Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

MicroRNAs and Efferocytosis: Implications for Diagnosis and Therapy

Author(s): Ali Mahmoudi, Fatemeh Moadab, Esmat Safdarian, Jamshid Gholizadeh Navashenaq, Mehdi Rezaee and Seyed Mohammad Gheibihayat*

Volume 22, Issue 20, 2022

Published on: 08 June, 2022

Page: [2641 - 2660] Pages: 20

DOI: 10.2174/1389557522666220330150937

Price: $65

Abstract

About 10-100 billion cells are generated in the human body in a day, and accordingly, 10- 100 billion cells predominantly die for maintaining homeostasis. Dead cells generated by apoptosis are also rapidly engulfed by macrophages (Mθs) to be degraded. In case of the inefficient engulfment of apoptotic cells (ACs) via Mθs, they experience secondary necrosis and thus release intracellular materials, which display damage-associated molecular patterns (DAMPs) and result in diseases. Over the last decades, researchers have also reflected on the significant contribution of microRNAs (miRNAs) to autoimmune diseases through the regulation of Mθs functions. Moreover, miRNAs have shown intricate involvement with completely adjusting basic Mθs functions, such as phagocytosis, inflammation, efferocytosis, tumor promotion, and tissue repair. In this review, the mechanism of efferocytosis containing "Find-Me", "Eat-Me", and "Digest-Me" signals is summarized and the biogenesis of miRNAs is briefly described. Finally, the role of miRNAs in efferocytosis is discussed. It is concluded that miRNAs represent promising treatments and diagnostic targets in impaired phagocytic clearance, which leads to different diseases.

Keywords: Efferocytosis, microRNA, apoptotic cell, eat-me, phagocytosis, macrophages.

Graphical Abstract

[1]
Bianconi, E.; Piovesan, A.; Facchin, F.; Beraudi, A.; Casadei, R.; Frabetti, F.; Vitale, L.; Pelleri, M.C.; Tassani, S.; Piva, F.; Perez-Amodio, S.; Strippoli, P.; Canaider, S. An estimation of the number of cells in the human body. Ann. Hum. Biol., 2013, 40(6), 463-471.
[http://dx.doi.org/10.3109/03014460.2013.807878] [PMID: 23829164]
[2]
Arandjelovic, S.; Ravichandran, K.S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol., 2015, 16(9), 907-917.
[http://dx.doi.org/10.1038/ni.3253] [PMID: 26287597]
[3]
Bäck, M.; Yurdagul, A., Jr; Tabas, I.; Öörni, K.; Kovanen, P.T. Inflammation and its resolution in atherosclerosis: Mediators and thera-peutic opportunities. Nat. Rev. Cardiol., 2019, 16(7), 389-406.
[http://dx.doi.org/10.1038/s41569-019-0169-2] [PMID: 30846875]
[4]
Green, D.R.; Oguin, T.H.; Martinez, J. The clearance of dying cells: Table for two. Cell Death Differ., 2016, 23(6), 915-926.
[http://dx.doi.org/10.1038/cdd.2015.172] [PMID: 26990661]
[5]
Shklover, J.; Levy-Adam, F.; Kurant, E. Apoptotic cell clearance in development. Curr. Top. Dev. Biol., 2015, 114, 297-334.
[http://dx.doi.org/10.1016/bs.ctdb.2015.07.024] [PMID: 26431572]
[6]
Nagata, S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol., 2018, 36(1), 489-517.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053010] [PMID: 29400998]
[7]
Kawano, M.; Nagata, S. Efferocytosis and autoimmune disease. Int. Immunol., 2018, 30(12), 551-558.
[PMID: 30165442]
[8]
Elliott, M.R.; Ravichandran, K.S. The dynamics of apoptotic cell clearance. Dev. Cell, 2016, 38(2), 147-160.
[http://dx.doi.org/10.1016/j.devcel.2016.06.029] [PMID: 27459067]
[9]
Bergmann, O.; Zdunek, S.; Felker, A.; Salehpour, M.; Alkass, K.; Bernard, S.; Sjostrom, S.L.; Szewczykowska, M.; Jackowska, T.; Dos Remedios, C.; Malm, T.; Andrä, M.; Jashari, R.; Nyengaard, J.R.; Possnert, G.; Jovinge, S.; Druid, H.; Frisén, J. Dynamics of cell genera-tion and turnover in the human heart. Cell, 2015, 161(7), 1566-1575.
[http://dx.doi.org/10.1016/j.cell.2015.05.026] [PMID: 26073943]
[10]
Spalding, K.L.; Bhardwaj, R.D.; Buchholz, B.A.; Druid, H.; Frisén, J. Retrospective birth dating of cells in humans. Cell, 2005, 122(1), 133-143.
[http://dx.doi.org/10.1016/j.cell.2005.04.028] [PMID: 16009139]
[11]
Tak, T.; Tesselaar, K.; Pillay, J.; Borghans, J.A.; Koenderman, L. What’s your age again? Determination of human neutrophil half-lives revisited. J. Leukoc. Biol., 2013, 94(4), 595-601.
[http://dx.doi.org/10.1189/jlb.1112571] [PMID: 23625199]
[12]
Casanova-Acebes, M.; Pitaval, C.; Weiss, L.A.; Nombela-Arrieta, C.; Chèvre, R. A-González, N.; Kunisaki, Y.; Zhang, D.; van Rooijen, N.; Silberstein, L.E.; Weber, C.; Nagasawa, T.; Frenette, P.S.; Castrillo, A.; Hidalgo, A. Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell, 2013, 153(5), 1025-1035.
[http://dx.doi.org/10.1016/j.cell.2013.04.040] [PMID: 23706740]
[13]
Strydom, N.; Rankin, S.M. Regulation of circulating neutrophil numbers under homeostasis and in disease. J. Innate Immun., 2013, 5(4), 304-314.
[http://dx.doi.org/10.1159/000350282] [PMID: 23571274]
[14]
Connor, J.; Pak, C.C.; Schroit, A.J. Exposure of phosphatidylserine in the outer leaflet of human red blood cells. Relationship to cell den-sity, cell age, and clearance by mononuclear cells. J. Biol. Chem., 1994, 269(4), 2399-2404.
[http://dx.doi.org/10.1016/S0021-9258(17)41959-4] [PMID: 8300565]
[15]
Williams, J.M.; Duckworth, C.A.; Burkitt, M.D.; Watson, A.J.; Campbell, B.J.; Pritchard, D.M. Epithelial cell shedding and barrier function: A matter of life and death at the small intestinal villus tip. Vet. Pathol., 2015, 52(3), 445-455.
[http://dx.doi.org/10.1177/0300985814559404] [PMID: 25428410]
[16]
Hochreiter-Hufford, A.; Ravichandran, K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol., 2013, 5(1)a008748
[http://dx.doi.org/10.1101/cshperspect.a008748] [PMID: 23284042]
[17]
Janssen, W.J.; McPhillips, K.A.; Dickinson, M.G.; Linderman, D.J.; Morimoto, K.; Xiao, Y.Q.; Oldham, K.M.; Vandivier, R.W.; Henson, P.M.; Gardai, S.J. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am. J. Respir. Crit. Care Med., 2008, 178(2), 158-167.
[http://dx.doi.org/10.1164/rccm.200711-1661OC] [PMID: 18420961]
[18]
McCubbrey, A.L.; Sonstein, J.; Ames, T.M.; Freeman, C.M.; Curtis, J.L. Glucocorticoids relieve collectin-driven suppression of apoptotic cell uptake in murine alveolar macrophages through downregulation of SIRPα. J. Immunol., 2012, 189(1), 112-119.
[http://dx.doi.org/10.4049/jimmunol.1200984] [PMID: 22615206]
[19]
Mondal, S.; Ghosh-Roy, S.; Loison, F.; Li, Y.; Jia, Y.; Harris, C.; Williams, D.A.; Luo, H.R. PTEN negatively regulates engulfment of apoptotic cells by modulating activation of Rac GTPase. J. Immunol., 2011, 187(11), 5783-5794.
[http://dx.doi.org/10.4049/jimmunol.1100484] [PMID: 22043008]
[20]
Simhadri, V.R.; Andersen, J.F.; Calvo, E.; Choi, S.C.; Coligan, J.E.; Borrego, F. Human CD300a binds to phosphatidylethanolamine and phosphatidylserine, and modulates the phagocytosis of dead cells. Blood, 2012, 119(12), 2799-2809.
[http://dx.doi.org/10.1182/blood-2011-08-372425] [PMID: 22302738]
[21]
Anderson, C.; Zhou, S.; Sawin, E.; Horvitz, H.R.; Hurwitz, M.E. SLI-1 Cbl inhibits the engulfment of apoptotic cells in C. elegans through a ligase-independent function. PLoS Genet., 2012, 8(12)e1003115
[http://dx.doi.org/10.1371/journal.pgen.1003115] [PMID: 23271977]
[22]
Hurwitz, M.E.; Vanderzalm, P.J.; Bloom, L.; Goldman, J.; Garriga, G.; Horvitz, H.R. Abl kinase inhibits the engulfment of apoptotic [co-rrected] cells in Caenorhabditis elegans. PLoS Biol., 2009, 7(4)e99
[http://dx.doi.org/10.1371/journal.pbio.1000099] [PMID: 19402756]
[23]
Neukomm, L.J.; Frei, A.P.; Cabello, J.; Kinchen, J.M.; Zaidel-Bar, R.; Ma, Z.; Haney, L.B.; Hardin, J.; Ravichandran, K.S.; Moreno, S.; Hengartner, M.O. Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis elegans. Nat. Cell Biol., 2011, 13(1), 79-86.
[http://dx.doi.org/10.1038/ncb2138] [PMID: 21170032]
[24]
Neukomm, L.J.; Nicot, A.S.; Kinchen, J.M.; Almendinger, J.; Pinto, S.M.; Zeng, S.; Doukoumetzidis, K.; Tronchère, H.; Payrastre, B.; Laporte, J.F.; Hengartner, M.O. The phosphoinositide phosphatase MTM-1 regulates apoptotic cell corpse clearance through CED-5-CED-12 in C. elegans. Development, 2011, 138(10), 2003-2014.
[http://dx.doi.org/10.1242/dev.060012] [PMID: 21490059]
[25]
Necsulea, A.; Kaessmann, H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat. Rev. Genet., 2014, 15(11), 734-748.
[http://dx.doi.org/10.1038/nrg3802] [PMID: 25297727]
[26]
Doran, A.C.; Yurdagul, A., Jr; Tabas, I. Efferocytosis in health and disease. Nat. Rev. Immunol., 2020, 20(4), 254-267.
[http://dx.doi.org/10.1038/s41577-019-0240-6] [PMID: 31822793]
[27]
Engelbertsen, D. Increased lymphocyte activation and atherosclerosis in CD47-deficient mice. Sci. Rep., 2019, 9(1), 10608.
[http://dx.doi.org/10.1038/s41598-019-46942-x]
[28]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[29]
Das, A.; Ganesh, K.; Khanna, S.; Sen, C.K.; Roy, S. Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolu-tion of wound inflammation. J. Immunol., 2014, 192(3), 1120-1129.
[http://dx.doi.org/10.4049/jimmunol.1300613] [PMID: 24391209]
[30]
Sen, C.K.; Roy, S. miRNA: Licensed to kill the messenger. DNA Cell Biol., 2007, 26(4), 193-194.
[http://dx.doi.org/10.1089/dna.2006.0567] [PMID: 17465885]
[31]
Sen, C.K.; Roy, S. MicroRNA 21 in tissue injury and inflammation: Authors’ retrospective. Cardiovasc. Res., 2012, 96(2), 230-233.
[32]
Casiano, C.A.; Ochs, R.L.; Tan, E.M. Distinct cleavage products of nuclear proteins in apoptosis and necrosis revealed by autoantibody probes. Cell Death Differ., 1998, 5(2), 183-190.
[http://dx.doi.org/10.1038/sj.cdd.4400336] [PMID: 10200463]
[33]
Tajbakhsh, A.; Kovanen, P.T.; Rezaee, M.; Banach, M.; Moallem, S.A.; Sahebkar, A. Regulation of efferocytosis by caspase-dependent apoptotic cell death in atherosclerosis. Int. J. Biochem. Cell Biol., 2020, 120105684
[http://dx.doi.org/10.1016/j.biocel.2020.105684] [PMID: 31911118]
[34]
Lauber, K.; Bohn, E.; Kröber, S.M.; Xiao, Y.J.; Blumenthal, S.G.; Lindemann, R.K.; Marini, P.; Wiedig, C.; Zobywalski, A.; Baksh, S.; Xu, Y.; Autenrieth, I.B.; Schulze-Osthoff, K.; Belka, C.; Stuhler, G.; Wesselborg, S. Apoptotic cells induce migration of phagocytes via caspa-se-3-mediated release of a lipid attraction signal. Cell, 2003, 113(6), 717-730.
[http://dx.doi.org/10.1016/S0092-8674(03)00422-7] [PMID: 12809603]
[35]
Ravichandran, K.S.; Lorenz, U. Engulfment of apoptotic cells: Signals for a good meal. Nat. Rev. Immunol., 2007, 7(12), 964-974.
[http://dx.doi.org/10.1038/nri2214] [PMID: 18037898]
[36]
Lu, Z.; Elliott, M.R.; Chen, Y.; Walsh, J.T.; Klibanov, A.L.; Ravichandran, K.S.; Kipnis, J. Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat. Cell Biol., 2011, 13(9), 1076-1083.
[http://dx.doi.org/10.1038/ncb2299] [PMID: 21804544]
[37]
Gude, D.R.; Alvarez, S.E.; Paugh, S.W.; Mitra, P.; Yu, J.; Griffiths, R.; Barbour, S.E.; Milstien, S.; Spiegel, S. Apoptosis induces expres-sion of sphingosine kinase 1 to release sphingosine-1-phosphate as a “come-and-get-me” signal. FASEB J., 2008, 22(8), 2629-2638.
[http://dx.doi.org/10.1096/fj.08-107169] [PMID: 18362204]
[38]
Elliott, M.R.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovich, M.; Sharma, P.; Lysiak, J.J.; Harden, T.K.; Leitinger, N.; Ravichandran, K.S. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature, 2009, 461(7261), 282-286.
[http://dx.doi.org/10.1038/nature08296] [PMID: 19741708]
[39]
Truman, L.A.; Ford, C.A.; Pasikowska, M.; Pound, J.D.; Wilkinson, S.J.; Dumitriu, I.E.; Melville, L.; Melrose, L.A.; Ogden, C.A.; Nibbs, R.; Graham, G.; Combadiere, C.; Gregory, C.D. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage che-motaxis. Blood, 2008, 112(13), 5026-5036.
[http://dx.doi.org/10.1182/blood-2008-06-162404] [PMID: 18799722]
[40]
Hoffman, R.D.; Kligerman, M.; Sundt, T.M.; Anderson, N.D.; Shin, H.S. Stereospecific chemoattraction of lymphoblastic cells by gra-dients of lysophosphatidylcholine. Proc. Natl. Acad. Sci. USA, 1982, 79(10), 3285-3289.
[http://dx.doi.org/10.1073/pnas.79.10.3285] [PMID: 6954479]
[41]
Ousman, S.S.; David, S. Lysophosphatidylcholine induces rapid recruitment and activation of macrophages in the adult mouse spinal cord. Glia, 2000, 30(1), 92-104.
[http://dx.doi.org/10.1002/(SICI)1098-1136(200003)30:1<92:AID-GLIA10>3.0.CO;2-W] [PMID: 10696148]
[42]
Jin, H.; Ko, Y.S.; Park, S.W.; Kim, H.J. P2Y2R activation by ATP induces oxLDL-mediated inflammasome activation through modulation of mitochondrial damage in human endothelial cells. Free Radic. Biol. Med., 2019, 136, 109-117.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.04.004] [PMID: 30959169]
[43]
Poon, I.K.; Chiu, Y.H.; Armstrong, A.J.; Kinchen, J.M.; Juncadella, I.J.; Bayliss, D.A.; Ravichandran, K.S. Unexpected link between an antibiotic, pannexin channels and apoptosis. Nature, 2014, 507(7492), 329-334.
[http://dx.doi.org/10.1038/nature13147] [PMID: 24646995]
[44]
Qu, Y.; Misaghi, S.; Newton, K.; Gilmour, L.L.; Louie, S.; Cupp, J.E.; Dubyak, G.R.; Hackos, D.; Dixit, V.M. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J. Immunol., 2011, 186(11), 6553-6561.
[http://dx.doi.org/10.4049/jimmunol.1100478] [PMID: 21508259]
[45]
Chekeni, F.B.; Elliott, M.R.; Sandilos, J.K.; Walk, S.F.; Kinchen, J.M.; Lazarowski, E.R.; Armstrong, A.J.; Penuela, S.; Laird, D.W.; Salve-sen, G.S.; Isakson, B.E.; Bayliss, D.A.; Ravichandran, K.S. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permea-bility during apoptosis. Nature, 2010, 467(7317), 863-867.
[http://dx.doi.org/10.1038/nature09413] [PMID: 20944749]
[46]
Jiang, P.; Xing, F.; Guo, B.; Yang, J.; Li, Z.; Wei, W.; Hu, F.; Lee, I.; Zhang, X.; Pan, L.; Xu, J. Nucleotide transmitters ATP and ADP me-diate intercellular calcium wave communication via P2Y12/13 receptors among BV-2 microglia. PLoS One, 2017, 12(8)e0183114
[http://dx.doi.org/10.1371/journal.pone.0183114] [PMID: 28800362]
[47]
Chen, Y.; Corriden, R.; Inoue, Y.; Yip, L.; Hashiguchi, N.; Zinkernagel, A.; Nizet, V.; Insel, P.A.; Junger, W.G. ATP release guides neu-trophil chemotaxis via P2Y2 and A3 receptors. Science, 2006, 314(5806), 1792-1795.
[http://dx.doi.org/10.1126/science.1132559] [PMID: 17170310]
[48]
Gautier, E.L.; Ivanov, S.; Lesnik, P.; Randolph, G.J. Local apoptosis mediates clearance of macrophages from resolving inflammation in mice. Blood, 2013, 122(15), 2714-2722.
[http://dx.doi.org/10.1182/blood-2013-01-478206] [PMID: 23974197]
[49]
Kaufmann, A.; Musset, B.; Limberg, S.H.; Renigunta, V.; Sus, R.; Dalpke, A.H.; Heeg, K.M.; Robaye, B.; Hanley, P.J. “Host tissue dama-ge” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J. Biol. Chem., 2005, 280(37), 32459-32467.
[http://dx.doi.org/10.1074/jbc.M505301200] [PMID: 16030017]
[50]
Kronlage, M.; Song, J.; Sorokin, L.; Isfort, K.; Schwerdtle, T.; Leipziger, J.; Robaye, B.; Conley, P.B.; Kim, H.C.; Sargin, S.; Schön, P.; Schwab, A.; Hanley, P.J. Autocrine purinergic receptor signaling is essential for macrophage chemotaxis. Sci. Signal., 2010, 3(132), ra55.
[http://dx.doi.org/10.1126/scisignal.2000588] [PMID: 20664064]
[51]
Seye, C.I.; Yu, N.; Jain, R.; Kong, Q.; Minor, T.; Newton, J.; Erb, L.; González, F.A.; Weisman, G.A. The P2Y2 nucleotide receptor media-tes UTP-induced vascular cell adhesion molecule-1 expression in coronary artery endothelial cells. J. Biol. Chem., 2003, 278(27), 24960-24965.
[http://dx.doi.org/10.1074/jbc.M301439200] [PMID: 12714597]
[52]
Klämbt, V. A novel function for P2Y2 in myeloid recipient-derived cells during graft-versus-host disease. 2015, 195(12), 5795-804.
[http://dx.doi.org/10.4049/jimmunol.1501357]
[53]
Jin, H.; Eun, S.Y.; Lee, J.S.; Park, S.W.; Lee, J.H.; Chang, K.C.; Kim, H.J. P2Y2 receptor activation by nucleotides released from highly metastatic breast cancer cells increases tumor growth and invasion via crosstalk with endothelial cells. Breast Cancer Res., 2014, 16(5), R77.
[http://dx.doi.org/10.1186/bcr3694] [PMID: 25156554]
[54]
Chen, S.; Shenk, T.; Nogalski, M.T. P2Y2 purinergic receptor modulates virus yield, calcium homeostasis, and cell motility in human cytomegalovirus-infected cells. Proc. Natl. Acad. Sci. USA, 2019, 116(38), 18971-18982.
[http://dx.doi.org/10.1073/pnas.1907562116] [PMID: 31481624]
[55]
Kim, G.T. PLAG enhances macrophage mobility for efferocytosis of apoptotic neutrophils via membrane redistribution of P2Y2. 2019, 286(24), 5016-5029.
[http://dx.doi.org/10.1111/febs.15135]
[56]
Weigert, A.; Cremer, S.; Schmidt, M.V.; von Knethen, A.; Angioni, C.; Geisslinger, G.; Brüne, B. Cleavage of sphingosine kinase 2 by caspase-1 provokes its release from apoptotic cells. Blood, 2010, 115(17), 3531-3540.
[http://dx.doi.org/10.1182/blood-2009-10-243444] [PMID: 20197547]
[57]
Cullen, S.P.; Henry, C.M.; Kearney, C.J.; Logue, S.E.; Feoktistova, M.; Tynan, G.A.; Lavelle, E.C.; Leverkus, M.; Martin, S.J. Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Mol. Cell, 2013, 49(6), 1034-1048.
[http://dx.doi.org/10.1016/j.molcel.2013.01.025] [PMID: 23434371]
[58]
Somersan, S.; Bhardwaj, N. Tethering and tickling: A new role for the phosphatidylserine receptor. J. Cell Biol., 2001, 155(4), 501-504.
[http://dx.doi.org/10.1083/jcb.200110066] [PMID: 11706046]
[59]
Miyanishi, M.; Tada, K.; Koike, M.; Uchiyama, Y.; Kitamura, T.; Nagata, S. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450(7168), 435-439.
[http://dx.doi.org/10.1038/nature06307] [PMID: 17960135]
[60]
Nagata, S.; Suzuki, J.; Segawa, K.; Fujii, T. Exposure of phosphatidylserine on the cell surface. Cell Death Differ., 2016, 23(6), 952-961.
[http://dx.doi.org/10.1038/cdd.2016.7] [PMID: 26891692]
[61]
Nagata, S.; Sakuragi, T.; Segawa, K. Flippase and scramblase for phosphatidylserine exposure. Curr. Opin. Immunol., 2020, 62, 31-38.
[http://dx.doi.org/10.1016/j.coi.2019.11.009] [PMID: 31837595]
[62]
Penberthy, K.K.; Ravichandran, K.S. Apoptotic cell recognition receptors and scavenger receptors. Immunol. Rev., 2016, 269(1), 44-59.
[http://dx.doi.org/10.1111/imr.12376] [PMID: 26683144]
[63]
Torr, E.E.; Gardner, D.H.; Thomas, L.; Goodall, D.M.; Bielemeier, A.; Willetts, R.; Griffiths, H.R.; Marshall, L.J.; Devitt, A. Apoptotic cell-derived ICAM-3 promotes both macrophage chemoattraction to and tethering of apoptotic cells. Cell Death Differ., 2012, 19(4), 671-679.
[http://dx.doi.org/10.1038/cdd.2011.167] [PMID: 22117198]
[64]
Tacnet-Delorme, P.; Gabillet, J.; Chatfield, S.; Thieblemont, N.; Frachet, P.; Witko-Sarsat, V. Proteinase 3 Interferes With C1q-Mediated Clearance of Apoptotic Cells. Front. Immunol., 2018, 9, 818.
[http://dx.doi.org/10.3389/fimmu.2018.00818] [PMID: 29755460]
[65]
Miller, Y.I.; Shyy, J.Y. Context-dependent role of oxidized lipids and lipoproteins in inflammation. Trends Endocrinol. Metab., 2017, 28(2), 143-152.
[http://dx.doi.org/10.1016/j.tem.2016.11.002] [PMID: 27931771]
[66]
Seyrek, K.; Richter, M.; Lavrik, I.N. Decoding the sweet regulation of apoptosis: The role of glycosylation and galectins in apoptotic sig-naling pathways. Cell Death Differ., 2019, 26(6), 981-993.
[http://dx.doi.org/10.1038/s41418-019-0317-6] [PMID: 30903104]
[67]
Bradley, C.A. CD24 - a novel ‘don’t eat me’ signal. Nat. Rev. Drug Discov., 2019, 18(10), 747.
[http://dx.doi.org/10.1038/d41573-019-00146-0] [PMID: 31570841]
[68]
Azuma, Y.; Nakagawa, H.; Dote, K.; Higai, K.; Matsumoto, K. Decreases in CD31 and CD47 levels on the cell surface during etoposide-induced Jurkat cell apoptosis. Biol. Pharm. Bull., 2011, 34(12), 1828-1834.
[http://dx.doi.org/10.1248/bpb.34.1828] [PMID: 22130238]
[69]
Liao, Z.; Seye, C.I.; Weisman, G.A.; Erb, L. The P2Y2 nucleotide receptor requires interaction with alpha v integrins to access and activate G12. J. Cell Sci., 2007, 120(Pt 9), 1654-1662.
[http://dx.doi.org/10.1242/jcs.03441] [PMID: 17452627]
[70]
Kim, S.Y. Coordinated balance of Rac1 and RhoA plays key roles in determining phagocytic appetite. 2017, 12(4), e0174603.
[http://dx.doi.org/10.1371/journal.pone.0174603]
[71]
Kabarowski, J.H.; Feramisco, J.D.; Le, L.Q.; Gu, J.L.; Luoh, S.W.; Simon, M.I.; Witte, O.N. Direct genetic demonstration of G alpha 13 coupling to the orphan G protein-coupled receptor G2A leading to RhoA-dependent actin rearrangement. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12109-12114.
[http://dx.doi.org/10.1073/pnas.97.22.12109] [PMID: 11050239]
[72]
Wang, Y.; Subramanian, M.; Yurdagul, A., Jr; Barbosa-Lorenzi, V.C.; Cai, B.; de Juan-Sanz, J.; Ryan, T.A.; Nomura, M.; Maxfield, F.R.; Tabas, I. Mitochondrial fission promotes the continued clearance of apoptotic cells by macrophages. Cell, 2017, 171(2), 331-345.e22.
[http://dx.doi.org/10.1016/j.cell.2017.08.041] [PMID: 28942921]
[73]
Asare, P.F.; Roscioli, E.; Hurtado, P.R.; Tran, H.B.; Mah, C.Y.; Hodge, S. LC3-Associated Phagocytosis (LAP): A potentially influential mediator of efferocytosis-related tumor progression and aggressiveness. Front. Oncol., 2020, 10(1298), 1298.
[http://dx.doi.org/10.3389/fonc.2020.01298] [PMID: 32850405]
[74]
Wong, S.W.; Sil, P.; Martinez, J. Rubicon: LC3-associated phagocytosis and beyond. FEBS J., 2018, 285(8), 1379-1388.
[http://dx.doi.org/10.1111/febs.14354] [PMID: 29215797]
[75]
Martinez, J.; Malireddi, R.K.; Lu, Q.; Cunha, L.D.; Pelletier, S.; Gingras, S.; Orchard, R.; Guan, J.L.; Tan, H.; Peng, J.; Kanneganti, T.D.; Virgin, H.W.; Green, D.R. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and au-tophagy proteins. Nat. Cell Biol., 2015, 17(7), 893-906.
[http://dx.doi.org/10.1038/ncb3192] [PMID: 26098576]
[76]
Galais, M.; Pradel, B.; Vergne, I.; Robert-Hebmann, V.; Espert, L.; Biard-Piechaczyk, M. LAP (LC3-associated phagocytosis): Phagocyto-sis or autophagy? Med. Sci. (Paris), 2019, 35(8-9), 635-642.
[http://dx.doi.org/10.1051/medsci/2019129] [PMID: 31532375]
[77]
Lee, H.N.; Surh, Y.J. Resolvin D1-mediated NOX2 inactivation rescues macrophages undertaking efferocytosis from oxidative stress-induced apoptosis. Biochem. Pharmacol., 2013, 86(6), 759-769.
[http://dx.doi.org/10.1016/j.bcp.2013.07.002] [PMID: 23856291]
[78]
Lämmermann, T.; Afonso, P.V.; Angermann, B.R.; Wang, J.M.; Kastenmüller, W.; Parent, C.A.; Germain, R.N. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature, 2013, 498(7454), 371-375.
[http://dx.doi.org/10.1038/nature12175] [PMID: 23708969]
[79]
Roth, T.L.; Nayak, D.; Atanasijevic, T.; Koretsky, A.P.; Latour, L.L.; McGavern, D.B. Transcranial amelioration of inflammation and cell death after brain injury. Nature, 2014, 505(7482), 223-228.
[http://dx.doi.org/10.1038/nature12808] [PMID: 24317693]
[80]
Evans, T.A.; Barkauskas, D.S.; Myers, J.T.; Hare, E.G.; You, J.Q.; Ransohoff, R.M.; Huang, A.Y.; Silver, J. High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord in-jury. Exp. Neurol., 2014, 254, 109-120.
[http://dx.doi.org/10.1016/j.expneurol.2014.01.013] [PMID: 24468477]
[81]
Brandes, S.; Dietrich, S.; Hünniger, K.; Kurzai, O.; Figge, M.T. Migration and interaction tracking for quantitative analysis of phagocyte-pathogen confrontation assays. Med. Image Anal., 2017, 36, 172-183.
[http://dx.doi.org/10.1016/j.media.2016.11.007] [PMID: 27940225]
[82]
Davalos, D.; Grutzendler, J.; Yang, G.; Kim, J.V.; Zuo, Y.; Jung, S.; Littman, D.R.; Dustin, M.L.; Gan, W.B. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci., 2005, 8(6), 752-758.
[http://dx.doi.org/10.1038/nn1472] [PMID: 15895084]
[83]
Fourgeaud, L.; Través, P.G.; Tufail, Y.; Leal-Bailey, H.; Lew, E.D.; Burrola, P.G.; Callaway, P.; Zagórska, A.; Rothlin, C.V.; Nimmerjahn, A.; Lemke, G. TAM receptors regulate multiple features of microglial physiology. Nature, 2016, 532(7598), 240-244.
[http://dx.doi.org/10.1038/nature17630] [PMID: 27049947]
[84]
Wang, J.; Kubes, P. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair. Cell, 2016, 165(3), 668-678.
[http://dx.doi.org/10.1016/j.cell.2016.03.009] [PMID: 27062926]
[85]
van Ham, T.J.; Kokel, D.; Peterson, R.T. Apoptotic cells are cleared by directional migration and elmo1- dependent macrophage engulf-ment. Curr. Biol., 2012, 22(9), 830-836.
[http://dx.doi.org/10.1016/j.cub.2012.03.027] [PMID: 22503503]
[86]
Dzhagalov, I.L.; Chen, K.G.; Herzmark, P.; Robey, E.A. Elimination of self-reactive T cells in the thymus: A timeline for negative selec-tion. PLoS Biol., 2013, 11(5), e1001566-e1001566.
[http://dx.doi.org/10.1371/journal.pbio.1001566] [PMID: 23700386]
[87]
Yamaguchi, Y.; Shinotsuka, N.; Nonomura, K.; Takemoto, K.; Kuida, K.; Yosida, H.; Miura, M. Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure. J. Cell Biol., 2011, 195(6), 1047-1060.
[http://dx.doi.org/10.1083/jcb.201104057] [PMID: 22162136]
[88]
Montalvao, F.; Garcia, Z.; Celli, S.; Breart, B.; Deguine, J.; Van Rooijen, N.; Bousso, P. The mechanism of anti-CD20-mediated B cell de-pletion revealed by intravital imaging. J. Clin. Invest., 2013, 123(12), 5098-5103.
[http://dx.doi.org/10.1172/JCI70972] [PMID: 24177426]
[89]
Gül, N.; Babes, L.; Siegmund, K.; Korthouwer, R.; Bögels, M.; Braster, R.; Vidarsson, G.; ten Hagen, T.L.; Kubes, P.; van Egmond, M. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J. Clin. Invest., 2014, 124(2), 812-823.
[http://dx.doi.org/10.1172/JCI66776] [PMID: 24430180]
[90]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[91]
Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol., 2014, 15(8), 509-524.
[http://dx.doi.org/10.1038/nrm3838] [PMID: 25027649]
[92]
Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[93]
Friedman, R.C.; Farh, K.K.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[94]
Gurol, T.; Zhou, W.; Deng, Q. MicroRNAs in neutrophils: Potential next generation therapeutics for inflammatory ailments. Immunol. Rev., 2016, 273(1), 29-47.
[http://dx.doi.org/10.1111/imr.12450] [PMID: 27558326]
[95]
Ouimet, M.; Ediriweera, H.; Afonso, M.S.; Ramkhelawon, B.; Singaravelu, R.; Liao, X.; Bandler, R.C.; Rahman, K.; Fisher, E.A.; Rayner, K.J.; Pezacki, J.P.; Tabas, I.; Moore, K.J. microRNA-33 Regulates Macrophage Autophagy in Atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2017, 37(6), 1058-1067.
[http://dx.doi.org/10.1161/ATVBAHA.116.308916] [PMID: 28428217]
[96]
Canfrán-Duque, A.; Rotllan, N.; Zhang, X.; Fernández-Fuertes, M.; Ramírez-Hidalgo, C.; Araldi, E.; Daimiel, L.; Busto, R.; Fernández-Hernando, C.; Suárez, Y. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during athe-rogenesis. EMBO Mol. Med., 2017, 9(9), 1244-1262.
[http://dx.doi.org/10.15252/emmm.201607492] [PMID: 28674080]
[97]
Omura, S.; Suzuki, H.; Toyofuku, M.; Ozono, R.; Kohno, N.; Igarashi, K. Effects of genetic ablation of bach1 upon smooth muscle cell proliferation and atherosclerosis after cuff injury. Genes Cells, 2005, 10(3), 277-285.
[http://dx.doi.org/10.1111/j.1365-2443.2005.00832.x] [PMID: 15743416]
[98]
Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[99]
Sonkoly, E.; Ståhle, M.; Pivarcsi, A. MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflam-mation. Semin. Cancer Biol., 2008, 18(2), 131-140.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.005]
[100]
O’Connell, R.M.; Rao, D.S.; Baltimore, D. MicroRNA regulation of inflammatory responses. Annu. Rev. Immunol., 2012, 30(1), 295-312.
[http://dx.doi.org/10.1146/annurev-immunol-020711-075013] [PMID: 22224773]
[101]
Sheedy, F.J. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front. Immunol., 2015, 6, 19.
[http://dx.doi.org/10.3389/fimmu.2015.00019] [PMID: 25688245]
[102]
Feng, J.; Li, A.; Deng, J.; Yang, Y.; Dang, L.; Ye, Y.; Li, Y.; Zhang, W. miR-21 attenuates lipopolysaccharide-induced lipid accumulation and inflammatory response: Potential role in cerebrovascular disease. Lipids Health Dis., 2014, 13(1), 27.
[http://dx.doi.org/10.1186/1476-511X-13-27] [PMID: 24502419]
[103]
Ge, X.; Huang, S.; Gao, H.; Han, Z.; Chen, F.; Zhang, S.; Wang, Z.; Kang, C.; Jiang, R.; Yue, S.; Lei, P.; Zhang, J. miR-21-5p alleviates leakage of injured brain microvascular endothelial barrier in vitro through suppressing inflammation and apoptosis. Brain Res., 2016, 1650, 31-40.
[http://dx.doi.org/10.1016/j.brainres.2016.07.015] [PMID: 27421180]
[104]
Roy, S.; Sen, C.K. MiRNA in innate immune responses: Novel players in wound inflammation. Physiol. Genomics, 2011, 43(10), 557-565.
[http://dx.doi.org/10.1152/physiolgenomics.00160.2010] [PMID: 21139022]
[105]
Roy, S.; Sen, C.K. miRNA in wound inflammation and angiogenesis. Microcirculation, 2012, 19(3), 224-232.
[http://dx.doi.org/10.1111/j.1549-8719.2011.00156.x] [PMID: 22211762]
[106]
Cao, X.; Wei, G.; Fang, H.; Guo, J.; Weinstein, M.; Marsh, C.B.; Ostrowski, M.C.; Tridandapani, S. The inositol 3-phosphatase PTEN negatively regulates Fc gamma receptor signaling, but supports Toll-like receptor 4 signaling in murine peritoneal macrophages. J. Immunol., 2004, 172(8), 4851-4857.
[http://dx.doi.org/10.4049/jimmunol.172.8.4851] [PMID: 15067063]
[107]
Georgescu, M.M. PTEN tumor suppressor network in PI3K-Akt pathway control. Genes Cancer, 2010, 1(12), 1170-1177.
[http://dx.doi.org/10.1177/1947601911407325] [PMID: 21779440]
[108]
Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 beta by phosphorylation: New kinase connections in insulin and growth-factor signalling. Biochem. J., 1993, 296(Pt 1), 15-19.
[109]
Steinbrecher, K.A.; Wilson, W., III; Cogswell, P.C.; Baldwin, A.S. Glycogen synthase kinase 3beta functions to specify gene-specific, NF-kappaB-dependent transcription. Mol. Cell. Biol., 2005, 25(19), 8444-8455.
[http://dx.doi.org/10.1128/MCB.25.19.8444-8455.2005] [PMID: 16166627]
[110]
Ghosh, S.; May, M.J.; Kopp, E.B. NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol., 1998, 16(1), 225-260.
[http://dx.doi.org/10.1146/annurev.immunol.16.1.225] [PMID: 9597130]
[111]
Pretolani, M. Interleukin-10: An anti-inflammatory cytokine with therapeutic potential. Clin. Exp. Allergy, 1999, 29(9), 1164-1171.
[http://dx.doi.org/10.1046/j.1365-2222.1999.00456.x] [PMID: 10469024]
[112]
Roy, S.; Khanna, S.; Hussain, S.R.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1), 21-29.
[http://dx.doi.org/10.1093/cvr/cvp015] [PMID: 19147652]
[113]
Meng, F.; Henson, R.; Lang, M.; Wehbe, H.; Maheshwari, S.; Mendell, J.T.; Jiang, J.; Schmittgen, T.D.; Patel, T. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology, 2006, 130(7), 2113-2129.
[http://dx.doi.org/10.1053/j.gastro.2006.02.057] [PMID: 16762633]
[114]
Wang, Z.; Yao, W.; Li, K.; Zheng, N.; Zheng, C.; Zhao, X.; Zheng, S. Reduction of miR-21 induces SK-N-SH cell apoptosis and inhibits proliferation via PTEN/PDCD4. Oncol. Lett., 2017, 13(6), 4727-4733.
[http://dx.doi.org/10.3892/ol.2017.6052] [PMID: 28599474]
[115]
Gao, X.; Huang, X.; Yang, Q.; Zhang, S.; Yan, Z.; Luo, R.; Wang, P.; Wang, W.; Xie, K.; Gun, S. MicroRNA-21-5p targets PDCD4 to mo-dulate apoptosis and inflammatory response to Clostridium perfringens beta2 toxin infection in IPEC-J2 cells. Dev. Comp. Immunol., 2021, 114103849
[http://dx.doi.org/10.1016/j.dci.2020.103849] [PMID: 32888967]
[116]
Wang, M.; Mungur, R.; Lan, P.; Wang, P.; Wan, S. MicroRNA-21 and microRNA-146a negatively regulate the secondary inflammatory response of microglia after intracerebral hemorrhage. Int. J. Clin. Exp. Pathol., 2018, 11(7), 3348-3356.
[PMID: 31949711]
[117]
Lu, T.X.; Munitz, A.; Rothenberg, M.E. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J. Immunol., 2009, 182(8), 4994-5002.
[http://dx.doi.org/10.4049/jimmunol.0803560] [PMID: 19342679]
[118]
Case, S.R.; Martin, R.J.; Jiang, D.; Minor, M.N.; Chu, H.W. MicroRNA-21 inhibits toll-like receptor 2 agonist-induced lung inflammation in mice. Exp. Lung Res., 2011, 37(8), 500-508.
[http://dx.doi.org/10.3109/01902148.2011.596895] [PMID: 21892915]
[119]
Recchiuti, A.; Krishnamoorthy, S.; Fredman, G.; Chiang, N.; Serhan, C.N. MicroRNAs in resolution of acute inflammation: Identification of novel resolvin D1-miRNA circuits. FASEB J., 2011, 25(2), 544-560.
[http://dx.doi.org/10.1096/fj.10-169599] [PMID: 20956612]
[120]
Gerlach, B.D. Resolvin D1 promotes the targeting and clearance of necroptotic cells. Cell Death Differ., 2020, 27(2), 525-539.
[http://dx.doi.org/10.1038/s41418-019-0370-1]
[121]
Johnston, D.G.W.; Kearney, J.; Zasłona, Z.; Williams, M.A.; O’Neill, L.A.J.; Corr, S.C. MicroRNA-21 limits uptake of Listeria monocyto-genes by macrophages to reduce the intracellular niche and control infection. Front. Cell. Infect. Microbiol., 2017, 7, 201-201.
[http://dx.doi.org/10.3389/fcimb.2017.00201] [PMID: 28589100]
[122]
Chipont, A.; Esposito, B.; Challier, I.; Montabord, M.; Tedgui, A.; Mallat, Z.; Loyer, X.; Potteaux, S. MicroRNA-21 deficiency alters the survival of Ly-6Clo Monocytes in ApoE-/- mice and reduces early-stage atherosclerosis-brief report. Arterioscler. Thromb. Vasc. Biol., 2019, 39(2), 170-177.
[http://dx.doi.org/10.1161/ATVBAHA.118.311942] [PMID: 30587001]
[123]
Kim, S.Y.; Nair, M.G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol., 2019, 97(3), 258-267.
[http://dx.doi.org/10.1111/imcb.12236] [PMID: 30746824]
[124]
Das, A. Correction of MFG-E8 resolves inflammation and promotes cutaneous wound healing in diabetes. J. Immunol., 2016, 196(12), 5089-5100.
[http://dx.doi.org/10.4049/jimmunol.1502270]
[125]
Sinha, M.; Sen, C.K.; Singh, K.; Das, A.; Ghatak, S.; Rhea, B.; Blackstone, B.; Powell, H.M.; Khanna, S.; Roy, S. Direct conversion of injury-site myeloid cells to fibroblast-like cells of granulation tissue. Nat. Commun., 2018, 9(1), 936.
[http://dx.doi.org/10.1038/s41467-018-03208-w] [PMID: 29507336]
[126]
Das, A.; Abas, M.; Biswas, N.; Banerjee, P.; Ghosh, N.; Rawat, A.; Khanna, S.; Roy, S.; Sen, C.K. A modified collagen dressing induces transition of inflammatory to reparative phenotype of wound macrophages. Sci. Rep., 2019, 9(1), 14293.
[http://dx.doi.org/10.1038/s41598-019-49435-z] [PMID: 31586077]
[127]
Dastah, S.; Tofighi, A.; Tolouei Azar, J.; Alivand, M. Aerobic exercise leads to upregulation of Mir-126 and angiogenic signaling in the heart tissue of diabetic rats. Gene Rep., 2020, 21, 21.
[http://dx.doi.org/10.1016/j.genrep.2020.100914]
[128]
Banerjee, J.; Roy, S.; Dhas, Y.; Mishra, N. Senescence-associated miR-34a and miR-126 in middle-aged Indians with type 2 diabetes. Clin. Exp. Med., 2020, 20(1), 149-158.
[http://dx.doi.org/10.1007/s10238-019-00593-4] [PMID: 31732824]
[129]
Liu, Y.; Gao, G.; Yang, C.; Zhou, K.; Shen, B.; Liang, H.; Jiang, X. The role of circulating microRNA-126 (miR-126): A novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int. J. Mol. Sci., 2014, 15(6), 10567-10577.
[http://dx.doi.org/10.3390/ijms150610567] [PMID: 24927146]
[130]
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J.; Mayr, M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res., 2010, 107(6), 810-817.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[131]
Wang, C.; Zhou, B.; Liu, M.; Liu, Y.; Gao, R. miR-126-5p restoration promotes cell apoptosis in cervical cancer by targeting Bcl2l2. Oncol. Res., 2017, 25(4), 463-470.
[http://dx.doi.org/10.3727/096504016X14685034103879] [PMID: 28438233]
[132]
Thorp, E.; Vaisar, T.; Subramanian, M.; Mautner, L.; Blobel, C.; Tabas, I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J. Biol. Chem., 2011, 286(38), 33335-33344.
[http://dx.doi.org/10.1074/jbc.M111.263020] [PMID: 21828049]
[133]
Sather, S.; Kenyon, K.D.; Lefkowitz, J.B.; Liang, X.; Varnum, B.C.; Henson, P.M.; Graham, D.K. A soluble form of the Mer receptor tyro-sine kinase inhibits macrophage clearance of apoptotic cells and platelet aggregation. Blood, 2007, 109(3), 1026-1033.
[http://dx.doi.org/10.1182/blood-2006-05-021634] [PMID: 17047157]
[134]
Krause, S.; Pfeiffer, C.; Strube, S.; Alsadeq, A.; Fedders, H.; Vokuhl, C.; Loges, S.; Waizenegger, J.; Ben-Batalla, I.; Cario, G.; Möricke, A.; Stanulla, M.; Schrappe, M.; Schewe, D.M. Mer tyrosine kinase promotes the survival of t(1;19)-positive Acute Lymphoblastic Leukemia (ALL) in the Central Nervous System (CNS). Blood, 2015, 125(5), 820-830.
[http://dx.doi.org/10.1182/blood-2014-06-583062] [PMID: 25428221]
[135]
Toda, S.; Segawa, K.; Nagata, S. MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood, 2014, 123(25), 3963-3971.
[http://dx.doi.org/10.1182/blood-2014-01-547976] [PMID: 24659633]
[136]
Cai, B.; Dongiovanni, P.; Corey, K.E.; Wang, X.; Shmarakov, I.O.; Zheng, Z.; Kasikara, C.; Davra, V.; Meroni, M.; Chung, R.T.; Rothlin, C.V.; Schwabe, R.F.; Blaner, W.S.; Birge, R.B.; Valenti, L.; Tabas, I. Macrophage MerTK Promotes Liver Fibrosis in Nonalcoholic Stea-tohepatitis. Cell Metab., 2020, 31(2), 406-421.e7.
[http://dx.doi.org/10.1016/j.cmet.2019.11.013] [PMID: 31839486]
[137]
Choi, J.Y.; Park, H.J.; Lee, Y.J.; Byun, J.; Youn, Y.S.; Choi, J.H.; Woo, S.Y.; Kang, J.L. Upregulation of Mer receptor tyrosine kinase sig-naling attenuated lipopolysaccharide-induced lung inflammation. J. Pharmacol. Exp. Ther., 2013, 344(2), 447-458.
[http://dx.doi.org/10.1124/jpet.112.199778] [PMID: 23197771]
[138]
Serban, K.A.; Rezania, S.; Petrusca, D.N.; Poirier, C.; Cao, D.; Justice, M.J.; Patel, M.; Tsvetkova, I.; Kamocki, K.; Mikosz, A.; Schweitzer, K.S.; Jacobson, S.; Cardoso, A.; Carlesso, N.; Hubbard, W.C.; Kechris, K.; Dragnea, B.; Berdyshev, E.V.; McClintock, J.; Petrache, I. Structural and functional characterization of endothelial microparticles released by cigarette smoke. Sci. Rep., 2016, 6(1), 31596.
[http://dx.doi.org/10.1038/srep31596] [PMID: 27530098]
[139]
Thomashow, M.A.; Shimbo, D.; Parikh, M.A.; Hoffman, E.A.; Vogel-Claussen, J.; Hueper, K.; Fu, J.; Liu, C.Y.; Bluemke, D.A.; Ventetuo-lo, C.E.; Doyle, M.F.; Barr, R.G. Endothelial microparticles in mild chronic obstructive pulmonary disease and emphysema. The multi-ethnic study of atherosclerosis chronic obstructive pulmonary disease study. Am. J. Respir. Crit. Care Med., 2013, 188(1), 60-68.
[http://dx.doi.org/10.1164/rccm.201209-1697OC] [PMID: 23600492]
[140]
Letsiou, E.; Bauer, N. Endothelial extracellular vesicles in pulmonary function and disease. Curr. Top. Membr., 2018, 82, 197-256.
[http://dx.doi.org/10.1016/bs.ctm.2018.09.002] [PMID: 30360780]
[141]
Huleihel, L.; Ben-Yehudah, A.; Milosevic, J.; Yu, G.; Pandit, K.; Sakamoto, K.; Yousef, H.; LeJeune, M.; Coon, T.A.; Redinger, C.J.; Chensny, L.; Manor, E.; Schatten, G.; Kaminski, N. Let-7d microRNA affects mesenchymal phenotypic properties of lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol., 2014, 306(6), L534-L542.
[http://dx.doi.org/10.1152/ajplung.00149.2013] [PMID: 24441869]
[142]
Curry, E.; Safranski, T.J.; Pratt, S.L. Differential expression of porcine sperm microRNAs and their association with sperm morphology and motility. Theriogenology, 2011, 76(8), 1532-1539.
[http://dx.doi.org/10.1016/j.theriogenology.2011.06.025] [PMID: 21872314]
[143]
Johnson, C.D.; Esquela-Kerscher, A.; Stefani, G.; Byrom, M.; Kelnar, K.; Ovcharenko, D.; Wilson, M.; Wang, X.; Shelton, J.; Shingara, J.; Chin, L.; Brown, D.; Slack, F.J. The let-7 microRNA represses cell proliferation pathways in human cells. Cancer Res., 2007, 67(16), 7713-7722.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1083] [PMID: 17699775]
[144]
Laffont, B.; Corduan, A.; Rousseau, M.; Duchez, A.C.; Lee, C.H.; Boilard, E.; Provost, P. Platelet microparticles reprogram macrophage gene expression and function. Thromb. Haemost., 2016, 115(2), 311-323.
[http://dx.doi.org/10.1160/th15-05-0389] [PMID: 26333874]
[145]
Jansen, F.; Yang, X.; Hoyer, F.F.; Paul, K.; Heiermann, N.; Becher, M.U.; Abu Hussein, N.; Kebschull, M.; Bedorf, J.; Franklin, B.S.; Latz, E.; Nickenig, G.; Werner, N. Endothelial microparticle uptake in target cells is annexin I/phosphatidylserine receptor dependent and pre-vents apoptosis. Arterioscler. Thromb. Vasc. Biol., 2012, 32(8), 1925-1935.
[http://dx.doi.org/10.1161/ATVBAHA.112.253229] [PMID: 22701020]
[146]
Kim, J.Y.; Zhao, H.; Martinez, J.; Doggett, T.A.; Kolesnikov, A.V.; Tang, P.H.; Ablonczy, Z.; Chan, C.C.; Zhou, Z.; Green, D.R.; Ferguson, T.A. Noncanonical autophagy promotes the visual cycle. Cell, 2013, 154(2), 365-376.
[http://dx.doi.org/10.1016/j.cell.2013.06.012] [PMID: 23870125]
[147]
Muniz-Feliciano, L.; Doggett, T.A.; Zhou, Z.; Ferguson, T.A. RUBCN/rubicon and EGFR regulate lysosomal degradative processes in the Retinal Pigment Epithelium (RPE) of the eye. Autophagy, 2017, 13(12), 2072-2085.
[http://dx.doi.org/10.1080/15548627.2017.1380124] [PMID: 28933590]
[148]
Krol, J.; Busskamp, V.; Markiewicz, I.; Stadler, M.B.; Ribi, S.; Richter, J.; Duebel, J.; Bicker, S.; Fehling, H.J.; Schübeler, D.; Oertner, T.G.; Schratt, G.; Bibel, M.; Roska, B.; Filipowicz, W. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common pro-perty of neuronal microRNAs. Cell, 2010, 141(4), 618-631.
[http://dx.doi.org/10.1016/j.cell.2010.03.039] [PMID: 20478254]
[149]
Wang, F.E.; Zhang, C.; Maminishkis, A.; Dong, L.; Zhi, C.; Li, R.; Zhao, J.; Majerciak, V.; Gaur, A.B.; Chen, S.; Miller, S.S. MicroRNA-204/211 alters epithelial physiology. FASEB J., 2010, 24(5), 1552-1571.
[http://dx.doi.org/10.1096/fj.08-125856] [PMID: 20056717]
[150]
Dai, X.; Rao, C.; Li, H.; Chen, Y.; Fan, L.; Geng, H.; Li, S.; Qu, J.; Hou, L. Regulation of pigmentation by microRNAs: MITF-dependent microRNA-211 targets TGF-β receptor 2. Pigment Cell Melanoma Res., 2015, 28(2), 217-222.
[http://dx.doi.org/10.1111/pcmr.12334] [PMID: 25444235]
[151]
Ozeki, N.; Hase, N.; Hiyama, T.; Yamaguchi, H.; Kawai-Asano, R.; Nakata, K.; Mogi, M. MicroRNA-211 and autophagy-related gene 14 signaling regulate osteoblast-like cell differentiation of human induced pluripotent stem cells. Exp. Cell Res., 2017, 352(1), 63-74.
[http://dx.doi.org/10.1016/j.yexcr.2017.01.018] [PMID: 28159471]
[152]
Ozturk, D.G. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. 2019, 15(3), 375-390.
[153]
Naso, F.; Intartaglia, D.; Falanga, D.; Soldati, C.; Polishchuk, E.; Giamundo, G.; Tiberi, P.; Marrocco, E.; Scudieri, P.; Di Malta, C.; Trapa-ni, I.; Nusco, E.; Salierno, F.G.; Surace, E.M.; Galietta, L.J.; Banfi, S.; Auricchio, A.; Ballabio, A.; Medina, D.L.; Conte, I. Light-responsive microRNA miR-211 targets Ezrin to modulate lysosomal biogenesis and retinal cell clearance. EMBO J., 2020, 39(8)e102468
[http://dx.doi.org/10.15252/embj.2019102468] [PMID: 32154600]
[154]
Xiao, J.; Zhu, X.; He, B.; Zhang, Y.; Kang, B.; Wang, Z.; Ni, X. MiR-204 regulates cardiomyocyte autophagy induced by ischemia-reperfusion through LC3-II. J. Biomed. Sci., 2011, 18(1), 35.
[http://dx.doi.org/10.1186/1423-0127-18-35] [PMID: 21631941]
[155]
Hall, D.P.; Cost, N.G.; Hegde, S.; Kellner, E.; Mikhaylova, O.; Stratton, Y.; Ehmer, B.; Abplanalp, W.A.; Pandey, R.; Biesiada, J.; Harte-neck, C.; Plas, D.R.; Meller, J.; Czyzyk-Krzeska, M.F. TRPM3 and miR-204 establish a regulatory circuit that controls oncogenic autop-hagy in clear cell renal cell carcinoma. Cancer Cell, 2014, 26(5), 738-753.
[http://dx.doi.org/10.1016/j.ccell.2014.09.015] [PMID: 25517751]
[156]
Wang, A.L.; Lukas, T.J.; Yuan, M.; Du, N.; Tso, M.O.; Neufeld, A.H. Autophagy and exosomes in the aged retinal pigment epithelium: Possible relevance to drusen formation and age-related macular degeneration. PLoS One, 2009, 4(1)e4160
[http://dx.doi.org/10.1371/journal.pone.0004160] [PMID: 19129916]
[157]
Ferrington, D.A.; Sinha, D.; Kaarniranta, K. Defects in retinal pigment epithelial cell proteolysis and the pathology associated with age-related macular degeneration. Prog. Retin. Eye Res., 2016, 51, 69-89.
[http://dx.doi.org/10.1016/j.preteyeres.2015.09.002] [PMID: 26344735]
[158]
Ji, D.; Wang, Y.; Li, H.; Sun, B.; Luo, X. Long non-coding RNA LINC00461/miR-149-5p/LRIG2 axis regulates hepatocellular carcinoma progression. Biochem. Biophys. Res. Commun., 2019, 512(2), 176-181.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.049] [PMID: 30879766]
[159]
Xu, R.D. miR-149-5p inhibits cell growth by regulating TWEAK/Fn14/PI3K/AKT pathway and predicts favorable survival in human os-teosarcoma. Int. J. Immunopathol. Pharmacol., 2018, 322058738418786656
[160]
Li, J.; Li, Y.; Wang, B.; Ma, Y.; Chen, P. LncRNA-PCAT-1 promotes non-small cell lung cancer progression by regulating miR-149-5p/LRIG2 axis. J. Cell. Biochem., 2018.
[PMID: 30569478]
[161]
Kong, Y.G.; Cui, M.; Chen, S.M.; Xu, Y.; Xu, Y.; Tao, Z.Z. LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene, 2018, 639, 77-84.
[http://dx.doi.org/10.1016/j.gene.2017.10.006] [PMID: 28987345]
[162]
Chen, W.; Zhang, J.; Xu, H.; Dai, J.; Zhang, X. The negative regulation of miR-149-5p in melanoma cell survival and apoptosis by targe-ting LRIG2. Am. J. Transl. Res., 2017, 9(9), 4331-4340.
[PMID: 28979706]
[163]
Tian, P.; Yan, L. Inhibition of microRNA-149-5p induces apoptosis of acute myeloid leukemia cell line THP-1 by targeting Fas Ligand (FASLG). Med. Sci. Monit., 2016, 22, 5116-5123.
[http://dx.doi.org/10.12659/MSM.899114] [PMID: 28013316]
[164]
Grieco, F.A. MicroRNAs miR-23a-3p, miR-23b-3p, and miR-149- 5p regulate the expression of proapoptotic BH3-only proteins DP5 and PUMA in human pancreatic β-cells. 2017, 66(1), 100-112.
[http://dx.doi.org/10.2337/db16-0592]
[165]
Ruan, D.; Liu, Y.; Wang, X.; Yang, D.; Sun, Y. miR-149-5p protects against high glucose-induced pancreatic beta cell apoptosis via targe-ting the BH3-only protein BIM. Exp. Mol. Pathol., 2019, 110104279
[http://dx.doi.org/10.1016/j.yexmp.2019.104279] [PMID: 31260649]
[166]
Ye, Z.M.; Yang, S.; Xia, Y.P.; Hu, R.T.; Chen, S.; Li, B.W.; Chen, S.L.; Luo, X.Y.; Mao, L.; Li, Y.; Jin, H.; Qin, C.; Hu, B. LncRNA MIAT sponges miR-149-5p to inhibit efferocytosis in advanced atherosclerosis through CD47 upregulation. Cell Death Dis., 2019, 10(2), 138.
[http://dx.doi.org/10.1038/s41419-019-1409-4] [PMID: 30755588]
[167]
Boulias, K.; Horvitz, H.R. The C. elegans microRNA mir-71 acts in neurons to promote germline-mediated longevity through regulation of DAF-16/FOXO. Cell Metab., 2012, 15(4), 439-450.
[http://dx.doi.org/10.1016/j.cmet.2012.02.014] [PMID: 22482727]
[168]
Wang, D.; Hou, L.; Nakamura, S.; Su, M.; Li, F.; Chen, W.; Yan, Y.; Green, C.D.; Chen, D.; Zhang, H.; Antebi, A.; Han, J.J. LIN-28 balan-ces longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell, 2017, 16(1), 113-124.
[http://dx.doi.org/10.1111/acel.12539] [PMID: 27730721]
[169]
Sun, Y.; Zhang, D.; Liu, X.; Li, X.; Liu, F.; Yu, Y.; Jia, S.; Zhou, Y.; Zhao, Y. Endoplasmic reticulum stress affects lipid metabolism in atherosclerosis via CHOP activation and over-expression of miR-33. Cell. Physiol. Biochem., 2018, 48(5), 1995-2010.
[http://dx.doi.org/10.1159/000492522] [PMID: 30092598]
[170]
Zhang, X.; Fernández-Hernando, C. miR-33 regulation of adaptive fibrotic response in cardiac remodeling. Circ. Res., 2017, 120(5), 753-755.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310575] [PMID: 28254794]
[171]
Karunakaran, D.; Thrush, A.B.; Nguyen, M.A.; Richards, L.; Geoffrion, M.; Singaravelu, R.; Ramphos, E.; Shangari, P.; Ouimet, M.; Peza-cki, J.P.; Moore, K.J.; Perisic, L.; Maegdefessel, L.; Hedin, U.; Harper, M.E.; Rayner, K.J. Macrophage mitochondrial energy status regula-tes cholesterol efflux and is enhanced by anti-miR33 in Atherosclerosis. Circ. Res., 2015, 117(3), 266-278.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.305624] [PMID: 26002865]
[172]
Rayner, K.J.; Sheedy, F.J.; Esau, C.C.; Hussain, F.N.; Temel, R.E.; Parathath, S.; van Gils, J.M.; Rayner, A.J.; Chang, A.N.; Suarez, Y.; Fernandez-Hernando, C.; Fisher, E.A.; Moore, K.J. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J. Clin. Invest., 2011, 121(7), 2921-2931.
[http://dx.doi.org/10.1172/JCI57275] [PMID: 21646721]
[173]
Rotllan, N.; Ramírez, C.M.; Aryal, B.; Esau, C.C.; Fernández-Hernando, C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice--brief report. Arterioscler. Thromb. Vasc. Biol., 2013, 33(8), 1973-1977.
[http://dx.doi.org/10.1161/ATVBAHA.113.301732] [PMID: 23702658]
[174]
Price, N.L.; Rotllan, N.; Canfrán-Duque, A.; Zhang, X.; Pati, P.; Arias, N.; Moen, J.; Mayr, M.; Ford, D.A.; Baldán, Á.; Suárez, Y. Fernán-dez-Hernando, C. Genetic dissection of the impact of miR-33a and miR-33b during the progression of atherosclerosis. Cell Rep., 2017, 21(5), 1317-1330.
[http://dx.doi.org/10.1016/j.celrep.2017.10.023] [PMID: 29091769]
[175]
Razani, B.; Feng, C.; Coleman, T.; Emanuel, R.; Wen, H.; Hwang, S.; Ting, J.P.; Virgin, H.W.; Kastan, M.B.; Semenkovich, C.F. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab., 2012, 15(4), 534-544.
[http://dx.doi.org/10.1016/j.cmet.2012.02.011] [PMID: 22440612]
[176]
Le Guezennec, X.; Brichkina, A.; Huang, Y.F.; Kostromina, E.; Han, W.; Bulavin, D.V. Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab., 2012, 16(1), 68-80.
[http://dx.doi.org/10.1016/j.cmet.2012.06.003] [PMID: 22768840]
[177]
Moore, K.J.; Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell, 2011, 145(3), 341-355.
[http://dx.doi.org/10.1016/j.cell.2011.04.005] [PMID: 21529710]
[178]
Maroof, H.; Salajegheh, A.; Smith, R.A.; Lam, A.K. Role of microRNA-34 family in cancer with particular reference to cancer angiogene-sis. Exp. Mol. Pathol., 2014, 97(2), 298-304.
[http://dx.doi.org/10.1016/j.yexmp.2014.08.002] [PMID: 25102298]
[179]
Hart, M.; Walch-Rückheim, B.; Krammes, L.; Kehl, T.; Rheinheimer, S.; Tänzer, T.; Glombitza, B.; Sester, M.; Lenhof, H.P.; Keller, A.; Meese, E. miR-34a as hub of T cell regulation networks. J. Immunother. Cancer, 2019, 7(1), 187.
[http://dx.doi.org/10.1186/s40425-019-0670-5] [PMID: 31311583]
[180]
McCubbrey, A.L.; Nelson, J.D.; Stolberg, V.R.; Blakely, P.K.; McCloskey, L.; Janssen, W.J.; Freeman, C.M.; Curtis, J.L. MicroRNA-34a negatively regulates efferocytosis by tissue macrophages in part via SIRT1. J. Immunol., 2016, 196(3), 1366-1375.
[http://dx.doi.org/10.4049/jimmunol.1401838] [PMID: 26718338]
[181]
McCubbrey, A.L. Negative regulation and immune effects of apoptotic cell clearance in the lung: SIRPa and miR34a, PhD Thesis, The University of Michigan: USA, 2014.
[182]
Kauppinen, A.; Suuronen, T.; Ojala, J.; Kaarniranta, K.; Salminen, A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal., 2013, 25(10), 1939-1948.
[http://dx.doi.org/10.1016/j.cellsig.2013.06.007] [PMID: 23770291]
[183]
Ng, F.; Tang, B.L. Sirtuins’ modulation of autophagy. J. Cell. Physiol., 2013, 228(12), 2262-2270.
[http://dx.doi.org/10.1002/jcp.24399] [PMID: 23696314]
[184]
Kaller, M. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics, 2011, 10(8), M111.010462.
[http://dx.doi.org/10.1074/mcp.M111.010462]
[185]
Bader, A.G. miR-34 - a microRNA replacement therapy is headed to the clinic. Front. Genet., 2012, 3, 120.
[http://dx.doi.org/10.3389/fgene.2012.00120] [PMID: 22783274]
[186]
Wang, F.; Han, D. Sertoli cell phagocytosis: an essential event for spermatogenesis. In: Male Reproductive Health; Wu, W.; Ziglioli, F.; Maestroni, U., Eds.; IntechOpen: London, 2019.
[187]
Panneerdoss, S.; Viswanadhapalli, S.; Abdelfattah, N.; Onyeagucha, B.C.; Timilsina, S.; Mohammad, T.A.; Chen, Y.; Drake, M.; Vuori, K.; Kumar, T.R.; Rao, M.K. Cross-talk between miR-471-5p and autophagy component proteins regulates LC3-Associated Phagocytosis (LAP) of apoptotic germ cells. Nat. Commun., 2017, 8(1), 598.
[http://dx.doi.org/10.1038/s41467-017-00590-9] [PMID: 28928467]
[188]
Elliott, M.R.; Zheng, S.; Park, D.; Woodson, R.I.; Reardon, M.A.; Juncadella, I.J.; Kinchen, J.M.; Zhang, J.; Lysiak, J.J.; Ravichandran, K.S. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature, 2010, 467(7313), 333-337.
[http://dx.doi.org/10.1038/nature09356] [PMID: 20844538]
[189]
Martinez, J.; Almendinger, J.; Oberst, A.; Ness, R.; Dillon, C.P.; Fitzgerald, P.; Hengartner, M.O.; Green, D.R. Microtubule-associated pro-tein 1 light chain 3 alpha (LC3)-associated phagocytosis is required for the efficient clearance of dead cells. Proc. Natl. Acad. Sci. USA, 2011, 108(42), 17396-17401.
[http://dx.doi.org/10.1073/pnas.1113421108] [PMID: 21969579]
[190]
Pimentel-Muiños, F.X.; Boada-Romero, E. Selective autophagy against membranous compartments: Canonical and unconventional purpo-ses and mechanisms. Autophagy, 2014, 10(3), 397-407.
[http://dx.doi.org/10.4161/auto.27244] [PMID: 24419294]
[191]
Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772), 901-906.
[http://dx.doi.org/10.1038/35002607] [PMID: 10706289]
[192]
Grishok, A.; Pasquinelli, A.E.; Conte, D.; Li, N.; Parrish, S.; Ha, I.; Baillie, D.L.; Fire, A.; Ruvkun, G.; Mello, C.C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell, 2001, 106(1), 23-34.
[http://dx.doi.org/10.1016/S0092-8674(01)00431-7] [PMID: 11461699]
[193]
Tang, J.; Guo, W.C.; Hu, J.F.; Yu, L. Let-7 participates in the regulation of inflammatory response in spinal cord injury through PI3K/Akt signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(16), 6767-6773.
[PMID: 31486474]
[194]
Gilles, M.E.; Slack, F.J. Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin. Ther. Targets, 2018, 22(11), 929-939.
[http://dx.doi.org/10.1080/14728222.2018.1535594] [PMID: 30328720]
[195]
Brennan, E.; Wang, B.; McClelland, A.; Mohan, M.; Marai, M.; Beuscart, O.; Derouiche, S.; Gray, S.; Pickering, R.; Tikellis, C.; de Gae-tano, M.; Barry, M.; Belton, O.; Ali-Shah, S.T.; Guiry, P.; Jandeleit-Dahm, K.A.M.; Cooper, M.E.; Godson, C.; Kantharidis, P. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis. Diabetes, 2017, 66(8), 2266-2277.
[http://dx.doi.org/10.2337/db16-1405] [PMID: 28487436]
[196]
Hu, G.; Zhou, R.; Liu, J.; Gong, A.Y.; Eischeid, A.N.; Dittman, J.W.; Chen, X.M. MicroRNA-98 and let-7 confer cholangiocyte expression of cytokine-inducible Src homology 2-containing protein in response to microbial challenge. J. Immunol., 2009, 183(3), 1617-1624.
[http://dx.doi.org/10.4049/jimmunol.0804362] [PMID: 19592657]
[197]
Jones, J.D.; Sinder, B.P.; Paige, D.; Soki, F.N.; Koh, A.J.; Thiele, S.; Shiozawa, Y.; Hofbauer, L.C.; Daignault, S.; Roca, H.; McCauley, L.K. Trabectedin reduces skeletal prostate cancer tumor size in association with effects on M2 macrophages and efferocytosis. Neoplasia, 2019, 21(2), 172-184.
[http://dx.doi.org/10.1016/j.neo.2018.11.003] [PMID: 30591422]
[198]
Zhong, X.; Lee, H.N.; Kim, S.H.; Park, S.A.; Kim, W.; Cha, Y.N.; Surh, Y.J. Myc-nick promotes efferocytosis through M2 macrophage polarization during resolution of inflammation. FASEB J., 2018, 32(10), 5312-5325.
[http://dx.doi.org/10.1096/fj.201800223R] [PMID: 29718706]
[199]
Banerjee, S.; Xie, N.; Cui, H.; Tan, Z.; Yang, S.; Icyuz, M.; Abraham, E.; Liu, G. MicroRNA let-7c regulates macrophage polarization. J. Immunol., 2013, 190(12), 6542-6549.
[http://dx.doi.org/10.4049/jimmunol.1202496] [PMID: 23667114]
[200]
Fadok, V.A.; Warner, M.L.; Bratton, D.L.; Henson, P.M. CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (α v β 3). J. Immunol., 1998, 161(11), 6250-6257.
[PMID: 9834113]
[201]
Lu, Y.C.; Kim, I.; Lye, E.; Shen, F.; Suzuki, N.; Suzuki, S.; Gerondakis, S.; Akira, S.; Gaffen, S.L.; Yeh, W.C.; Ohashi, P.S. Differential role for c-Rel and C/EBPbeta/delta in TLR-mediated induction of proinflammatory cytokines. J. Immunol., 2009, 182(11), 7212-7221.
[http://dx.doi.org/10.4049/jimmunol.0802971] [PMID: 19454718]
[202]
Litvak, V.; Ramsey, S.A.; Rust, A.G.; Zak, D.E.; Kennedy, K.A.; Lampano, A.E.; Nykter, M.; Shmulevich, I.; Aderem, A. Function of C/EBPdelta in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat. Immunol., 2009, 10(4), 437-443.
[http://dx.doi.org/10.1038/ni.1721] [PMID: 19270711]
[203]
Maitra, U.; Gan, L.; Chang, S.; Li, L. Low-dose endotoxin induces inflammation by selectively removing nuclear receptors and activating CCAAT/enhancer-binding protein δ. J. Immunol., 2011, 186(7), 4467-4473.
[http://dx.doi.org/10.4049/jimmunol.1003300] [PMID: 21357541]
[204]
Hardy, R.R.; Hayakawa, K. Perspectives on fetal derived CD5+ B1 B cells. Eur. J. Immunol., 2015, 45(11), 2978-2984.
[http://dx.doi.org/10.1002/eji.201445146] [PMID: 26339791]
[205]
Hayakawa, K.; Li, Y.S.; Shinton, S.A.; Bandi, S.R.; Formica, A.M.; Brill-Dashoff, J.; Hardy, R.R. Crucial role of increased Arid3a at the Pre-B and immature B cell stages for B1a cell generation. Front. Immunol., 2019, 10, 457.
[http://dx.doi.org/10.3389/fimmu.2019.00457] [PMID: 30930899]
[206]
Yang, Q.; Zhang, Q.; Qing, Y.; Zhou, L.; Mi, Q.; Zhou, J. miR-155 is dispensable in monosodium urate-induced gouty inflammation in mice. Arthritis Res. Ther., 2018, 20(1), 144-144.
[http://dx.doi.org/10.1186/s13075-018-1550-y] [PMID: 29996893]
[207]
Michaille, J.J. miR-155 expression in antitumor immunity: The higher the better? 2019, 58(4), 208-218.
[208]
Wang, C. Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol. Ther., 2017, 25(1), 192-204.
[http://dx.doi.org/10.1016/j.ymthe.2016.09.001]
[209]
Eissa, M.G.; Artlett, C.M. The microRNA miR-155 is essential in fibrosis. Noncoding RNA, 2019, 5(1), 23.
[http://dx.doi.org/10.3390/ncrna5010023] [PMID: 30871125]
[210]
Claßen, L.; Tykocinski, L.O.; Wiedmann, F.; Birr, C.; Schiller, P.; Tucher, C.; Krienke, S.; Raab, M.S.; Blank, N.; Lorenz, H.M.; Schiller, M. Extracellular vesicles mediate intercellular communication: Transfer of functionally active microRNAs by microvesicles into phago-cytes. Eur. J. Immunol., 2017, 47(9), 1535-1549.
[http://dx.doi.org/10.1002/eji.201646595] [PMID: 28665018]
[211]
Wei, Y.; Zhu, M.; Corbalán-Campos, J.; Heyll, K.; Weber, C.; Schober, A. Regulation of Csf1r and Bcl6 in macrophages mediates the sta-ge-specific effects of microRNA-155 on atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2015, 35(4), 796-803.
[http://dx.doi.org/10.1161/ATVBAHA.114.304723] [PMID: 25810298]
[212]
Nazari-Jahantigh, M.; Wei, Y.; Noels, H.; Akhtar, S.; Zhou, Z.; Koenen, R.R.; Heyll, K.; Gremse, F.; Kiessling, F.; Grommes, J.; Weber, C.; Schober, A. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J. Clin. Invest., 2012, 122(11), 4190-4202.
[http://dx.doi.org/10.1172/JCI61716] [PMID: 23041630]
[213]
Rajavashisth, T.B.; Andalibi, A.; Territo, M.C.; Berliner, J.A.; Navab, M.; Fogelman, A.M.; Lusis, A.J. Induction of endothelial cell ex-pression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature, 1990, 344(6263), 254-257.
[http://dx.doi.org/10.1038/344254a0] [PMID: 1690354]
[214]
McAlpine, C.S.; Kiss, M.G.; Rattik, S.; He, S.; Vassalli, A.; Valet, C.; Anzai, A.; Chan, C.T.; Mindur, J.E.; Kahles, F.; Poller, W.C.; Fro-dermann, V.; Fenn, A.M.; Gregory, A.F.; Halle, L.; Iwamoto, Y.; Hoyer, F.F.; Binder, C.J.; Libby, P.; Tafti, M.; Scammell, T.E.; Nahren-dorf, M.; Swirski, F.K. Sleep modulates haematopoiesis and protects against atherosclerosis. Nature, 2019, 566(7744), 383-387.
[http://dx.doi.org/10.1038/s41586-019-0948-2] [PMID: 30760925]
[215]
Di Gregoli, K.; Johnson, J.L. Role of colony-stimulating factors in atherosclerosis. Curr. Opin. Lipidol., 2012, 23(5), 412-421.
[http://dx.doi.org/10.1097/MOL.0b013e328357ca6e] [PMID: 22964991]
[216]
Sjaarda, J.; Gerstein, H.; Chong, M.; Yusuf, S.; Meyre, D.; Anand, S.S.; Hess, S.; Paré, G. Blood CSF1 and CXCL12 as causal mediators of coronary artery disease. J. Am. Coll. Cardiol., 2018, 72(3), 300-310.
[http://dx.doi.org/10.1016/j.jacc.2018.04.067] [PMID: 30012324]
[217]
Ivanov, S.; Gallerand, A.; Gros, M.; Stunault, M.I.; Merlin, J.; Vaillant, N.; Yvan-Charvet, L.; Guinamard, R.R. Mesothelial cell CSF1 sus-tains peritoneal macrophage proliferation. Eur. J. Immunol., 2019, 49(11), 2012-2018.
[http://dx.doi.org/10.1002/eji.201948164] [PMID: 31251389]
[218]
Mantuano, E.; Brifault, C.; Lam, M.S.; Azmoon, P.; Gilder, A.S.; Gonias, S.L. LDL receptor-related protein-1 regulates NFκB and mi-croRNA-155 in macrophages to control the inflammatory response. Proc. Natl. Acad. Sci. USA, 2016, 113(5), 1369-1374.
[http://dx.doi.org/10.1073/pnas.1515480113] [PMID: 26787872]
[219]
Subramanian, M.; Hayes, C.D.; Thome, J.J.; Thorp, E.; Matsushima, G.K.; Herz, J.; Farber, D.L.; Liu, K.; Lakshmana, M.; Tabas, I. An AXL/LRP-1/RANBP9 complex mediates DC efferocytosis and antigen cross-presentation in vivo. J. Clin. Invest., 2014, 124(3), 1296-1308.
[http://dx.doi.org/10.1172/JCI72051] [PMID: 24509082]
[220]
Yancey, P.G.; Blakemore, J.; Ding, L.; Fan, D.; Overton, C.D.; Zhang, Y.; Linton, M.F.; Fazio, S. Macrophage LRP-1 controls plaque cellu-larity by regulating efferocytosis and Akt activation. Arterioscler. Thromb. Vasc. Biol., 2010, 30(4), 787-795.
[http://dx.doi.org/10.1161/ATVBAHA.109.202051] [PMID: 20150557]
[221]
Brophy, M.L.; Dong, Y.; Tao, H.; Yancey, P.G.; Song, K.; Zhang, K.; Wen, A.; Wu, H.; Lee, Y.; Malovichko, M.V.; Sithu, S.D.; Wong, S.; Yu, L.; Kocher, O.; Bischoff, J.; Srivastava, S.; Linton, M.F.; Ley, K.; Chen, H. Myeloid-specific deletion of Epsins 1 and 2 reduces athe-rosclerosis by preventing LRP-1 downregulation. Circ. Res., 2019, 124(4), e6-e19.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313028] [PMID: 30595089]
[222]
Srinoun, K.; Nopparatana, C.; Wongchanchailert, M.; Fucharoen, S. MiR-155 enhances phagocytic activity of β-thalassemia/HbE mono-cytes via targeting of BACH1. Nat. Commun., 2017, 106(5), 638-647.
[http://dx.doi.org/10.1007/s12185-017-2291-4] [PMID: 28685309]
[223]
Lee, K-S.; Kim, J.; Kwak, S.N.; Lee, K.S.; Lee, D.K.; Ha, K.S.; Won, M.H.; Jeoung, D.; Lee, H.; Kwon, Y.G.; Kim, Y.M. Functional role of NF-κB in expression of human endothelial nitric oxide synthase. Biochem. Biophys. Res. Commun., 2014, 448(1), 101-107.
[http://dx.doi.org/10.1016/j.bbrc.2014.04.079] [PMID: 24769202]
[224]
Tian, F-J.; An, L.N.; Wang, G.K.; Zhu, J.Q.; Li, Q.; Zhang, Y.Y.; Zeng, A.; Zou, J.; Zhu, R.F.; Han, X.S.; Shen, N.; Yang, H.T.; Zhao, X.X.; Huang, S.; Qin, Y.W.; Jing, Q. Elevated microRNA-155 promotes foam cell formation by targeting HBP1 in atherogenesis. Cardiovasc. Res., 2014, 103(1), 100-110.
[http://dx.doi.org/10.1093/cvr/cvu070] [PMID: 24675724]
[225]
Suresh Babu, S.; Thandavarayan, R.A.; Joladarashi, D.; Jeyabal, P.; Krishnamurthy, S.; Bhimaraj, A.; Youker, K.A.; Krishnamurthy, P. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci. Rep., 2016, 6(1), 36207.
[http://dx.doi.org/10.1038/srep36207] [PMID: 27827458]
[226]
Banerjee, J.; Sen, C.K. MicroRNA and Wound Healing. Adv. Exp. Med. Biol., 2015, 888, 291-305.
[http://dx.doi.org/10.1007/978-3-319-22671-2_15] [PMID: 26663189]
[227]
Levin, A.A. A review of the issues in the pharmacokinetics and toxicology of phosphorothioate antisense oligonucleotides. Biochim. Biophys. Acta, 1999, 1489(1), 69-84.
[http://dx.doi.org/10.1016/S0167-4781(99)00140-2] [PMID: 10806998]
[228]
Geary, R.S.; Yu, R.Z.; Levin, A.A. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs, 2001, 2(4), 562-573.
[PMID: 11566019]
[229]
Matsuyama, H.; Suzuki, H.I. Systems and synthetic microRNA biology: from biogenesis to disease pathogenesis. Int. J. Mol. Sci., 2019, 21(1), 132.
[PMID: 31878193]
[230]
Winter, J.; Jung, S.; Keller, S.; Gregory, R.I.; Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat. Cell Biol., 2009, 11(3), 228-234.
[http://dx.doi.org/10.1038/ncb0309-228]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy