Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Short Communication

Design, Synthesis, and Insecticidal Evaluation of New Benzoylureas Containing Carbamate Groups Based on the Bipartite Model of Sulfonylurea Receptor Binding Site

Author(s): Jingjing Zhang, Hualing Zhu, Lixia Xiong, Jun Shi and Zhiqiang Huang*

Volume 20, Issue 1, 2023

Published on: 09 June, 2022

Page: [110 - 118] Pages: 9

DOI: 10.2174/1570180819666220512182621

Price: $65

Abstract

Background: Benzoylureas are the most commonly used chitin synthesis inhibitors. But, the exact target site of benzoylurea insecticides has not been identified.

Objective: To study whether benzoylphenylureas analogues with a bipartite model could be designed and synthesized as novel insecticides with improved activities.

Methods: Based on the bipartite model of the sulfonylurea receptor binding site and commercial diflubenzuron, a series of novel benzoylureas containing carbamate groups were designed and synthesized via the key intermediate 2,6-difluoro-N-((4-hydroxyphenyl)carbamoyl)benzamide (2). The structures of the target compounds were confirmed by the 1H NMR and high-resolution mass spectrum (HRMS).

Results: The results of bioassays indicated that these target compounds possessed good larvicidal activities against a broad spectrum of insects such as oriental armyworm (Mythimna Separata Walker), diamondback moth (Plutella xylostella), and mosquito (Culex pipiens pallens). A compound containing N, N-diisopropyl (3g) exhibited the highest insecticidal activity against oriental armyworm (40% at 10 mg kg-1), which was comparable with that of diflubenzuron. These compounds also had good larvicidal activities against diamondback moth and mosquito; most of these target compounds exhibited comparable larvicidal activities of diamondback moth with diflubenzuron and higher larvicidal activities of mosquito than diflubenzuron.

Conclusion: The experimental data above preliminarily proved the rationality of our speculation and design ideology, and BPUs analogues with a bipartite model could improve the interaction with the target.

Keywords: Benzoylureas, bipartite model, carbamate, insecticidal, sulfonylurea receptor, binding site.

Graphical Abstract

[1]
Ishaaya, I.; Kontsedalov, S.; Horowitz, A.R. Novaluron (Rimon), a novel IGR: Potency and cross-resistance. Arch. Insect Biochem. Physiol., 2003, 54(4), 157-164.
[http://dx.doi.org/10.1002/arch.10113] [PMID: 14635177]
[2]
Perng, F.S.; Sun, C.N. Susceptibility of diamondback moths (Lepidoptera: Plutellidae) resistant to conventional insecticides to chitin synthesis inhibitors. J. Econ. Entomol., 1987, 80(1), 29-31.
[http://dx.doi.org/10.1093/jee/80.1.29]
[3]
Post, L.C.; Vincent, W.R. A new insecticide inhibits chitin synthesis. Naturwissenschaften, 1973, 60(9), 431-432.
[http://dx.doi.org/10.1007/BF00623561] [PMID: 4772134]
[4]
Ishaaya, I.; Casida, J.E. Dietary TH 6040 alters composition and enzyme activity of housefly larval cuticle. Pestic. Biochem. Physiol., 1974, 4(4), 484-490.
[http://dx.doi.org/10.1016/0048-3575(74)90073-X]
[5]
Grosscurt, A.C. Effects of diflubenzuron on mechanical penetrability, chitin formation, and structure of the elytra of Leptinotarsa decemlineata. J. Insect Physiol., 1978, 24(12), 827-831.
[http://dx.doi.org/10.1016/0022-1910(78)90103-8]
[6]
van Eck, W.H. Mode of action of two benzoylphenyl ureas as inhibitors of chitin synthesis in insects. Insect Biochem., 1979, 9(3), 295-300.
[http://dx.doi.org/10.1016/0020-1790(79)90009-X]
[7]
Cohen, E.; Casida, J.E. Inhibition of tribolium gut chitin synthetase. Pestic. Biochem. Physiol., 1980, 13(2), 129-136.
[http://dx.doi.org/10.1016/0048-3575(80)90064-4]
[8]
Deloach, J.R.; Meola, S.M.; Mayer, R.T.; Thompson, J.M. Inhibition of DNA synthesis by diflubenzuron in pupae of the stable fly Stomoxys calcitrans (L.). Pestic. Biochem. Physiol., 1981, 15(2), 172-180.
[http://dx.doi.org/10.1016/0048-3575(81)90083-3]
[9]
Cohen, E.; Casida, J.E. Properties and inhibition of insect integumental chitin synthetase. Pestic. Biochem. Physiol., 1982, 17(3), 301-306.
[http://dx.doi.org/10.1016/0048-3575(82)90141-9]
[10]
Merzendorfer, H.; Zimoch, L. Chitin metabolism in insects: Structure, function and regulation of chitin synthases and chitinases. J. Exp. Biol., 2003, 206(Pt 24), 4393-4412.
[http://dx.doi.org/10.1242/jeb.00709] [PMID: 14610026]
[11]
Ishii, S.; Matsumura, F. Diflubenzuron-induced changes in activities of the cAMP-dependent protein kinase in the newly molted integument of American cockroach in situ and in cell free conditions. Insect Biochem. Mol. Biol., 1992, 22(1), 69-79.
[http://dx.doi.org/10.1016/0965-1748(92)90101-J]
[12]
Nakagawa, Y.; Ishii, S.; Matsumura, F. Diflubenzuron stimulates phosphorylation of a 39 kDa integumental protein from newly molted American cockroach (Periplaneta americana). Insect Biochem. Mol. Biol., 1996, 26(8-9), 891-898.
[http://dx.doi.org/10.1016/S0965-1748(96)00048-3] [PMID: 9014334]
[13]
Abo-Elghar, G.E.; Fujiyoshi, P.; Matsumura, F. Significance of the sulfonylurea receptor (SUR) as the target of diflubenzuron in chitin synthesis inhibition in Drosophila melanogaster and Blattella germanica. Insect Biochem. Mol. Biol., 2004, 34(8), 743-752.
[http://dx.doi.org/10.1016/j.ibmb.2004.03.009] [PMID: 15262279]
[14]
Meyer, F.; Flötenmeyer, M.; Moussian, B. The sulfonylurea receptor sur is dispensable for chitin synthesis in Drosophila melanogaster embryos. Pest Manag. Sci., 2013, 69(10), 1136-1140.
[http://dx.doi.org/10.1002/ps.3476] [PMID: 23441090]
[15]
Huang, Z.Q.; Feng, C.P.; Tong, J.; Bian, Q.; Zhao, Y. Design, synthesis and bioactivity of phenoxy carboxylate(amide) derivatives containing 4,6-dimethoxypyrimidine. Lett. Drug Des. Discov., 2017, 14(2), 228-232.
[http://dx.doi.org/10.2174/1570180813666160818153617]
[16]
Bryan, J.; Crane, A.; Vila-Carriles, W.H.; Babenko, A.P.; Aguilar-Bryan, L. Insulin secretagogues, sulfonylurea receptors and K(ATP) channels. Curr. Pharm. Des., 2005, 11(21), 2699-2716.
[http://dx.doi.org/10.2174/1381612054546879] [PMID: 16101450]
[17]
Winkler, M.; Stephan, D.; Bieger, S.; Kühner, P.; Wolff, F.; Quast, U. Testing the bipartite model of the sulfonylurea receptor binding site: Binding of A-, B-, and A + B-site ligands. J. Pharmacol. Exp. Ther., 2007, 322(2), 701-708.
[http://dx.doi.org/10.1124/jpet.107.123224] [PMID: 17495126]
[18]
Vila-Carriles, W.H.; Zhao, G.; Bryan, J. Defining a binding pocket for sulfonylureas in ATP-sensitive potassium channels. FASEB J., 2007, 21(1), 18-25.
[http://dx.doi.org/10.1096/fj.06-6730hyp] [PMID: 17110465]
[19]
Abbott, W.S. A method of computing the effectiveness of an insecticide. 1925. J. Am. Mosq. Control Assoc., 1987, 3(2), 302-303.
[http://dx.doi.org/10.1093/jee/18.2.265a] [PMID: 3333059]
[20]
Wu, Y.D.; Shen, J.L.; Chen, J.; Lin, X.W.; Li, A.M. Evaluation of two resistance monitoring methods in Helicoverpa armigera: Topical application method and leaf dipping method. Plant. Protect., 1996, 22(5), 3-6.
[21]
Sun, R.; Zhang, Y.; Chen, L.; Li, Y.; Li, Q.; Song, H.; Huang, R.; Bi, F.; Wang, Q. Design, synthesis, and insecticidal activities of new N-benzoyl-N'-phenyl-N'-sulfenylureas. J. Agric. Food Chem., 2009, 57(9), 3661-3668.
[http://dx.doi.org/10.1021/jf900324a] [PMID: 19326865]
[22]
Sayyed, A.H.; Ferre, J.; Wright, D.J. Mode of inheritance and stability of resistance to Bacillus thuringiensis var kurstaki in a diamondback moth (Plutella xylostella) population from Malaysia. Pest Manag. Sci., 2000, 56(9), 743-748.
[http://dx.doi.org/10.1002/1526-4998(200009)56:9<743::AID-PS195>3.0.CO;2-8]
[23]
Chen, L.; Huang, Z.; Wang, Q.; Shang, J.; Huang, R.; Bi, F. Insecticidal benzoylphenylurea-S-carbamate: A new propesticide with two effects of both benzoylphenylureas and carbamates. J. Agric. Food Chem., 2007, 55(7), 2659-2663.
[http://dx.doi.org/10.1021/jf063564g] [PMID: 17348679]
[24]
Raymond, M.; Marquine, M. Evolution of insecticide resistance in culex pipiens polulations: The corsican paradox. J. Evol. Biol., 1994, 7(3), 315-337.
[http://dx.doi.org/10.1046/j.1420-9101.1994.7030315.x]
[25]
CCDC 1834966, Availble from: www.ccdc.cam.ac.uk/data_request/cif

© 2025 Bentham Science Publishers | Privacy Policy