Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Review Article

A New Wave of COVID-19 in 2021 with Unique Genetic Characters - Present Global Scenario and Beholding Onwards

Author(s): Sukhes Mukherjee* and Suman Kumar Ray

Volume 22, Issue 6, 2022

Published on: 25 May, 2022

Article ID: e010422202932 Pages: 12

DOI: 10.2174/1871526522666220401101818

Price: $65

conference banner
Abstract

After the first report of a coronavirus-associated pneumonia outbreak in December 2019, the virus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) that causes the infection/disease (COVID-19) has developed into a pandemic, with >100 million people infected in over 210 countries along with two million people deceased from COVID-19 till today. Coronaviruses are positivestranded RNA viruses having restricted RNA polymerase proofreading ability thus it is very genetically susceptible to mutation. The evolution of SARS-CoV-2 from a single-point zoonotic introduction in Wuhan in November or December 2019 was widely expected, and viral sequence surveillance was developed as a result. When the first sequence of SARS-CoV-2 was released, a race to develop vaccines started, and several vaccines are now used worldwide. Independent SARS-CoV-2 lineages have recently been identified in the UK (B.1.1.7), Brazil (P.1), South Africa (B.1.351), and India (B.1.617). The recent appearance of several SARS-CoV-2 variant strains has shattered faith in the modern generation of vaccines' ability to provide enduring defense against infection. The risk of escaping natural and induced immunity has encouraged an urgency to comprehend the implications of these improvements, as well as a drive to develop new approaches to combat SARS-CoV-2 variants.

Keywords: SARS-CoV-2 new variants, COVID-19, B.1.1.7, B.1.351, P.1, B.1.617, angiotensin-converting enzyme-2, vaccines, genetic characters.

Graphical Abstract

[1]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[2]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Wang C, Wang Z, Wang G, Lau JY, Zhang K, Li W. COVID-19 in early 2021: Current status and looking forward. Signal Transduct Target Ther 2021; 6(1): 114.
[http://dx.doi.org/10.1038/s41392-021-00527-1] [PMID: 33686059]
[4]
Keogh-Brown MR, Jensen HT, Edmunds WJ, Smith RD. The impact of COVID-19, associated behaviours and policies on the UK economy: A computable general equilibrium model. SSM Popul Health 2020; 12: 100651.
[http://dx.doi.org/10.1016/j.ssmph.2020.100651] [PMID: 33072839]
[5]
Krammer F. SARS-CoV-2 vaccines in development. Nature 2020; 586(7830): 516-27.
[http://dx.doi.org/10.1038/s41586-020-2798-3] [PMID: 32967006]
[6]
World Health Organization. Coronavirus Disease (COVID-2019) Situation Reports. World Health Organization 2020.
[7]
Alradhawi M, Shubber N, Sheppard J, Ali Y. Effects of the COVID-19 pandemic on mental well-being amongst individu-als in society- A letter to the editor on “The socio-economic implications of the coronavirus and COVID-19 pandemic: A review”. Int J Surg 2020; 78: 147-8.
[http://dx.doi.org/10.1016/j.ijsu.2020.04.070] [PMID: 32380230]
[8]
Ray SK, Mukherjee S. Understanding the role of corona virus based on current scientific evidence - A review with emerging importance in pandemic. Recent Pat Antiinfect Drug Discov 2020; 15(2): 89-103.
[http://dx.doi.org/10.2174/1574891X15999200918144833] [PMID: 32957894]
[9]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[10]
Shang J, Ye G, Shi K, et al. Structural basis of receptor recog-nition by SARS-CoV-2. Nature 2020; 581(7807): 221-4.
[http://dx.doi.org/10.1038/s41586-020-2179-y] [PMID: 32225175]
[11]
Cerutti G, Guo Y, Zhou T, et al. Potent SARS-CoV-2 neutraliz-ing antibodies directed against spike N-terminal domain target a single supersite lead contact. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.10.426120]
[12]
Yang L, Liu W, Yu X, Wu M, Reichert JM, Ho M. COVID-19 antibody therapeutics tracker: A global online database of an-tibody therapeutics for the prevention and treatment of COVID-19. Antib Ther 2020; 3(3): 205-12.
[http://dx.doi.org/10.1093/abt/tbaa020] [PMID: 33215063]
[13]
Iwasaki M, Saito J, Zhao H, Sakamoto A, Hirota K, Ma D. Inflammation Triggered by SARS-CoV-2 and ACE2 Augment Drives Multiple Organ Failure of Severe COVID-19: Molecular Mechanisms and Implications. Inflammation 2021; 44(1): 13-34.
[http://dx.doi.org/10.1007/s10753-020-01337-3] [PMID: 33029758]
[14]
Oz M, Lorke DE. Multifunctional angiotensin converting en-zyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed Pharmacother 2021; 136: 111193.
[http://dx.doi.org/10.1016/j.biopha.2020.111193] [PMID: 33461019]
[15]
Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med 2020; 382(10): 929-36.
[http://dx.doi.org/10.1056/NEJMoa2001191] [PMID: 32004427]
[16]
van Doremalen N, Bushmaker T, Morris DH, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 2020; 382(16): 1564-7.
[http://dx.doi.org/10.1056/NEJMc2004973] [PMID: 32182409]
[17]
Xu Y, Li X, Zhu B, et al. Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal vi-ral shedding. Nat Med 2020; 26(4): 502-5.
[http://dx.doi.org/10.1038/s41591-020-0817-4] [PMID: 32284613]
[18]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Corona-virus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[19]
Islam MR, Hoque MN, Rahman MS, et al. Genome-wide anal-ysis of SARS-CoV-2 virus strains circulating worldwide impli-cates heterogeneity. Sci Rep 2020; 10(1): 14004.
[http://dx.doi.org/10.1038/s41598-020-70812-6] [PMID: 32814791]
[20]
Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med 2020; 18(1): 179.
[http://dx.doi.org/10.1186/s12967-020-02344-6] [PMID: 32321524]
[21]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epi-demiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[22]
Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020; 367(6485): 1444-8.
[http://dx.doi.org/10.1126/science.abb2762] [PMID: 32132184]
[23]
Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniver-sary of the Discovery of ACE2. Circ Res 2020; 126(10): 1456-74.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317015] [PMID: 32264791]
[24]
Astuti I. Ysrafil. Severe acute respiratory syndrome corona-virus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr 2020; 14(4): 407-12.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[25]
Miyazawa M. Immunopathogenesis of SARS-CoV-2-induced pneumonia: Lessons from influenza virus infection. Inflamm Regen 2020; 40(1): 39.
[http://dx.doi.org/10.1186/s41232-020-00148-1] [PMID: 33062077]
[26]
Shah VK, Firmal P, Alam A, Ganguly D, Chattopadhyay S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front Immunol 2020; 11: 1949.
[http://dx.doi.org/10.3389/fimmu.2020.01949] [PMID: 32849654]
[27]
Ray SK, Mukherjee S. Spectrum of biochemical alterations with molecular and serological biomarkers in diagnosis of COVID-19: Searching for novel one to identify disease earlier with better prognosis and drug discovery. Recent Advances in Anti-Infective Drug Discovery 2021; 16(3): 179-81.
[http://dx.doi.org/10.2174/2772434416666211122112743] [PMID: 34809554]
[28]
Horby P, Huntley C, Davies N, et al. NERVTAG paperon COVID- 19 variant of concern B.1.1.7 [Internet]. London: Crown copyright; 2021 [(Accessed on: January 6, 2021) 2021.
[29]
Ray SK, Meshram Y, Mukherjee S. Impact and inescapable effects of coronavirus: History to modern pandemic episode. Coronaviruses 2020; 1: 1-15.
[30]
The U.K. Coronavirus Variant: What We Know. Available from: https://www.nytimes.com/2020/12/21/health/new-covid-strain-uk.html (Accessed on: April 22, 2021).
[31]
Weisblum Y, Schmidt F, Zhang F, et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife 2020; 9: 9.
[http://dx.doi.org/10.7554/eLife.61312] [PMID: 33112236]
[32]
An Indian SARS-CoV-2 variant lands in California. More Danger Ahead? 2021. Available from: https://www.forbes.com/sites/williamhaseltine/2021/04/12/an-indian-sars-cov-2-variant-lands-in-california-more-danger-ahead/?sh=5e5430893b29 (Last seen on 22 April, 2021)
[33]
Moore JP, Offit PA. SARS-CoV-2 vaccines and the growing threat of viral variants. JAMA 2021; 325(9): 821-2.
[http://dx.doi.org/10.1001/jama.2021.1114] [PMID: 33507218]
[34]
SARS-CoV-2 Variant Classifications and Definitions. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
[35]
SARS-CoV-2 Variants vs. Vaccines. Available from: https://asm.org/Articles/2021/February/SARS-CoV-2-Variants-vs-Vaccines
[36]
Lassaunière R, Fonager J, Rasmussen M, et al. SARS-CoV-2 spike mutations arising in Danish mink, their spread to humans and neutralization data. Statens Serum Institut 2020. Available from: https://en.ssi.dk/-/media/arkiv/subsites/covid19/overvaagningsdata/mink-cluster-5-short-report.pdf?la=en
[37]
[38]
Detection of SARS-CoV-2 P681H spike protein variant in Nigeria. Virological 2020. Available from: https://virological.org/t/detection-of-sars-cov-2-p681h-spike-protein-variant-in-nigeria/567
[39]
Lineage B. 1.1.207. Graphic shows B.1.1.207 detected in Peru, Germany, Singapore, Hong Kong, Vietnam, Costa Rica, South Korea, Canada, Australia, Japan, France, Italy, Ecuador, Mexico, UK and the USA, 2021. Available from: https://wp-tl.wikideck.com/Mga_baryante_ng_SARS-CoV-2
[40]
Queensland travellers have hotel quarantine extended after Russian variant of coronavirus detected, 2021. Available from: www.abc.net.au
[41]
Variants: Distribution of cases data. Government Digital Service 2021. Available from: https://www.gov.uk/government/publications/covid-19-variants-genomically-confirmed-case-numbers/variants-distribution-of-cases-data
[42]
South Africa announces a new coronavirus variant. The New York Times 2020. Available from: https://www.nytimes.com/2020/12/19/world/south-africa-announces-a-new-coronavirus-variant.html
[43]
Karim A, Salim S. The 2nd Covid-19 wave in South Africa: Transmissibility & a 501.V2 variant, 11th slide. 2020. Available from: www.scribd.com
[44]
Lowe D. The new mutations. In: The Pipeline. American Association for the Advancement of Science 2020. Available from: https://www.science.org/content/blog-post/new-mutations
[45]
Statement of the WHO working group on COVID-19 animal models (WHO-COM) about the UK and South African SARS-CoV-2 new variants. World Health Organization 2020. Available from: https://www.who.int/publications/m/item/statement-of-the-who-working-group-on-covid-19-animal-models-(who-com)-about-the-uk-and-south-african-sars-cov-2-new-variants
[46]
Zhang W, Davis B, Chen SS, Martinez JS, Plummer JT, Vail E. Emergence of a novel SARS-CoV-2 strain in Southern Califor-nia, USA 2021; MedRxiv 231646931.
[http://dx.doi.org/10.1101/2021.01.18.21249786]
[47]
Delta-PCR-testen [The Delta PCR Test]. Statens Serum Institut 2021. Available from: https://covid19.ssi.dk/diagnostik/delta-pcr-testen
[48]
Koshy J. ‘Coronavirus | Indian 'double mutant' strain named B.1.617’ The Hindu 2021. Available from: https://www.thehindu.com/news/national/indian-double-mutant-strain-named-b1617/article60685908.ece
[49]
‘India's variant-fuelled second wave coincided with spike in infected flights landing in Canada’ Toronto Sun 2021. Available from: https://torontosun.com/news/local-news/indias-variant-fuelled-second-wave-coincided-with-spike-in-infected-flights-landing-in-canada
[50]
Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature 2021; 596(7871): 276-80.
[http://dx.doi.org/10.1038/s41586-021-03777-9] [PMID: 34237773]
[51]
Faria NR, Claro IM, Candido D, et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: Preliminary findings. CADDE Genomic Network 2021. Available from: https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
[52]
Covid-19 Genomics UK Consortium. COG-UK Report on SARSCoV-2 Spike mutations of interest in the UK. 2021. Available from: www.cogconsortium.uk
[53]
Voloch CM, da Silva Francisco R, de Almeida LG, et al. Ge-nomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil. J Virol 2021; 95(10)
[http://dx.doi.org/10.1128/JVI.00119-21]
[54]
Santos E. DOH reports COVID-19 variant 'unique' to PH, first case of Brazil variant. CNN Philippines 2021. Available from: https://www.cnnphilippines.com/news/2021/3/13/Philippines-new-COVID-19-variant-Brazil-UK-South-Africa.html
[55]
Explained: B.1.617 variant and the Covid-19 surge in India. Available from: https://indianexpress.com/article/explained/maharashtra-double-mutant-found-b-1-617-variant-and-the-surge-7274080/
[56]
Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: An in silico analysis. EXCLI J 2020; 19: 410-7.
[PMID: 32210742]
[57]
Li Q, Wu J, Nie J, et al. The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity. Cell 2020; 182(5): 1284-1294.e9.
[http://dx.doi.org/10.1016/j.cell.2020.07.012] [PMID: 32730807]
[58]
Tegally H, Wilkinson E, Lessells RJ, et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat Med 2021; 27(3): 440-6.
[http://dx.doi.org/10.1038/s41591-021-01255-3] [PMID: 33531709]
[59]
Sironi M, Hasnain SE, Rosenthal B, et al. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect Genet Evol 2020; 84: 104384.
[http://dx.doi.org/10.1016/j.meegid.2020.104384] [PMID: 32473976]
[60]
Zhou D, Dejnirattisai W, Supasa P, et al. Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell 2021; S0092-8674(21): 226-9.
[61]
Mandavilli A, Mueller B. Why virus variants have such weird names. The New York Times 2021. Available from:https://www.nytimes.com/2021/03/02/health/virus-variant-names.html
[62]
Schraer R. Coronavirus: Are mutations making it more infectious? BBC News 2020. Available from: https://www.bbc.com/news/health-53325771
[63]
Korber B, Fischer WM, Gnanakaran S, et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell 2020; 182(4): 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[64]
Hou YJ, Chiba S, Halfmann P, et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science 2020; 370(6523): 1464-8.
[http://dx.doi.org/10.1126/science.abe8499] [PMID: 33184236]
[65]
Zhukova A, Blassel L, Lemoine F, Morel M, Voznica J, Gascuel O. Origin, evolution and global spread of SARS-CoV-2. C R Biol 2020; 1-20.
[PMID: 33274614]
[66]
Greenwood M. What mutations of SARS-CoV-2 are causing concern? News Medical Lifesciences 2021. Available from: https://www.news-medical.net/health/What-Mutations-of-SARS-CoV-2-are-Causing-Concern.aspx
[67]
Peiffer-Smadja N, Bridier-Nahmias A, Ferré VM, et al. Emer-gence of E484K mutation following bamlanivimab monother-apy among high-risk patients infected with the alpha variant of SARS-CoV-2. Viruses 2021; 13(8): 1642.
[68]
COG-UK update on SARS-CoV-2 Spike mutations of special interest: Report 1. COVID-19 Genomics UK Consortium (COG-UK) 2020. Available from: https://www.cogconsortium.uk/wp-content/uploads/2021/01/Report-2_COG-UK_SARS-CoV-2-Mutations.pdf
[69]
Study shows P681H mutation is becoming globally prevalent among SARS-CoV-2 sequences. News-Medicalnet 2021. Available from: https://www.news-medical.net/news/20210110/Study-shows-P681H-mutation-is-becoming-globally-prevalent-among-SARS-CoV-2-sequences.aspx
[70]
Maison DP, Ching LL, Shikuma CM, Nerurkar VR. 2021.Genetic characteristics and phylogeny of 969-bp S gene sequence of SARS-CoV-2 from Hawaii reveals the worldwide emerging bioRxiv 681H
[http://dx.doi.org/10.1101/2021.01.06.425497]
[71]
Singh A, Steinkellner G, Köchl K, Gruber K, Gruber CC. Serine 477 plays a crucial role in the interaction of the SARS-CoV-2 spike protein with the human receptor ACE2. Sci Rep 2021; 11(1): 4320.
[http://dx.doi.org/10.1038/s41598-021-83761-5] [PMID: 33619331]
[72]
National Institute of Infectious Diseases. Brief report: New variant strain of SARS-CoV-2 identified in travelers from Brazil. 2021. Available from: https://www.niid.go.jp/niid/en/2019-ncov-e/10108-covid19-33-en.html
[73]
GISAID. Available from: https://www.gisaid.org/
[74]
Hadfield J, Megill C, Bell SM, et al. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics 2018; 34(23): 4121-3.
[http://dx.doi.org/10.1093/bioinformatics/bty407] [PMID: 29790939]
[75]
Mascola JR, Graham BS, Fauci AS. SARS-CoV-2 viral variants-tackling a moving target. JAMA 2021; 325(13): 1261-2.
[http://dx.doi.org/10.1001/jama.2021.2088] [PMID: 33571363]
[76]
Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data - from vision to reality. Euro Surveill 2017; 22(13): 30494.
[http://dx.doi.org/10.2807/1560-7917.ES.2017.22.13.30494] [PMID: 28382917]
[77]
Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol 2020; 5(11): 1403-7.
[http://dx.doi.org/10.1038/s41564-020-0770-5] [PMID: 32669681]
[78]
SARS-CoV-2 lineages. Available from: https://cov-lineages.org/
[79]
Rambaut A, Loman N, Pybus O, et al. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. 2020. Available from: https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563
[80]
Chand M, Hopkins S, Dabrera G, et al. Investigation of novel SARSCOV-2 variant: Variant of concern. Public Health England 2020. Available from: https://assets.publishing.service.gov.uk/government/up-loads/system/uploads/attachment_data/file/959361/Technical_Briefing_VOC202012-2_Briefing_2.pdf
[81]
European Centre for Disease Prevention and Control. 2021. Risk related to spread of new SARS-CoV-2 variants of concern in the EU/EEA, first update–21 January 2021. ECDC, Stockholm, Sweden. Available from: https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-risk-related-to-spread-of-new-SARS-CoV-2-variants-EU-EEA-first-update.pdf
[82]
Bustin SA, Nolan T. RT-qPCR Testing of SARS-CoV-2: A Primer. Int J Mol Sci 2020; 21(8): 3004.
[http://dx.doi.org/10.3390/ijms21083004] [PMID: 32344568]
[83]
Chiara M, D’Erchia AM, Gissi C, et al. Next generation sequencing of SARS-CoV-2 genomes: Challenges, applications and opportunities. Brief Bioinform 2021; 22(2): 616-30.
[http://dx.doi.org/10.1093/bib/bbaa297] [PMID: 33279989]
[84]
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect 2020; 22(2): 74-9.
[http://dx.doi.org/10.1016/j.micinf.2020.01.003] [PMID: 32017984]
[85]
Sabino EC, Buss LF, Carvalho MPS, et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet 2021; 397(10273): 452-5.
[http://dx.doi.org/10.1016/S0140-6736(21)00183-5] [PMID: 33515491]
[86]
To KK-W, Tsang OT, Yip CC, et al. Consistent detection of 2019 novel coronavirus in saliva. Clin Infect Dis 2020; 71(15): 841-3.
[http://dx.doi.org/10.1093/cid/ciaa149] [PMID: 32047895]
[87]
Yuan X, Yang C, He Q, et al. Current and perspective diagnostic techniques for COVID-19. ACS Infect Dis 2020; 6(8): 1998-2016.
[http://dx.doi.org/10.1021/acsinfecdis.0c00365] [PMID: 32677821]
[88]
Ong E, Wong MU, Huffman A, He Y. COVID-19 coronavirus vaccine design using reverse vaccinology and machine learning. Front Immunol 2020; 11: 1581.
[http://dx.doi.org/10.3389/fimmu.2020.01581] [PMID: 32719684]
[89]
Dong Y, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic review of SARS-CoV-2 vaccine candidates. Signal Transduct Target Ther 2020; 5(1): 237.
[http://dx.doi.org/10.1038/s41392-020-00352-y] [PMID: 33051445]
[90]
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat Rev Immunol 2021; 21(2): 73-82.
[http://dx.doi.org/10.1038/s41577-020-00480-0] [PMID: 33340022]
[91]
Fine P, Eames K, Heymann DL. “Herd immunity”: A rough guide. Clin Infect Dis 2011; 52(7): 911-6.
[http://dx.doi.org/10.1093/cid/cir007] [PMID: 21427399]
[92]
Coronavirus disease (COVID-19): Herd immunity, lockdowns and COVID-19. Available from: https://www.who.int/news-room/q-a-detail/herd-immunity-lockdowns-and-covid-19
[93]
Rashid H, Khandaker G, Booy R. Vaccination and herd im-munity: What more do we know? Curr Opin Infect Dis 2012; 25(3): 243-9.
[http://dx.doi.org/10.1097/QCO.0b013e328352f727] [PMID: 22561998]
[94]
COVID-19 Vaccine Key to Reaching ‘Herd Immunity’. Available from: https://www.muhealth.org/our-stories/covid-19-vaccine-key-reaching-herd-immunity
[95]
[96]
Ni L, Ye F, Cheng ML, et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 conva-lescent individuals. Immunity 2020; 52(6): 971-977.e3.
[http://dx.doi.org/10.1016/j.immuni.2020.04.023] [PMID: 32413330]
[97]
Wouters OJ, Shadlen KC, Salcher-Konrad M, et al. Challenges in ensuring global access to COVID-19 vaccines: Production, affordability, allocation, and deployment. Lancet 2021; 397(10278): 1023-34.
[http://dx.doi.org/10.1016/S0140-6736(21)00306-8] [PMID: 33587887]
[98]
Novavax Announces Memorandum of Understanding to Produce COVID-19 Vaccine Made in Canada. Available from: https://www.novavax.com/sites/default/files/2021-02/20210202-NYAS-Novavax-Final.pdf
[99]
Zahradnı’k J, Marciano S, Shemesh M, et al. SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor. bioRxiv 2021; 2021.01.06.425392.
[http://dx.doi.org/10.1101/2021.01.06.425392]
[100]
Tada T, Fan C, Chen JS, et al. An ACE2 microbody containing a single immunoglobulin Fc domain is a potent inhibitor of SARS-CoV-2. Cell Rep 2020; 33(12): 108528.
[http://dx.doi.org/10.1016/j.celrep.2020.108528] [PMID: 33326798]
[101]
Wu J, Deng W, Li S, Yang X. Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci 2021; 78(2): 531-44.
[http://dx.doi.org/10.1007/s00018-020-03611-x] [PMID: 32780149]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy