G.; Rocha, L. Plants of Brazilian restingas with tripanocide activity against Trypanosoma cruzi strains. J. Bioenerg. Biomembr., 2017, 49(6), 473-483.
[http://dx.doi.org/10.1007/s10863-017-9733-9] [PMID: 29147831]
[66]
Batiha, G.E-S.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; El-Hack, M.E.A.; Taha, A.E.; Algammal, A.M.; Elewa, Y.H.A. The pharmacolo-gical activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: Quercetin. Foods, 2020, 9(3), 374.
[http://dx.doi.org/10.3390/foods9030374] [PMID: 32210182]
[67]
Cimanga, R.K.; Kambu, K.; Tona, L.; Hermans, N.; Apers, S.; Totté, J.; Pieters, L.; Vlietinck, A.J. Cytotoxicity and in vitro susceptibility of Entamoeba histolytica to Morinda morindoides leaf extracts and its isolated constituents. J. Ethnopharmacol., 2006, 107(1), 83-90.
[http://dx.doi.org/10.1016/j.jep.2006.02.010] [PMID: 16603327]
[68]
Kerboeuf, D.; Riou, M.; Guégnard, F. Flavonoids and related compounds in parasitic disease control. Mini Rev. Med. Chem., 2008, 8(2), 116-128.
[http://dx.doi.org/10.2174/138955708783498168] [PMID: 18289094]
[69]
Florencio, M.; Tomás Nery, E.; Rosa, D.; Auxiliadora Nascimento Ribeiro, T.; de Brito Braz Moraes, J.; Araujo Zuma, A. da Silva Trin-dade, J.D.; Dutra Barbosa da Rocha, R.F.; Decote-Ricardo, D.; Pinto-da-Silva, L.H.; M Motta, M.C.; de Carvalho, M.G.; Fampa, P. The ef-fect of the biflavonoid 2″,3″-dihydroochnaflavone on Trypanosoma cruzi Y strain. Parasitol. Int., 2020, 79, 102180.
[http://dx.doi.org/10.1016/j.parint.2020.102180] [PMID: 32860937]
[70]
Rodrigues, D. F.; Maniscalco, D. A.; Silva, F. A. J.; Chiari, B. G.; Castelli, M. V.; Isaac, V. L. B.; Cicarelli, R. M. B.; López, S. N. Trypanocidal activity of flavokawin B, a component of Polygonum ferrugineum wedd. Planta Med, 2017, 83(3–04), 239-244.
[71]
Mustahil, N.A.; Sukari, M.A.; Abdul, A.B.; Ali, N.A.; Lian, G.E-C. Evaluation of biological activities of Alpinia mutica Roxb. and its che-mical constituents. Pak. J. Pharm. Sci., 2013, 26(2), 391-395.
[PMID: 23455212]
[72]
Lemos da Silva, L.A.; Höehr de Moraes, M.; Scotti, M.T.; Scotti, L.; de Jesus Souza, R.; Nantchouang Ouete, J.L.; Biavatti, M.W.; Steindel, M.; Sandjo, L.P. Antiprotozoal investigation of 20 plant metabolites on Trypanosoma cruzi and Leishmania amazonensis amastigotes. Ata-lantoflavone alters the mitochondrial membrane potential. Parasitology, 2019, 146(7), 849-856.
[http://dx.doi.org/10.1017/S0031182019000052] [PMID: 30755289]
[73]
Araujo, S.C.; Sousa, F.S.; Costa-Silva, T.A.; Tempone, A.G.; Lago, J.H.G.; Honorio, K.M. Discovery of new hits as antitrypanosomal agents by in silico and in vitro assays using neolignan-inspired natural products from Nectandra leucantha. Molecules, 2021, 26(14), 4116.
[http://dx.doi.org/10.3390/molecules26144116] [PMID: 34299391]
[74]
Djeussi, D.E.; Sandjo, L.P.; Noumedem, J.A.K.; Omosa, L.K.T.; Ngadjui, B.; Kuete, V. Antibacterial activities of the methanol extracts and compounds from Erythrina sigmoidea against Gram-negative multi-drug resistant phenotypes. BMC Complement. Altern. Med., 2015, 15(1), 453.
[http://dx.doi.org/10.1186/s12906-015-0978-8] [PMID: 26715029]
[75]
Brito, J.R.; da Costa-Silva, T.A.; Tempone, A.G.; Ferreira, E.A.; Lago, J.H.G. Dibenzylbutane neolignans from Saururus cernuus L. (Sau-ruraceae) displayed anti-Trypanosoma cruzi activity via alterations in the mitochondrial membrane potential. Fitoterapia, 2019, 137, 104251.
[http://dx.doi.org/10.1016/j.fitote.2019.104251] [PMID: 31271783]
[76]
Conserva, G.A.; Costa-Silva, T.A.; Quirós-Guerrero, L.M.; Marcourt, L.; Wolfender, J-L.; Queiroz, E.F.; Tempone, A.G.; Lago, J.H.G. Kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside from Nectandra oppositifolia releases Ca2+ from intracellular pools of Trypanosoma cruzi affecting the bioenergetics system. Chem. Biol. Interact., 2021, 349, 109661.
[http://dx.doi.org/10.1016/j.cbi.2021.109661] [PMID: 34537181]
[77]
Xiao, H.; Rao Ravu, R.; Tekwani, B.L.; Li, W.; Liu, W-B.; Jacob, M.R.; Khan, S.I.; Cai, X.; Peng, C-Y.; Khan, I.A.; Li, X-C.; Wang, W. Biological evaluation of phytoconstituents from Polygonum hydropiper. Nat. Prod. Res., 2017, 31(17), 2053-2057.
[http://dx.doi.org/10.1080/14786419.2016.1269094] [PMID: 28000515]
[78]
Castillo, U.G.; Komatsu, A.; Martínez, M.L.; Menjívar, J.; Núñez, M.J.; Uekusa, Y.; Narukawa, Y.; Kiuchi, F.; Nakajima-Shimada, J. Anti-trypanosomal screening of salvadoran flora. J. Nat. Med., 2022, 76(1), 259-267.
[PMID: 34529189]
[79]
Llurba Montesino, N.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Salvia officinalis L.: Antitrypanosomal activity and active constituents against Trypanosoma brucei rhodesiense. Molecules, 2021, 26(11), 3226.
[http://dx.doi.org/10.3390/molecules26113226] [PMID: 34072147]
[80]
Larit, F.; Elokely, K.M.; Nael, M.A.; Benyahia, S.; León, F.; Cutler, S.J.; Ghoneim, M.M. Proposed mechanism for the antitrypanosomal activity of quercetin and myricetin isolated from Hypericum afrum lam.: Phytochemistry, in vitro testing and modeling studies. Molecules, 2021, 26(4), 1009.
[http://dx.doi.org/10.3390/molecules26041009] [PMID: 33672916]
[81]
Kimani, N.M.; Matasyoh, J.C.; Kaiser, M.; Brun, R.; Schmidt, T.J. Antiprotozoal sesquiterpene lactones and other constituents from Tar-chonanthus camphoratus and Schkuhria pinnata. J. Nat. Prod., 2018, 81(1), 124-130.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00747] [PMID: 29244495]
[82]
Amin, A.; Tuenter, E.; Exarchou, V.; Upadhyay, A.; Cos, P.; Maes, L.; Apers, S.; Pieters, L. Phytochemical and pharmacological investiga-tions on Nymphoides indica leaf extracts. Phytother. Res., 2016, 30(10), 1624-1633.
[http://dx.doi.org/10.1002/ptr.5663] [PMID: 27282639]
[83]
Huang, P.; Zhou, M.; Cheng, S.; Hu, Y.; Gao, M.; Ma, Y.; Limpanont, Y.; Zhou, H.; Dekumyoy, P.; Cheng, Y.; Lv, Z. Myricetin possesses anthelmintic activity and attenuates hepatic fibrosis via modulating TGFβ1 and Akt signaling and shifting Th1/Th2 balance in Schistosoma japonicum-infected mice. Front. Immunol., 2020, 11, 593.
[http://dx.doi.org/10.3389/fimmu.2020.00593] [PMID: 32373112]
[84]
Passero, L.F.D.; Bonfim-Melo, A.; Corbett, C.E.P.; Laurenti, M.D.; Toyama, M.H.; de Toyama, D.O.; Romoff, P.; Fávero, O.A.; dos Grec-co, S.S.; Zalewsky, C.A.; Lago, J.H.G. Anti-leishmanial effects of purified compounds from aerial parts of Baccharis uncinella C. DC. (Asteraceae). Parasitol. Res., 2011, 108(3), 529-536.
[http://dx.doi.org/10.1007/s00436-010-2091-8] [PMID: 20886232]
[85]
Basmaciyan, L.; Casanova, M. Cell death in Leishmania. Parasite, 2019, 26, 71.
[http://dx.doi.org/10.1051/parasite/2019071] [PMID: 31825305]
[86]
Green, D.R.; Reed, J.C. Mitochondria and apoptosis. Science, 1998, 281(5381), 1309-1312.
[http://dx.doi.org/10.1126/science.281.5381.1309] [PMID: 9721092]
[87]
Beckman, K.B.; Ames, B.N. The free radical theory of aging matures. Physiol. Rev., 1998, 78(2), 547-581.
[http://dx.doi.org/10.1152/physrev.1998.78.2.547] [PMID: 9562038]
[88]
Cataneo, A.H.D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Panis, C.; Kian, D.; Yamauchi, L.M.; Colado Simão, A.N.; Casagrande, R.; Pinge-Filho, P.; Costa, I.N.; Verri, W.A., Jr; Conchon-Costa, I.; Pavanelli, W.R. Quercetin promotes antipromastigote effect by increasing the ROS production and anti-amastigote by upregulating Nrf2/HO-1 expression, affecting iron availability. Biomed. Pharmacother., 2019, 113, 108745.
[http://dx.doi.org/10.1016/j.biopha.2019.108745] [PMID: 30836276]
[89]
Kumar, A.; Saha, B.; Singh, S. Dataset generated for dissection of mechanisms of trypanothione reductase and tryparedoxin peroxidase through dynamic network analysis and simulations in leishmaniasis. Data Brief, 2017, 15, 757-769.
[http://dx.doi.org/10.1016/j.dib.2017.10.031] [PMID: 29159213]
[90]
Inacio, J.D.F.; Fonseca, M.S.; Limaverde-Sousa, G.; Tomas, A.M.; Castro, H.; Almeida-Amaral, E.E. Epigallocathechin-O-3-Gallate inhi-bits trypanothione reductase of Leishmania infantum, causing alterations in redox balance and leading to parasite death. Front. Cell. Infect. Microbiol., 2021, 11, 640561.
[http://dx.doi.org/10.3389/fcimb.2021.640561] [PMID: 33842389]
[91]
Colotti, G.; Ilari, A. Polyamine metabolism in Leishmania: From arginine to trypanothione. Amino Acids, 2011, 40(2), 269-285.
[http://dx.doi.org/10.1007/s00726-010-0630-3] [PMID: 20512387]
[92]
Acuña, S.M.; Aoki, J.I.; Laranjeira-Silva, M.F.; Zampieri, R.A.; Fernandes, J.C.R.; Muxel, S.M.; Floeter-Winter, L.M. Arginase expression modulates nitric oxide production in Leishmania (Leishmania) amazonensis. PLoS One, 2017, 12(11), e0187186.
[http://dx.doi.org/10.1371/journal.pone.0187186] [PMID: 29135983]
[93]
da Silva, E.R.; Brogi, S.; Lucon-Júnior, J.F.; Campiani, G.; Gemma, S.; Maquiaveli, C.D.C. Dietary polyphenols rutin, taxifolin and querce-tin related compounds target Leishmania amazonensis arginase. Food Funct., 2019, 10(6), 3172-3180.
[http://dx.doi.org/10.1039/C9FO00265K] [PMID: 31134235]
[94]
da Silva, E.R.; Maquiaveli, C.C.; Magalhães, P.P. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp. Parasitol., 2012, 130(3), 183-188.
[http://dx.doi.org/10.1016/j.exppara.2012.01.015] [PMID: 22327179]
[95]
Kubinyi, H. Lipophilicity and drug activity. Prog. Drug Res., 1979, 23, 97-198.
[PMID: 397526]
[96]
Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Oral efficacy of apigenin against cutaneous leishmaniasis: Involvement of reactive oxygen species and autophagy as a mechanism of action. PLoS Negl. Trop. Dis., 2016, 10(2), e0004442.
[http://dx.doi.org/10.1371/journal.pntd.0004442] [PMID: 26862901]
[97]
Saha, S.; Basu, M.; Guin, S.; Gupta, P.; Mitterstiller, A-M.; Weiss, G.; Jana, K.; Ukil, A. Leishmania donovani exploits macrophage heme oxygenase-1 to neutralize oxidative burst and TLR signaling-dependent host defense. J. Immunol., 2019, 202(3), 827-840.
[http://dx.doi.org/10.4049/jimmunol.1800958] [PMID: 30593539]
[98]
García-Bustos, M.F.; Moya Álvarez, A.; Pérez Brandan, C.; Parodi, C.; Sosa, A.M.; Buttazzoni Zuñiga, V.C.; Pastrana, O.M.; Manghera, P.; Peñalva, P.A.; Marco, J.D.; Barroso, P.A. Development of a fluorescent assay to search new drugs using stable tdTomato-Leishmania, and the selection of galangin as a candidate with anti-leishmanial activity. Front. Cell. Infect. Microbiol., 2021, 11, 666746.
[http://dx.doi.org/10.3389/fcimb.2021.666746] [PMID: 34150675]
[99]
Silva-Silva, J.V.; Moragas-Tellis, C.J.; Chagas, M. do S., D. S.; de Souza, P. V. R.; de Souza, C. da S. F.; Hardoim, D. de J.; Taniwaki, N. N.; Moreira, D. de L.; Dutra Behrens, M.; Calabrese, K. da S.; Almeida-Souza, F. Antileishmanial activity of flavones-rich fraction from arrabidaea chica verlot (Bignoniaceae). Front. Pharmacol., 2021, 12, 703985.
[http://dx.doi.org/10.3389/fphar.2021.703985] [PMID: 34354593]
[100]
Frölich, S.; Schubert, C.; Bienzle, U.; Jenett-Siems, K. In vitro antiplasmodial activity of prenylated chalcone derivatives of hops (Humulus lupulus) and their interaction with haemin. J. Antimicrob. Chemother., 2005, 55(6), 883-887.
[http://dx.doi.org/10.1093/jac/dki099] [PMID: 15824094]
[101]
Borges, V.M.; Vannier-Santos, M.A.; de Souza, W. Subverted transferrin trafficking in Leishmania-infected macrophages. Parasitol. Res., 1998, 84(10), 811-822.
[http://dx.doi.org/10.1007/s004360050493] [PMID: 9797066]
[102]
Silverman, J.M.; Reiner, N.E. Exosomes and other microvesicles in infection biology: Organelles with unanticipated phenotypes. Cell. Microbiol., 2011, 13(1), 1-9.
[http://dx.doi.org/10.1111/j.1462-5822.2010.01537.x] [PMID: 21040357]
[103]
Kwiecień, S.; Brzozowski, T.; Konturek, S.J. Effects of reactive oxygen species action on gastric mucosa in various models of mucosal injury. J. Physiol. Pharmacol., 2002, 53(1), 39-50.
[PMID: 11939718]
[104]
Burger, A.; Macucule-Tinga, P.; Bentley, S.J.; Ludewig, M.H.; Mhlongo, N.N.; Shonhai, A.; Boshoff, A. Characterization of an atypical Trypanosoma brucei hsp70 demonstrates its cytosolic-nuclear localization and modulation by quercetin and methylene blue. Int. J. Mol. Sci., 2021, 22(13), 6776.
[http://dx.doi.org/10.3390/ijms22136776] [PMID: 34202520]
[105]
Bentley, S.J.; Boshoff, A. Trypanosoma brucei J-Protein 2 functionally co-operates with the cytosolic Hsp70 and Hsp70.4 proteins. Int. J. Mol. Sci., 2019, 20(23), 5843.
[http://dx.doi.org/10.3390/ijms20235843] [PMID: 31766407]
[106]
Burger, A.; Ludewig, M.H.; Boshoff, A. Investigating the chaperone properties of a novel heat shock protein, Hsp70.c, from Trypanosoma brucei. J. Parasitol. Res., 2014, 2014, 172582.
[http://dx.doi.org/10.1155/2014/172582] [PMID: 24707395]
[107]
Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Marchat, L.A.; Sanchez-Monroy, V.; Ramírez-Moreno, E. Kaempferol inhibits Entamoeba his-tolytica growth by altering cytoskeletal functions. Mol. Biochem. Parasitol., 2015, 204(1), 16-25.
[http://dx.doi.org/10.1016/j.molbiopara.2015.11.004] [PMID: 26620675]
[108]
Bolaños, V.; Díaz-Martínez, A.; Soto, J.; Rodríguez, M.A.; López-Camarillo, C.; Marchat, L.A.; Ramírez-Moreno, E. The flavonoid (-)-epicatechin affects cytoskeleton proteins and functions in Entamoeba histolytica. J. Proteomics, 2014, 111, 74-85.
[http://dx.doi.org/10.1016/j.jprot.2014.05.017] [PMID: 24887480]
[109]
Chaniad, P.; Mungthin, M.; Payaka, A.; Viriyavejakul, P.; Punsawad, C. Antimalarial properties and molecular docking analysis of com-pounds from Dioscorea bulbifera L. as new antimalarial agent candidates. BMC Complement. Med. Ther., 2021, 21(1), 144.
[http://dx.doi.org/10.1186/s12906-021-03317-y] [PMID: 34006257]
[110]
Chen, L.; Liu, J.; Mei, G.; Chen, H.; Peng, S.; Zhao, Y.; Yao, P.; Tang, Y. Quercetin and non-alcoholic fatty liver disease: A review based on experimental data and bioinformatic analysis. Food Chem. Toxicol., 2021, 154(112314), 112314.
[http://dx.doi.org/10.1016/j.fct.2021.112314] [PMID: 34087406]
[111]
Mehwish, S.; Varikuti, S.; Ali Khan, M.; Khan, T.; Khan, I.U.; Satoskar, A.; Elsayed Elserehy, H.A.; Ullah, N. Bioflavonoid-induced apoptosis and DNA damage in amastigotes and promastigotes of Leishmania donovani: Deciphering the mode of action. Molecules, 2021, 26(19), 5843.
[http://dx.doi.org/10.3390/molecules26195843] [PMID: 34641387]
[112]
Zou, H.; Ye, H.; Kamaraj, R.; Zhang, T.; Zhang, J.; Pavek, P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine, 2021, 92(153736), 153736.
[http://dx.doi.org/10.1016/j.phymed.2021.153736] [PMID: 34560520]
[113]
Benaim, G.; Paniz-Mondolfi, A.E.; Sordillo, E.M.; Martinez-Sotillo, N. Disruption of intracellular calcium homeostasis as a therapeutic target against Trypanosoma cruzi. Front. Cell. Infect. Microbiol., 2020, 10, 46.
[http://dx.doi.org/10.3389/fcimb.2020.00046] [PMID: 32133302]
[114]
Docampo, R.; Huang, G. Calcium signaling in trypanosomatid parasites. Cell Calcium, 2015, 57(3), 194-202.
[http://dx.doi.org/10.1016/j.ceca.2014.10.015] [PMID: 25468729]
[115]
Docampo, R.; Vercesi, A.E. Mitochondrial Ca2+ and reactive oxygen species in trypanosomatids. Antioxid. Redox Signal., 2021, ars.2021.0058.
[http://dx.doi.org/10.1089/ars.2021.0058] [PMID: 34218689]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy