Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synthesis, Characterization and ADME Prediction Study of Heterocyclic Moieties-linked Indole Derivatives as Potential Antimicrobial Agents

Author(s): Archana Kumari and Rajesh Kumar Singh*

Volume 20, Issue 1, 2023

Published on: 08 June, 2022

Page: [40 - 47] Pages: 8

DOI: 10.2174/1570180819666220404084045

Price: $65

Abstract

Background: Heterocyclic compounds are vital for research due to their diverse pharmacological profiles. They are key structural components of many of the potent antimicrobial drugs available on the market today but still facing the problem of drug resistance by microbes. Indole and its derivatives display versatile pharmacological activities, such as analgesic, antimicrobial, antidepressant, antidiabetic, anti-convulsant, antihelmintic, and anti-inflammatory.

Objective: Indole ring was linked to other key heterocyclic moieties, such as morpholine, imidazole, piperidine, and piperazine at the active 3rd position by Schotten-Baumann reaction, and further evaluated against Gram-positive and Gram-negative bacteria with the hope to develop potent antimicrobial agents.

Methods: Synthesis of derivatives was performed under appropriate conditions and characterized by IR, NMR (1H and 13C), and CHN elemental analysis. Further, in vitro assays were used to evaluate their antimicrobial activity by agar diffusion and agar streak dilution method against Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 25922). ADME properties were also calculated using the Swiss ADME online program.

Results: Compounds 4b, 4f, 4i, 4k showed maximum potency in both in vitro assays calculated as the zone of inhibition (17±0.5 mm-22±0.25 mm) and minimum inhibitory concentration (MIC= 6.25-25 μg/ml)) comparable to standard drugs ciprofloxacin and ampicillin. ADME results showed zero violation of the Lipinski’s rule.

Conclusion: A great deal of work has been done on the synthesis and evaluation of indole derivatives to explore their antimicrobial effect. These findings may lead to the design and development of more effective antimicrobial drug candidates.

Keywords: Indole, Bacillus subtilis, Escherichia coli, ADME, antimicrobial, MIC.

Graphical Abstract

[1]
Kumari, A.; Singh, R.K. Morpholine as ubiquitous pharmacophore in medicinal chemistry: Deep insight into the structure-activity relationship (SAR). Bioorg. Chem., 2020, 96, 103578.
[http://dx.doi.org/10.1016/j.bioorg.2020.103578] [PMID: 31978684]
[2]
Kumari, A.; Singh, R.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives. Bioorg. Chem., 2019, 89, 103021.
[http://dx.doi.org/10.1016/j.bioorg.2019.103021] [PMID: 31176854]
[3]
Sethi, N.S.; Prasad, D.N.; Singh, R.K. An insight into the synthesis and SAR of 2,4-thiazolidinediones (2,4-tzd) as multifunctional scaffold: A review. Mini Rev. Med. Chem., 2020, 20(4), 308-330.
[http://dx.doi.org/10.2174/1389557519666191029102838] [PMID: 31660809]
[4]
Kumar, S.; Singh, R.K.; Patial, B.; Goyal, S.; Bhardwaj, T.R. Recent advances in novel heterocyclic scaffolds for the treatment of drug-resistant malaria. J. Enzyme Inhib. Med. Chem., 2016, 31(2), 173-186.
[http://dx.doi.org/10.3109/14756366.2015.1016513] [PMID: 25775094]
[5]
Frank, É.; Szőllősi, G. Nitrogen-containing heterocycles as significant molecular scaffolds for medicinal and other applications. Molecules, 2021, 26(15), 4617.
[http://dx.doi.org/10.3390/molecules26154617] [PMID: 34361770]
[6]
Kurt-Kızıldoğan, A.; Otur, C.; Yılmaz, C.; Arslan, S.; Mutlu, D.; Kivrak, A.; Algso, M.; Kayhan, A.; Çetin, D.; Konus, M. Synthesis, cytotoxicity, antioxidant and antimicrobial activity of indole based novel small molecules. Lett. Drug Des. Discov., 2021, 18(5), 461-470.
[http://dx.doi.org/10.2174/1570180817999201109203226]
[7]
Sethi, N.S.; Prasad, D.N.; Singh, R.K. Synthesis, anticancer, and antibacterial studies of benzylidene bearing 5-substituted and 3,5-disubstituted-2,4-thiazolidinedione derivatives. Med. Chem., 2021, 17(4), 369-379.
[http://dx.doi.org/10.2174/1573406416666200512073640] [PMID: 32394843]
[8]
Thanikachalam, P.V.; Maurya, R.K.; Garg, V.; Monga, V. Corrigendum to “An insight into the medicinal perspective of synthetic analogs of indole: A review”. Eur. J. Med. Chem., 2019, 183, 111680.
[http://dx.doi.org/10.1016/j.ejmech.2019.111680] [PMID: 31520927]
[9]
Kumar, D.; Sharma, S.; Kalra, S.; Singh, G.; Monga, V.; Kumar, B. Medicinal perspective of indole derivatives: Recent developments and structure-activity relationship studies. Curr. Drug Targets, 2020, 21(9), 864-891.
[http://dx.doi.org/10.2174/1389450121666200310115327] [PMID: 32156235]
[10]
Liu, Y.; Cui, Y.; Lu, L.; Gong, Y.; Han, W.; Piao, G. Natural indole-containing alkaloids and their antibacterial activities. Arch. Pharm. (Weinheim), 2020, 353(10), e2000120.
[http://dx.doi.org/10.1002/ardp.202000120] [PMID: 32557757]
[11]
Nieto, M.J.; Lupton, H.K. Indole and indoline scaffolds in antimicrobials: Overview, synthesis, and recent advances in antimicrobial research. Curr. Med. Chem., 2021, 28(24), 4828-4844.
[http://dx.doi.org/10.2174/0929867327666201102114923] [PMID: 33138747]
[12]
Netz, N.; Opatz, T. Marine indole alkaloids. Mar. Drugs, 2015, 13(8), 4814-4914.
[http://dx.doi.org/10.3390/md13084814] [PMID: 26287214]
[13]
Kaur, J.; Utreja, D.; Ekta; Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16(1), 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939] [PMID: 31965921]
[14]
Mollica, A.; Locatelli, M.; Stefanucci, A.; Pinnen, F. Synthesis and bioactivity of secondary metabolites from marine sponges containing dibrominated indolic systems. Molecules, 2012, 17(5), 6083-6099.
[http://dx.doi.org/10.3390/molecules17056083] [PMID: 22614862]
[15]
Takahashi, Y.; Tanaka, N.; Kubota, T.; Ishiyama, H.; Shibazaki, A.; Gonoi, T.; Fromont, J.; Kobayashi, J.I. Heteroaromatic alkaloids, nakijinamines, from a sponge Suberites sp. Tetrahedron, 2012, 68(41), 8545-8550.
[http://dx.doi.org/10.1016/j.tet.2012.08.018]
[16]
Nassar, E. Synthesis, (in vitro) Antitumor and Antimicrobial Activity of some Pyrazoline, Pyridine, and Pyrimidine Derivatives Linked to Indole Moiety. J. Am. Sci., 2010, 6(8), 338-347.
[17]
Hurdle, J.G.; O’Neill, A.J.; Chopra, I. Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. J. Antimicrob. Chemother., 2004, 54(2), 549-552.
[http://dx.doi.org/10.1093/jac/dkh352] [PMID: 15243028]
[18]
Li, T.; Singh, S.; Zhai, X.; Meng, X.; Singh, R.K. Microwave-assisted synthesis, in silico ADME prediction and antibacterial study of 2-(substituted acetamido)-5-nitrobenzophenone derivatives. Asian J. Chem., 2015, 27(7), 2452-2456.
[http://dx.doi.org/10.14233/ajchem.2015.17914]
[19]
Özdemir, A.; Altintop, M.D.; Kaplancıklı, Z.A.; Turan-Zitouni, G.; Karaca, H.; Tunalı, Y. Synthesis and biological evaluation of pyrazoline derivatives bearing an indole moiety as new antimicrobial agents. Arch. Pharm. (Weinheim), 2013, 346(6), 463-469.
[http://dx.doi.org/10.1002/ardp.201200479] [PMID: 23681942]
[20]
Porwal, S.; Gupta, S.; Chauhan, P.M.S. gem-Dithioacetylated indole derivatives as novel antileishmanial agents. Bioorg. Med. Chem. Lett., 2017, 27(20), 4643-4646.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.018] [PMID: 28927767]
[21]
Singh, P.; Verma, P.; Yadav, B.; Komath, S.S. Synthesis and evaluation of indole-based new scaffolds for antimicrobial activities-identification of promising candidates. Bioorg. Med. Chem. Lett., 2011, 21(11), 3367-3372.
[http://dx.doi.org/10.1016/j.bmcl.2011.04.001] [PMID: 21524574]
[22]
Li, P.; Sahore, K.; Liu, J.; Singh, R.K. Snthesis and Antimicrobial Evaluation of 2-Aminobenzophenone Linked 1,4-Dihydropyridine Derivatives. Asian J. Chem., 2014, 26(16), 5291-5294.
[http://dx.doi.org/10.14233/ajchem.2014.17403]
[23]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1-,C-3-substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2020, 57(1), 428-435.
[http://dx.doi.org/10.1002/jhet.3799]
[24]
de Sá Alves, F.R.; Barreiro, E.J.; Fraga, C.A. From nature to drug discovery: The indole scaffold as a ‘privileged structure’. Mini Rev. Med. Chem., 2009, 9(7), 782-793.
[http://dx.doi.org/10.2174/138955709788452649] [PMID: 19519503]
[25]
Khan, G.A.; War, J.A.; Naiko, G.A.; Pandit, U.J.; Das, R. Porous CuO catalysed green synthesis of some novel 3-alkylated indoles as potent antitubercular agents. J. Saudi Chem. Soc., 2018, 22(1), 6-15.
[http://dx.doi.org/10.1016/j.jscs.2016.03.009]
[26]
Qin, H.L.; Liu, J.; Fang, W.Y.; Ravindar, L.; Rakesh, K.P. Indole-based derivatives as potential antibacterial activity against methicillin-resistance Staphylococcus aureus (MRSA). Eur. J. Med. Chem., 2020, 194, 112245.
[http://dx.doi.org/10.1016/j.ejmech.2020.112245] [PMID: 32220687]
[27]
Singh, V.K.; Dubey, R.; Upadhyay, A.; Sharma, L.K.; Singh, R.K.P. Tetrahedron Letters, Electrochemical approach for synthesis of 3-substituted indole derivatives. Tetrahedron Lett., 2017, 58(45), 4227-4231.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.003]
[28]
Li, S.A.; Cadelis, M.M.; Sue, K.; Blanchet, M.; Vidal, N.; Brunel, J.M.; Bourguet-Kondracki, M.L.; Copp, B.R. 6-Bromoindolglyoxylamido derivatives as antimicrobial agents and antibiotic enhancers. Bioorg. Med. Chem., 2019, 27(10), 2090-2099.
[http://dx.doi.org/10.1016/j.bmc.2019.04.004] [PMID: 30975502]
[29]
Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1308-1315.
[http://dx.doi.org/10.1021/ci010366a] [PMID: 11604031]
[30]
Cazedey, E.C.; Salgado, H.R. Development and validation of a microbiological agar assay for determination of Orbifloxacin in pharmaceutical preparations. Pharmaceutics, 2011, 3(3), 572-581.
[http://dx.doi.org/10.3390/pharmaceutics3030572]
[31]
Martins, Y.A.; Santos Sousa, R.D.; Oliveira, C.L.C.G.D. Development and validation of a microbiological agar assay for determination of thiamphenicol in soft capsules. Curr. Pharm. Anal., 2020, 16(7), 806-813.
[http://dx.doi.org/10.2174/1573412915666190328213828]
[32]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[33]
In Vivo ADME: What You Need and Why You Need It | SEKISUI XenoTech. Available from: https://www.xenotech.com/blog/in-vivo-adme-what-you-need-and-why-you-need-it/ (Accessed on 10 September 2021)
[34]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis, in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. Med. Chem. Res., 2013, 22(11), 5324-5336.
[http://dx.doi.org/10.1007/s00044-013-0537-0]
[35]
Shaikh, T.M.; Debebe, H. Synthesis and evaluation of antimicrobial activities of novel n-substituted indole derivatives. J. Chem., 2020, 2020, 4358453.
[http://dx.doi.org/10.1155/2020/4358453]
[36]
Tiwari, S.; Kirar, S.; Banerjee, U.C.; Neerupudi, K.B.; Singh, S.; Wani, A.A.; Bharatam, P.V.; Singh, I.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents. Bioorg. Chem., 2020, 99, 103787.
[http://dx.doi.org/10.1016/j.bioorg.2020.103787] [PMID: 32251947]
[37]
Ambrus, J.I.; Kelso, M.J.; Bremner, J.B.; Ball, A.R.; Casadei, G.; Lewis, K. Structure-activity relationships of 2-aryl-1H-indole inhibitors of the NorA efflux pump in Staphylococcus aureus. Bioorg. Med. Chem. Lett., 2008, 18(15), 4294-4297.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.093] [PMID: 18632270]
[38]
Shirinzadeh, H.; Süzen, S.; Altanlar, N.; Westwell, A.D. Antimicrobial activities of new indole derivatives containing 1,2,4-triazole, 1,3,4-thiadiazole and carbothioamide. Turk J Pharm Sci, 2018, 15(3), 291-297.
[http://dx.doi.org/10.4274/tjps.55707] [PMID: 32454672]
[39]
Mendes, R.E.; Deshpande, L.M.; Jones, R.N. Linezolid update: Stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist. Updat., 2014, 17(1-2), 1-12.
[http://dx.doi.org/10.1016/j.drup.2014.04.002] [PMID: 24880801]
[40]
Polak, A. Mode of action of morpholine derivatives. Ann. N. Y. Acad. Sci., 1988, 544(1 Antifungal Dr), 221-228.
[http://dx.doi.org/10.1111/j.1749-6632.1988.tb40406.x] [PMID: 3063169]
[41]
Morandini, A.; Leonetti, B.; Riello, P.; Sole, R.; Gatto, V.; Caligiuri, I.; Rizzolio, F.; Beghetto, V. Synthesis and antimicrobial evaluation of bis-morpholine triazine quaternary ammonium salts. ChemMedChem, 2021, 16(20), 3172-3176. Epub ahead of print
[http://dx.doi.org/10.1002/cmdc.202100409] [PMID: 34288499]
[42]
Li, Z.Z.; Tangadanchu, V.K.R.; Battini, N.; Bheemanaboina, R.R.Y.; Zang, Z.L.; Zhang, S.L.; Zhou, C.H. Indole-nitroimidazole conjugates as efficient manipulators to decrease the genes expression of methicillin-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2019, 179, 723-735.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.093] [PMID: 31284082]

© 2025 Bentham Science Publishers | Privacy Policy