Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Exploring Nose to Brain Nano Delivery for Effective Management of Migraine

Author(s): Vidhi Tanna*, Sujata P. Sawarkar* and Padmini Ravikumar

Volume 20, Issue 2, 2023

Published on: 06 July, 2022

Page: [144 - 157] Pages: 14

DOI: 10.2174/1567201819666220401091632

Price: $65

conference banner
Abstract

Migraine is a disabling disease characterized by severe throbbing headaches. Patients demand quick relief from this pain. The presence of the blood-brain barrier does not permit the drug to penetrate the brain effectively. Administration of conventional anti-migraine medications via oral route leads to erratic absorption of drugs. Delayed gastric emptying is also responsible for the ineffective absorption of the drug. Migraine-induced nausea and vomiting further limit patient compliance to oral medication. Other limitations associated with the oral route include extensive first-pass metabolism, slow onset of action, inability to cross the blood-brain barrier, requirement of a large amount of dose/dosage, and frequent administration. The anti-migraine drugs used in migraine, such as triptans, are therapeutically effective but have low bioavailability on oral administration. Also, these drugs are associated with several cardiovascular complications. The oral dose of most antimigraine drugs, oral triptans, Ergotamine, NSAIDs, and CGRP antagonists is quite high because of their poor bioavailability. As a result, these drugs are associated with several side effects. This aspect necessitates the need to develop a dosage form that can deliver drugs directly to the brain, thereby reducing the dose. Invasive techniques to deliver these therapeutics to the brain do exist. However, they are painful, require expert assistance, and are not a cost-effective approach for migraine treatment. These limitations demand the development of a novel non-invasive approach that is safe, efficacious, and has high patient compliance. According to reports, it is possible to target the brain tissue by administering the drug intranasally using the olfactory and the trigeminal pathway. This route is non-invasive, avoids first-pass metabolism, eliminates nausea and vomiting, helps reduce dose, and thus helps achieve increased patient compliance. Some factors like solubility, the lipophilicity of the drug, mucociliary clearance, and enzymatic degradation hinder the bioavailability of the drug by nasal route. Therefore, there is a grave need to develop novel nasal formulations with prolonged nasal residence time, which can modulate pharmacokinetics for adequate therapeutic response and render efficient yet robust brain targeting. Considering these challenges, developing an efficient intranasal dosage form is necessary. This review gives a brief overview of all the novel carriers reported for improving the treatment of migraine. Nanocarrier-based delivery systems like in situ gels, microemulsion, nanoemulsion, nanoparticles, vesicular systems, micelles, and microspheres used in nose to brain delivery of migraine therapeutics are also discussed in the article.

Keywords: Migraine, nose-to-brain drug delivery, intranasal, brain targeting, nanocarriers, olfactory pathway, trigeminal pathway.

Graphical Abstract

[1]
Borsook, D.; Maleki, N.; Burstein, D.N. Migraine. In: Neurobiology of brain disorders, 2nd ed; Zigmond, M.; Wiley, C.; Chesselet, M.F., Eds.; Elsevier, 2015; p. 706.
[2]
Peters, G.L. Supplement introduction to migraine. Am. J. Manag. Care, 2018, 25(2), 23-34.
[3]
Buse, D.C.; Reed, M.L.; Fanning, K.M.; Bostic, R.C.; Lipton, R.B. Demographics, headache features, and comorbidity profiles in relation to headache frequency in people with migraine: Results of the American migraine prevalence and prevention (AMPP) study. Headache, 2020, 60(10), 1-17.
[http://dx.doi.org/10.1111/head.13966] [PMID: 33090481]
[4]
Agosti, R. Supplement article to a socio-economic view, 2018.
[http://dx.doi.org/10.1111/head.13301]
[5]
Mason, B.N.; Russo, A.F. Vascular contributions to migraine: Time to revisit? Front. Cell. Neurosci., 2018, 12, 233.
[http://dx.doi.org/10.3389/fncel.2018.00233] [PMID: 30127722]
[6]
Shah, B.; Pandey, D.R. Migraine. Eur. J. Biomed. Pharm. Sci., 2017, 4(4), 226-230.
[7]
Afra, J. Cortical excitability in migraine | The Journal of Headache and Pain | Full Text. J. Headache and Pain, 2000, 1.
[8]
Nicolas, S.; Nicolas, D. Triptans. In; StatPearls Publishing: Treasure Island, FL, 2021.
[9]
Moreno-Ajona, D. Pe´rez-Rodrı´guez, A.; Goadsby, P. J. Gepants, calcitonin-gene-related peptide receptor antagonists: What could be their role in migraine treatment? 2020, 33(3), 309-315.
[http://dx.doi.org/10.1097/WCO.0000000000000806]
[10]
Antonaci, F.; Ghiotto, N.; Wu, S.; Pucci, E.; Costa, A. Recent advances in migraine therapy. Springerplus, 2016, 5, 637.
[http://dx.doi.org/10.1186/s40064-016-2211-8]
[11]
Tepper, S. Sumatriptan nasal spray, 1998.
[http://dx.doi.org/10.1046/j.1468-2982.1998.1805241-4.x]
[12]
Migranal® (dihydroergotamine mesylate) Nasal Spray 23
[13]
Drug Approval Package. Zomig (Zolmitriptan) NDA #021450. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-450_Zomig.cfm Accessed May 10, 2021.
[16]
Phelps, S.J.; Hagemann, T.M.; Lee, K.R.; Thompson, A.J. Dihydroergotamine mesylate. Pediatric Injectable Drugs, 2020.
[http://dx.doi.org/10.37573/9781585285402.083]
[17]
FDA approves sumatriptan nasal spray for acute migraine. AJMC Available from: https://www.ajmc.com/view/fda-approves-sumatriptan-nasal-spray-for-acute-migraine Accessed on Jan. 20, 2021
[18]
New Haven, C.B.P. Biohaven achieves positive topline results in pivotal phase 2/3 study of & vazegepant, the first and only intranasal CGRP receptor antagonist in clinical development for the acute treatment of migraine.
[19]
Croop, R.; Madonia, J.; Conway, C.; Thiry, A.; Forshaw, M.; Murphy, A.; Jensen, C.; Dubowchik, G.; Coric, V.; Lipton, R. Intranasal zavegepant is effective and well tolerated for the acute treatment of migraine: A phase 2/3 dose-ranging clinical trial (4976). Neurology, 2021, 96(15) https://n.neurology.org/content/96/15_Supplement
[20]
Dahlöf, C.G.H. Non-oral formulations of triptans and their use in acute migraine. Curr. Pain Headache Rep., 2005, 9(3), 206-212.
[21]
Djupesland, P.G.; Messina, J.C.; Mahmoud, R.A. The nasal approach to delivering treatment for brain diseases:an anatomic, physiologic, and delivery technology overview. Ther. Deliv., 2014, 5(6), 709-733.
[http://dx.doi.org/10.4155/tde.14.41]
[22]
Khosrow Tayebati, S.; Amenta, F. Intranasal drug delivery to the central nervous system: Present status and future outlook. 2013.
[http://dx.doi.org/10.2174/138161213804143662]
[23]
Alexander, A.; Agrawal, M.; Uddin, A.; Siddique, S.; Shehata, A.M.; Shaker, M.A.; Ata Ur Rahman, S.; Abdul, M.I.M.; Shaker, M.A. Recent expansions of novel strategies towards the drug targeting into the brain. Int. J. Nanomedicine, 2019, 14, 5895-5909.
[http://dx.doi.org/10.2147/IJN.S210876] [PMID: 31440051]
[24]
Mittal, D.; Ali, A.; Md, S.; Baboota, S.; Sahni, J.K.; Ali, J. Insights into direct nose to brain delivery: Current status and future perspective. Drug Deliv., 2014, 21(2), 75-86.
[http://dx.doi.org/10.3109/10717544.2013.838713] [PMID: 24102636]
[25]
Alam, M.I.; Beg, S.; Samad, A.; Baboota, S.; Kohli, K.; Ali, J.; Ahuja, A.; Akbar, M. Strategy for effective brain drug delivery. Eur. J. Pharm. Sci., 2010, 40(5), 385-403.
[http://dx.doi.org/10.1016/j.ejps.2010.05.003] [PMID: 20497904]
[26]
Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U.K.; Choudhury, H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm., 2019, 565, 258-268.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[27]
Rapoport, A.; Winner, P. Nasal delivery of antimigraine drugs: Clinical rationale and evidence base. Headache, 2006, 46(Suppl. 4), S192-S201.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00603.x] [PMID: 17078851]
[28]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[29]
Pardeshi, C.V.; Belgamwar, V.S. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: An excellent platform for brain targeting. Expert Opin. Drug Deliv., 2013, 10(7), 957-972.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[30]
Anu, S.K.G.; Kumar, S. An overview on intranasal drug delivery system: Recent technique and its contribution in therapeutic management. Curr. Res. Pharm. Sci., 2019, 09(02), 17-23.
[http://dx.doi.org/10.24092/CRPS.2019.090201]
[31]
Annu; Rehman, S.; Md, S.; Baboota, S.; Ali, J. Analyzing nanotheraputics based approaches for the management of psychotic disorders. J. Pharm. Sci., 2019, 108(12), 3757-3768.
[http://dx.doi.org/10.1016/j.xphs.2019.08.027] [PMID: 31499066]
[32]
Savale, S.; Hitendra, M. Nose to Brain: A versatile mode of drug delivery system Asian J. Biomater. Res., 2017, 3(1), 16-38.
[33]
Misra, A.; Kher, G. Drug delivery systems from nose to brain. Curr. Pharm. Biotechnol., 2012, 13(12), 2355-2379.
[http://dx.doi.org/10.2174/138920112803341752] [PMID: 23016642]
[34]
Fan, Y.; Chen, M.; Zhang, J.; Maincent, P.; Xia, X.; Wu, W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. 2018.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018024697]
[35]
Kumar, A.; Pandey, A.N.; Jain, S.K. Nasal-nanotechnology: Revolution for efficient therapeutics delivery. Drug Deliv., 2016, 23(3), 681-693.
[http://dx.doi.org/10.3109/10717544.2014.920431] [PMID: 24901207]
[36]
Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 2018, 10(3), 28-28.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[37]
Devi, R.; Chaudhary, A.; Pandit, V. Mucoadhesive in situ nasal gel-A novel approach. J. Adv. Drug Deliv., 2014, 1(6)
[38]
Kute, J.U.; Darekar, A.B.; Saudagar, R.B. In situ gel-novel approach for nasal delivery. World J. Pharm. Pharm. Sci., 2013, 3(1), 187-203.
[39]
Kanzaria Smt, BNB. J.H.; Prajapati, A.P.; Narkhede, S.B.; Kanzaria, J.H. A review on in situ gel therapy for epilepsy via nasal route. J. Pharmacogn. Phytochem., 2019, 8(3), 4809-4814.
[40]
Kaur, P.; Garg, T.; Rath, G.; Goyal, A.K. In situ nasal gel drug delivery: A novel approach for brain targeting through the mucosal membrane. In: Nanomedicine, and Biotechnology; , 2015; pp. 1-10.
[http://dx.doi.org/10.3109/21691401.2015.1012260]
[41]
Nimi, T.; Manohar, D. An overview on in situ nasal gel for drug delivery. J. Pharm. Sci. Res., 2019, 11(7), 2585-2589.
[42]
Aderibigbe, B.A. In situ-based gels for nose to brain delivery for the treatment of neurological diseases. Pharmaceutics, 2018, 10(2), E40.
[http://dx.doi.org/10.3390/pharmaceutics10020040] [PMID: 29601486]
[43]
Friedman, D.I. TOUCH MEDICAL MEDIA 84 review migraine novel intranasal delivery of sumatriptan as a route to rapid and sustained relief in the acute treatment of migraine. US Neurol., 2016, 12(2), 84-92.
[http://dx.doi.org/10.17925/USN.2016.12.02.84]
[44]
Majithiya, R.J.; Ghosh, P.K.; Umrethia, M.L.; Murthy, R.S.R. Thermoreversible-mucoadhesive gel for nasal delivery of sumatriptan. AAPS PharmSciTech, 2006, 7(3), 67.
[http://dx.doi.org/10.1208/pt070367] [PMID: 17025248]
[45]
Galgatte, U.C.; Kumbhar, A.B.; Chaudhari, P.D. Development of in situ gel for nasal delivery: Design, optimization, in vitro and in vivo evaluation. Drug Deliv., 2014, 21(1), 62-73.
[http://dx.doi.org/10.3109/10717544.2013.849778] [PMID: 24191774]
[46]
Aabid, P.K.; Ashwani, M. Formulation and evaluation of nasal in situ gel of sumatriptan succinate for the treatment of migraine. J. Drug Deliv. Ther., 2019, 9(4), 389-389.
[http://dx.doi.org/10.22270/jddt.v9i4.3184]
[47]
Omar, M.M.; Eleraky, N.E.; El Sisi, A.M.; Ali Hasan, O. Development and evaluation of in situ nasal gel formulations of nanosized transferosomal sumatriptan: Design, optimization, in vitro and in vivo evaluation. Drug Des. Devel. Ther., 2019, 2019(13), 4413-4430.
[http://dx.doi.org/10.2147/DDDT.S235004]
[48]
Chen, J.; Jiang, X.G.; Jiang, W.M.; Gao, X.L.; Mei, N. Intranasal absorption of rizatriptan--in vivo pharmacokinetics and bioavailability study in humans. Pharmazie, 2005, 60(1), 39-41.
[PMID: 15702515]
[49]
Kempwade, A.; Taranalli, A. Formulation and evaluation of thermoreversible, mucoadhesive in situ intranasal gel of rizatriptan benzoate. J. Sol-Gel Sci. Technol., 2014, 2(1), 3.
[http://dx.doi.org/10.1007/s10971-014-3422-5]
[50]
Shelke, S.; Shahi, S.; Jalalpure, S.; Dhamecha, D. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: Formulation, optimization, evaluation and permeation studies. J. Liposome Res., 2016, 26(4), 313-323.
[http://dx.doi.org/10.3109/08982104.2015.1132232] [PMID: 26758957]
[51]
Karavasili, C.; Fatouros, D.G. Smart materials: In situ gel-forming systems for nasal delivery. Drug Discov. Today, 2016, 21(1), 157-166.
[http://dx.doi.org/10.1016/j.drudis.2015.10.016] [PMID: 26563428]
[52]
Patil, P.R.; Salve, V.K.; Thorat, R.U.; Shahi, S.R. Formulation and evaluation of ion-sensitive in situ nasal gel of zolmitriptan. Int. J. Pharm. Pharm. Sci., 2015, 7(1), 478-486.
[53]
Shelke, S.; Pathan, I.; Shinde, G.; Agrawal, G.; Damale, M.; Chouthe, R.; Panzade, P.; Kulkarni, D. Poloxamer-based in situ nasal gel of naratriptan hydrochloride deformable vesicles for brain targeting. Bionanoscience, 2020, 10(3), 633-648.
[http://dx.doi.org/10.1007/s12668-020-00767-5]
[54]
Youssef, N.A.H.A.; Kassem, A.A.; Farid, R.M.; Ismail, F.A.; El-Massik, M.A.E.; Boraie, N.A. A novel nasal almotriptan loaded solid lipid nanoparticles in mucoadhesive in situ gel formulation for brain targeting: Preparation, characterization and in vivo evaluation. Int. J. Pharm., 2018, 548(1), 609-624.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.014] [PMID: 30033394]
[55]
Verekar, R.R.; Gurav, S.S.; Bolmal, U. Thermosensitive mucoadhesive in situ gel for intranasal delivery of Almotriptan malate: Formulation, characterization, and evaluation. J. Drug Deliv. Sci. Technol., 2020, 58, 101778.
[http://dx.doi.org/10.1016/j.jddst.2020.101778]
[56]
Muzaffar, F.; Singh, U.K.; Chauhan, L. Review on microemulsion as futuristic drug delivery. Int. J. Pharm. Pharm. Sci., 2013, 5(3), 39-53.
[57]
Warnken, Z.N.; Smyth, H.D.C.; Watts, A.B.; Weitman, S.; Kuhn, J.G.; Williams, R.O., III Formulation and device design to increase nose to brain drug delivery. J. Drug Deliv. Sci. Technol., 2016, 35, 213-222.
[http://dx.doi.org/10.1016/j.jddst.2016.05.003]
[58]
Cardia, L.; Calapai, F.; Mondello, C.; Quattrone, D.; Elisa Sorbara, E.; Mannucci, C.; Calapai, G.; Mondello, E. Clinical use of omega-3 fatty acids in migraine: A narrative review. Medicine (Baltimore), 2020, 99(42), e22253.
[http://dx.doi.org/10.1097/MD.0000000000022253] [PMID: 33080672]
[59]
Upadhye, K.; Senpal, D.; Nimbalwar, M.; Dixit, G.; Bhoyar, V. Formulation and evaluation of fish oil-based rizatriptan microemulsion for intranasal migraine treatment. Int. J. Pharm. Sci. Nanotechnol., 2015, 8(3), 2972-2978.
[http://dx.doi.org/10.37285/ijpsn.2015.8.3.12]
[60]
Vyas, T.K.; Babbar, A.K.; Sharma, R.K.; Singh, S.; Misra, A. Preliminary brain-targeting studies on intranasal mucoadhesive microemulsions of sumatriptan. AAPS PharmSciTech, 2006, 7(1), E49-E57.
[http://dx.doi.org/10.1208/pt070108]
[61]
Mahajan, H.S.; Rasal, A.D.; Patel, R.C. Mahajan and rasal: Microemulsions for nasal drug delivery systems: An overview microemulsions for nasal drug delivery systems: An overview. Int. J. Pharm. Sci. Nanotechnol., 2013, 5(4), 1825-1831.
[http://dx.doi.org/10.37285/ijpsn.2012.5.4.1]
[62]
Ali Naghi Zadeh Khezri, F.; Lakshmi, C.S.R. Formulation and evaluation of triptans nanoparticles for rapid relief from migraine. J. Pharm. Res., 2017, 6(5), 59-56.
[63]
Galgatte, U.C.; Chaudhari, P.D. Development of frovatriptan succinate microemulsion for nasal delivery: Optimization, in vitro and in vivo evaluation. Asian J. Pharm. Clin. Res., 2019, 12(4), 292-300.
[http://dx.doi.org/10.22159/ajpcr.2019.v12i4.31830]
[64]
Ribeiro, L.N.M.; Rodrigues da Silva, G.H.; Couto, V.M.; Castro, S.R.; Breitkreitz, M.C.; Martinez, C.S.; Igartúa, D.E.; Prieto, M.J.; de Paula, E. Functional hybrid nanoemulsions for sumatriptan intranasal delivery. Front Chem., 2020, 8(November), 589503.
[http://dx.doi.org/10.3389/fchem.2020.589503] [PMID: 33282832]
[65]
Abdou, E.M.; Kandil, S.M.; Miniawy, H.M.F.E. Brain targeting efficiency of antimigrain drug loaded mucoadhesive intranasal nanoemulsion. Int. J. Pharm., 2017, 529(1-2), 667-677.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.030] [PMID: 28729175]
[66]
Gao, H. Progress and perspectives on targeting nanoparticles for brain drug delivery. Acta Pharm. Sin. B, 2016, 6(4), 268-286.
[http://dx.doi.org/10.1016/j.apsb.2016.05.013] [PMID: 27471668]
[67]
Illum, L. Nasal drug delivery--possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[68]
Liu, Q.; Zhang, Q. 10 - Nanoparticle systems for nose-to-brain delivery. In: Brain targeted drug delivery system; Gao, H.; Gao, X., Eds.; Academic Press, 2019; pp. 220-238.
[http://dx.doi.org/10.1016/B978-0-12-814001-7.00010-X]
[69]
Rassu, G.; Soddu, E.; Cossu, M.; Gavini, E.; Giunchedi, P.; Dalpiaz, A. Particulate formulations based on chitosan for nose-to-brain delivery of drugs. A review. J. Drug Deliv. Sci. Technol., 2016, 32, 77-87.
[http://dx.doi.org/10.1016/j.jddst.2015.05.002]
[70]
Khezri, F.A.N.Z.S.R.; Lakshmi, C.S.R.; Bukka, R.; Nidhi, M.L.; Nargund, S.L. Pharmacokinetic study and brain tissue analysis of zolmitriptan loaded chitosan nanoparticles in rats by LC-MS method. Int. J. Biol. Macromol., 2020, 142, 52-62.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.236] [PMID: 31593739]
[71]
Anna, Saju S. Design and characterization of biodegradable chitosan nanoparticles loaded with almotriptan malate for migraine therapy. Am. J. Pharm. Health Res., 2018, 6(07)
[72]
Gulati, N.; Nagaich, U.; Saraf, S.A. Intranasal delivery of chitosan nanoparticles for migraine therapy. Sci. Pharm., 2013, 81, 843-854.
[http://dx.doi.org/10.3797/scipharm.1208-18]
[73]
Mandlik, S.K.; Ranpise, N.S.; Mohanty, B.S.; Chaudhari, P.R. A coupled bimodal SPECT-CT imaging and brain kinetics studies of zolmitriptan-encapsulated nanostructured polymeric carriers.Drug Deliv. Transl. Res; , 2018, 8, pp. 797-805.
[http://dx.doi.org/10.1007/s13346-017-0474-4]
[74]
Khan, A.R.; Liu, M.; Khan, M.W.; Zhai, G. Progress in brain targeting drug delivery system by nasal route. J. Control. Release, 2017, 268, 364-389.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.001] [PMID: 28887135]
[75]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108(2), 851-859.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[76]
Esim, O. Nose to brain delivery of eletriptan hydrobromide nanoparticles: Preparation, in vitro/in vivo evaluation and effect on trigeminal activation. ScienceDirect. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1773224720312089 Accessed on Jan. 20, 2021
[http://dx.doi.org/10.1016/j.jddst.2020.101919]
[77]
Singh, A.; Ubrane, R.; Prasad, P.; Ramteke, S. Preparation and characterization of rizatriptan benzoate loaded solid lipid nanoparticles for brain targeting preparation and characterization of rizatriptan benzoate loaded solid lipid nanoparticles for brain targeting. Mater. Today Proc., 2015, 2(9), 4521-4543.
[http://dx.doi.org/10.1016/j.matpr.2015.10.067]
[78]
Mostafa, D.A.E.; Khalifa, M.K.A.; Gad, S.S. Zolmitriptan brain targeting via intranasal route using solid lipid nanoparticles for migraine therapy: Formulation, characterization, in vitro and in vivo assessment. Int. J. Appl. Pharm., 2020, 12(2), 86-93.
[http://dx.doi.org/10.22159/ijap.2020v12i2.36812]
[79]
Girotra, P.; Singh, S.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management. AAPS PharmSciTech, 2017, 18(2), 517-528.
[http://dx.doi.org/10.1208/s12249-016-0532-0] [PMID: 27126007]
[80]
Cunha, S.; Amaral, M.H.; Lobo, J.M.S.; Silva, A.C. Lipid nanoparticles for nasal/intranasal drug delivery. Drug Deliv., 2017, 34(3), 257-282.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017018693] [PMID: 28845761]
[81]
Bhalerao, K.K.; Kamble, M.S.; Dange, S.M.; Chaudhari, P.D.; Bhosale, A.V.; Nanjwade, B.K. Development and evaluation of sumatriptan succinate nanostructured lipid carrier. Nanomed. Nanobiol., 2014, 1(1), 20-27.
[http://dx.doi.org/10.1166/nmb.2014.1007]
[82]
Masjedi, M.; Azadi, A.; Heidari, R.; Samani, S.M. Nose‐to‐brain delivery of sumatriptan‐loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation. J. Pharm. Pharmacol., 2020, 72(10), 1341-1351.
[83]
Salem, L.H.; El-Feky, G.S.; Fahmy, R.H.; El Gazayerly, O.N.; Abdelbary, A. Coated lipidic nanoparticles as a new strategy for enhancing nose-to-brain delivery of a hydrophilic drug molecule. J. Pharm. Sci., 2020, 109(7), 2237-2251.
[http://dx.doi.org/10.1016/j.xphs.2020.04.007] [PMID: 32320670]
[84]
Vieira, D.B.; Gamarra, L.F. Getting into the brain: Liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomedicine, 2016, 11, 5381-5414.
[http://dx.doi.org/10.2147/IJN.S117210]
[85]
Hong, S-S.; Oh, K.T.; Choi, H-G.; Lim, S-J. Liposomal formulations for nose-to-brain delivery: Recent advances and future perspectives. Pharmaceutics, 2019, 11(10), 540.
[http://dx.doi.org/10.3390/pharmaceutics11100540] [PMID: 31627301]
[86]
Patel, M.M.; Patel, B.M. Crossing the blood-brain barrier: Recent advances in drug delivery to the brain. CNS Drugs, 2017, 31(2), 109-133.
[http://dx.doi.org/10.1007/s40263-016-0405-9] [PMID: 28101766]
[87]
Abd-Elal, R.M.A.; Shamma, R.N.; Rashed, H.M.; Bendas, E.R. Trans-nasal zolmitriptan novasomes: In vitro preparation, optimization and in vivo evaluation of brain targeting efficiency. Drug Deliv., 2016, 23(9), 3374-3386.
[http://dx.doi.org/10.1080/10717544.2016.1183721] [PMID: 27128792]
[88]
Kumar Pitta, S.; Dudhipala, N.; Narala, A.; Veerabrahma, K. Development of zolmitriptan transfersomes by Box-Behnken design for nasal delivery: In vitro and in vivo evaluation. Drug Dev. Ind. Pharm., 2018, 44(3), 484-492.
[http://dx.doi.org/10.1080/03639045.2017.1402918] [PMID: 29124986]
[89]
Devi, S.G.; Udupa, N. Niosomal sumatriptan succinate for nasal administration. Indian J. Pharm. Sci., 2000, 62(6), 479.
[90]
Padalkar, R.R.; Madgulkar, A.R.; Bhalekar, M.R. Brain targeted delivery of rizatriptan using glutathione conjugated liposomes through transmucosal nasal route. Int. J. Pharm. Investig., 2020, 10(3)
[http://dx.doi.org/10.5530/ijpi.2020.3.61]
[91]
Assadpour, S.; Shiran, M.R.; Akhtari, J. Chitosan coating of anionic liposomes containing sumatriptan succinate: A candidate for nasal administration. Nanomed. J., 2021, 8(2), 2.
[92]
Ahmed El-Nabarawy, N.; Teaima, M.H.; Helal, D.A. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats. In: Drug design, development and therapy; , 2019; 13, pp. 3929-3937.
[http://dx.doi.org/10.2147/DDDT.S220473]
[93]
Jain, R.; Nabar, S.; Dandekar, P.; Patravale, V. micellar nanocarriers: Potential nose to brain delivery of zolmitriptan as novel migraine therapy. Pharm. Res., 2010, 27(4), 655-664.
[http://dx.doi.org/10.1007/s11095-009-0041-x]
[94]
Pereswetoff-Morath, L. Microspheres as nasal drug delivery systems. Adv. Drug Deliv. Rev., 1998, 29(1-2), 185-194.
[http://dx.doi.org/10.1016/s0169-409x(97)00069-0] [PMID: 10837588]
[95]
Gavini, E.; Rassu, G.; Ferraro, L.; Beggiato, S.; Alhalaweh, A.; Velaga, S.; Marchetti, N.; Bandiera, P.; Giunchedi, P.; Dalpiaz, A. Influence of polymeric microcarriers on the in vivo intranasal uptake of an anti-migraine drug for brain targeting. Eur. J. Pharm. Biopharm., 2013, 83(2), 174-183.
[http://dx.doi.org/10.1016/j.ejpb.2012.10.010] [PMID: 23153670]
[96]
Jain, S.A.; Chauk, D.S.; Mahajan, H.S.; Tekade, A.R.; Gattani, S.G. Formulation and evaluation of nasal mucoadhesive microspheres of sumatriptan succinate. J. Microencapsul., 2009, 26(8), 711-721.
[http://dx.doi.org/10.3109/02652040802685241] [PMID: 19888880]
[97]
Abbas, Z.; Marihal, S. Gellan gum-based mucoadhesive microspheres of almotriptan for nasal administration: Formulation optimization using factorial design, characterization, and in vitro evaluation. J. Pharm. Bioallied Sci., 2014, 6(4), 267-277.
[http://dx.doi.org/10.4103/0975-7406.142959] [PMID: 25400410]
[98]
Rana, V.; Singh, K.; Kamboj, S. Recent developments in the microemulsion based targeted delivery of neurotherapeutics In: Advances in Neurotherapeutic Delivery Techniologies; Choonara, V.P.Y.E. foster: OMICS Groups eBooks; , 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy