Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Enhanced Bioavailability and Higher Uptake of Brain-Targeted Surface Engineered Delivery System of Naringenin developed as a Therapeutic for Autism Spectrum Disorder

Author(s): Ranjana Bhandari, Jyoti K Paliwal and Anurag Kuhad*

Volume 20, Issue 2, 2023

Published on: 05 July, 2022

Page: [158 - 182] Pages: 25

DOI: 10.2174/1567201819666220303101506

Price: $65

conference banner
Abstract

Background: Neuroinflammation resulting from oxidative and nitrosative stress is associated with various neurological disorders and involves the generation of pro-inflammatory cytokines and microglial activation. Dietary phytochemicals are safer and more valuable adjunct neurotherapeutic agents which can be added to the therapeutic regimen. These compounds provide neuroprotection by the modulation of various signaling pathways.

Introduction: Naringenin (NGN) is a phytochemical having low oral bioavailability because of poor solubility, and adding to this limitation is enhanced efflux by P-glycoprotein transporters in neuroinflammatory diseases.

Methods: Hence, as a solution for these limitations, naringenin encapsulated poly-lactic-co-glycolic acid (PLGA) nanocarriers were developed using the nanoprecipitation technique and coated with 1% glutathione (GSH) and 1% Tween 80 to enhance brain delivery.

Results: Coated and uncoated NGN-PLGA nanoparticles (NGN-PLGA-NPs) were spherical, monodispersed, stable, and non-toxic, with a particle size of less than 200 nm. They had negative zeta-potential values, 80% entrapment efficiency, and sustained drug release of 81.8% (uncoated), 80.13%, and 78.43% (coated) in 24 hours. FT-IR, DSC, PXRD, and NMR confirmed the drug encapsulation and coating over nanoparticles. In vivo brain uptake showed greater fluorescence intensity of the coated nanoparticles in the brain than uncoated nanoparticles. In addition, there was a 2.33-fold increase in bioavailability after coating compared to naringenin suspension and enhanced brain uptake.

Conclusion: Present studies indicate sustained and targeted brain delivery of naringenin via the ligandcoated delivery system by inhibiting enhanced P-glycoprotein (P-gp) efflux occurring in autism spectrum disorders due to neuroinflammation.

Keywords: Naringenin, poly-lactic-co-glycolic acid (PLGA), polymeric nanoparticles, glutathione (GSH), Tween 80, brain targeting.

Graphical Abstract

[1]
Fischer, R.; Maier, O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid. Med. Cell. Longev., 2015, 2015, 610813.
[http://dx.doi.org/10.1155/2015/610813] [PMID: 25834699]
[2]
Davinelli, S.; Maes, M.; Corbi, G.; Zarrelli, A.; Willcox, D.C.; Scapagnini, G. Dietary phytochemicals and neuro-inflammaging: From mechanistic insights to translational challenges. Immun. Ageing, 2016, 13(1), 1-17.
[http://dx.doi.org/10.1186/s12979-016-0070-3] [PMID: 27081392]
[3]
Lee, J.; Jo, D.G.; Park, D.; Chung, H.Y.; Mattson, M.P. Adaptive cellular stress pathways as therapeutic targets of dietary phytochemicals: Focus on the nervous system. Pharmacol. Rev., 2014, 66(3), 815-868.
[http://dx.doi.org/10.1124/pr.113.007757] [PMID: 24958636]
[4]
Vallverdú-Queralt, A.; Odriozola-Serrano, I.; Oms-Oliu, G.; Lamuela-Raventós, R.M.; Elez-Martínez, P.; Martín-Belloso, O. Changes in the polyphenol profile of tomato juices processed by pulsed electric fields. J. Agric. Food Chem., 2012, 60(38), 9667-9672.
[http://dx.doi.org/10.1021/jf302791k] [PMID: 22957841]
[5]
Felgines, C.; Texier, O.; Morand, C.; Manach, C.; Scalbert, A.; Régerat, F.; Rémésy, C. Bioavailability of the flavanone naringenin and its glycosides in rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2000, 279(6), G1148-G1154.
[http://dx.doi.org/10.1152/ajpgi.2000.279.6.G1148] [PMID: 11093936]
[6]
Kumar, S.; Tiku, A.B. Biochemical and molecular mechanisms of radioprotective effects of naringenin, a phytochemical from citrus fruits. J. Agric. Food Chem., 2016, 64(8), 1676-1685.
[7]
Nahmias, Y.; Goldwasser, J.; Casali, M.; van Poll, D.; Wakita, T.; Chung, R.T.; Yarmush, M.L. Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology, 2008, 47(5), 1437-1445.
[http://dx.doi.org/10.1002/hep.22197] [PMID: 18393287]
[8]
Yi, L.T.; Liu, B.B.; Li, J.; Luo, L.; Liu, Q.; Geng, D.; Tang, Y.; Xia, Y.; Wu, D. BDNF signaling is necessary for the antidepressant-like effect of naringenin. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 48, 135-141.
[http://dx.doi.org/10.1016/j.pnpbp.2013.10.002] [PMID: 24121063]
[9]
Galluzzo, P.; Ascenzi, P.; Bulzomi, P.; Marino, M. The nutritional flavanone naringenin triggers antiestrogenic effects by regulating estrogen receptor alpha-palmitoylation. Endocrinology, 2008, 149(5), 2567-2575.
[http://dx.doi.org/10.1210/en.2007-1173] [PMID: 18239068]
[10]
Wu, L.H.; Lin, C.; Lin, H.Y.; Liu, Y.S.; Wu, C.Y.J.; Tsai, C.F.; Chang, P.C.; Yeh, W.L.; Lu, D.Y. Naringenin suppresses neuroinflammatory responses through inducing suppressor of cytokine signaling 3 expression. Mol. Neurobiol., 2016, 53(2), 1080-1091.
[http://dx.doi.org/10.1007/s12035-014-9042-9] [PMID: 25579382]
[11]
Ratnam, D.V.; Ankola, D.D.; Bhardwaj, V.; Sahana, D.K.; Kumar, M.R. Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. J. Control. Release, 2006, 113(3), 189-207. Available from:http://www.ncbi.nlm.nih.gov/pubmed/16790290
[http://dx.doi.org/10.1016/j.jconrel.2006.04.015] [PMID: 16790290]
[12]
Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Naringeninloaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure. Pharm. Res., 2009, 26(4), 893-902. http://www.ncbi.nlm.nih.gov/pubmed/19034626
[http://dx.doi.org/10.1007/s11095-008-9791-0] [PMID: 19034626]
[13]
Yu, C.; Argyropoulos, G.; Zhang, Y.; Kastin, A.J.; Hsuchou, H.; Pan, W. Neuroinflammation activates Mdr1b efflux transport through NFkappaB: promoter analysis in BBB endothelia. Cell. Physiol. Biochem., 2008, 22(5-6), 745-756.
[http://dx.doi.org/10.1159/000185558] [PMID: 19088456]
[14]
Zhang, H.; Yao, M.; Morrison, R.A.; Chong, S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch. Pharm. Res., 2003, 26(9), 768-772.
[http://dx.doi.org/10.1007/BF02976689] [PMID: 14560928]
[15]
Werle, M.; Hoffer, M. Glutathione and thiolated chitosan inhibit multidrug resistance P-glycoprotein activity in excised small intestine. J. Control. Release, 2006, 111(1-2), 41-46.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.011] [PMID: 16377016]
[16]
Makadia, H.K.; Siegel, S.J. Poly Lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[17]
Di Toro, R.; Betti, V.; Spampinato, S. Biocompatibility and integrin-mediated adhesion of human osteoblasts to poly(DL-lactide-co-glycolide) copolymers. Eur. J. Pharm. Sci., 2004, 21(2-3), 161-169.
[http://dx.doi.org/10.1016/j.ejps.2003.10.001] [PMID: 14757487]
[18]
Sharma, D.; Sharma, R.K.; Sharma, N.; Gabrani, R.; Sharma, S.K.; Ali, J.; Dang, S. Nose-to-brain delivery of PLGA-diazepam nanoparticles. AAPS PharmSciTech, 2015, 16(5), 1108-1121.
[http://dx.doi.org/10.1208/s12249-015-0294-0] [PMID: 25698083]
[19]
Jain, A.; Jain, A.; Garg, N.K.; Tyagi, R.K.; Singh, B.; Katare, O.P.; Webster, T.J.; Soni, V. Surface engineered polymeric nanocarriers mediate the delivery of transferrin-methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater., 2015, 24, 140-151.
[http://dx.doi.org/10.1016/j.actbio.2015.06.027] [PMID: 26116986]
[20]
Muthu, M.S.; Rawat, M.K.; Mishra, A.; Singh, S. PLGA nanoparticle formulations of risperidone: preparation and neuropharmacological evaluation. Nanomedicine, 2009, 5(3), 323-333.
[http://dx.doi.org/10.1016/j.nano.2008.12.003] [PMID: 19523427]
[21]
Guo, W.; Quan, P.; Fang, L.; Cun, D.; Yang, M. Sustained release donepezil loaded PLGA microspheres for injection: Preparation, in vitro and in vivo study. Asian J. Pharm. Sci., 2015, 10(5), 405-414.
[http://dx.doi.org/10.1016/j.ajps.2015.06.001]
[22]
Strickley, R.G. Solubilizing excipients in oral and injectable formulations. Pharm. Res., 2004, 21(2), 201-230.
[http://dx.doi.org/10.1023/B:PHAM.0000016235.32639.23] [PMID: 15032302]
[23]
Prabhakar, K.; Afzal, S.M.; Surender, G.; Kishan, V. Tween 80 containing lipid nanoemulsions for delivery of indinavir to brain. Acta Pharm. Sin. B, 2013, 3(5), 345-353.
[http://dx.doi.org/10.1016/j.apsb.2013.08.001]
[24]
Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Paramakrishnan, N.; Suresh, B. Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles. Eur. J. Pharm. Biopharm., 2008, 70(1), 75-84.
[http://dx.doi.org/10.1016/j.ejpb.2008.03.009] [PMID: 18472255]
[25]
Sun, D.; Xue, A.; Zhang, B.; Lou, H.; Shi, H.; Zhang, X. Polysorbate 80-coated PLGA nanoparticles improve the permeability of acetylpuerarin and enhance its brain-protective effects in rats. J. Pharm. Pharmacol., 2015, 67(12), 1650-1662.
[http://dx.doi.org/10.1111/jphp.12481] [PMID: 26407669]
[26]
Sun, W.; Xie, C.; Wang, H.; Hu, Y. Specific role of polysorbate 80 coating on the targeting of nanoparticles to the brain. Biomaterials, 2004, 25(15), 3065-3071.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.087] [PMID: 14967540]
[27]
Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A.F. The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol., 2003, 66(8), 1499-1503. http://linkinghub.elsevier.com/retrieve/pii/S0006295203005045
[http://dx.doi.org/10.1016/S0006-2952(03)00504-5] [PMID: 14555227]
[28]
Kannan, R.; Kuhlenkamp, J.F.; Jeandidier, E.; Trinh, H.; Ookhtens, M.; Kaplowitz, N. Evidence for carrier-mediated transport of glutathione across the blood-brain barrier in the rat. J. Clin. Invest., 1990, 85(6), 2009-2013.
[http://dx.doi.org/10.1172/JCI114666] [PMID: 1971830]
[29]
Gaillard, P. Glutathione-based drug delivery system. WO 2010095940 A2, 2010.
[30]
Liang, H.; Chen, Y.; Yang, L. Glutathione based delivery system for analgesics. US 2008; 0095836: A1, 2008.
[31]
Wang, A.J.; Jian, C.H.; Li, S.D. Glutathione-based delivery system. US 20120046445 A1, 2011.
[32]
Geldenhuys, W.; Mbimba, T.; Bui, T.; Harrison, K.; Sutariya, V. Brain-targeted delivery of paclitaxel using glutathione-coated nanoparticles for brain cancers. J. Drug Target., 2011, 19(9), 837-845.
[http://dx.doi.org/10.3109/1061186X.2011.589435] [PMID: 21692650]
[33]
Geldenhuys, W.; Wehrung, D.; Groshev, A.; Hirani, A.; Sutariya, V. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles for brain cancers. Pharm. Dev. Technol., 2015, 20(4), 497-506. http://www.tandfonline.com/doi/full/10.3109/10837450.2014.892130
[http://dx.doi.org/10.3109/10837450.2014.892130] [PMID: 24597667]
[34]
Bhandari, R.; Paliwal, J.K.; Kuhad, A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J. Funct. Foods, 2018, 47(3), 361-375.
[http://dx.doi.org/10.1016/j.jff.2018.05.065]
[35]
Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm., 1989, 55(1), R1-R4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[36]
Bhandari, R.; Kuhad, A.; Paliwal, J.K. Kuhad, A development of a new, sensitive, and robust analytical and bio-analytical RP- HPLC method for in-vitro and in-vivo quantification of naringenin in polymeric nanocarriers. J. Anal. Sci. Technol., 2019, 1, 1-14.
[37]
D’Souza, S.S.; DeLuca, P.P. Methods to assess in vitro drug release from injectable polymeric particulate systems. Pharm. Res., 2006, 23(3), 460-474.
[http://dx.doi.org/10.1007/s11095-005-9397-8] [PMID: 16400516]
[38]
Xu, Q.; Hashimoto, M.; Dang, T.T.; Hoare, T.; Kohane, D.S.; Whitesides, G.M.; Langer, R.; Anderson, D.G. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small, 2009, 5(13), 1575-1581.
[http://dx.doi.org/10.1002/smll.200801855] [PMID: 19296563]
[39]
Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm., 2010, 67(3), 217-223.
[PMID: 20524422]
[40]
Impurities: Guideline for residual solvents Q3C(R6). 2016. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/Q3C/Q3C_R6__Step_4.pdf
[41]
Grodowska, K.; Parczewski, A. Analytical methods for residual solvents determination in pharmaceutical products. Acta Pol. Pharm., 2010, 67(1), 13-26.
[PMID: 20210075]
[42]
Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Hao, Y.; Qiu, Y.; Zhao, W.; Wu, C. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther., 2016, 10, 911-925.
[PMID: 27041995]
[43]
Mathew, A.; Fukuda, T.; Nagaoka, Y.; Hasumura, T.; Morimoto, H.; Yoshida, Y. Curcumin loaded-PLGA nanoparticles conjugated with Tet-1 peptide for potential use in Alzheimer’s disease. PLoS One, 2012, 7(3), e32616.
[http://dx.doi.org/10.1371/journal.pone.0032616]
[44]
Alshamsan, A. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J., 2014, 22(3), 219-222.
[http://dx.doi.org/10.1016/j.jsps.2013.12.002] [PMID: 25061407]
[45]
Liu, Y.; Tan, J.; Thomas, A.; Ou-Yang, D.; Muzykantov, V.R. The shape of things to come: importance of design in nanotechnology for drug delivery. Ther. Deliv., 2012, 3(2), 181-194.
[http://dx.doi.org/10.4155/tde.11.156] [PMID: 22834196]
[46]
Govender, T.; Stolnik, S.; Garnett, M.C.; Illum, L.; Davis, S.S. PLGA nanoparticles prepared by nanoprecipitation: Drug loading and release studies of a water soluble drug. J. Control. Release, 1999, 57(2), 171-185.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3] [PMID: 9971898]
[47]
Salvage, J.P.; Rose, S.F.; Phillips, G.J.; Hanlon, G.W.; Lloyd, A.W.; Ma, I.Y.; Armes, S.P.; Billingham, N.C.; Lewis, A.L. Novel biocompatible phosphorylcholine-based self-assembled nanoparticles for drug delivery. J. Control. Release, 2005, 104(2), 259-270.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.003] [PMID: 15907578]
[48]
Hejmady, S.; Pradhan, R.; Alexander, A.; Agrawal, M.; Singhvi, G.; Gorain, B.; Tiwari, S.; Kesharwani, P.; Dubey, S.K. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov. Today, 2020, 25(12), 2227-2244.
[http://dx.doi.org/10.1016/j.drudis.2020.09.031] [PMID: 33011342]
[49]
Banerjee, T.; Mitra, S.; Kumar Singh, A.; Kumar Sharma, R.; Maitra, A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. Int. J. Pharm., 2002, 243(1-2), 93-105.
[http://dx.doi.org/10.1016/S0378-5173(02)00267-3] [PMID: 12176298]
[50]
Grover, A.; Hirani, A.; Pathak, Y.; Sutariya, V. Brain-targeted delivery of docetaxel by glutathione-coated nanoparticles for brain cancer. AAPS PharmSciTech, 2014, 15(6), 1562-1568.
[http://dx.doi.org/10.1208/s12249-014-0165-0] [PMID: 25134466]
[51]
Schaefer, M.J.; Singh, J. Effect of tricaprin on the physical characteristics and in vitro release of etoposide from PLGA microspheres. Biomaterials, 2002, 23(16), 3465-3471.
[http://dx.doi.org/10.1016/S0142-9612(02)00053-4] [PMID: 12099290]
[52]
Hickey, T.; Kreutzer, D.; Burgess, D.J.; Moussy, F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials, 2002, 23(7), 1649-1656.
[http://dx.doi.org/10.1016/S0142-9612(01)00291-5] [PMID: 11922468]
[53]
Shen, J.; Burgess, D.J. In vitro dissolution testing strategies for nanoparticulate drug delivery systems: Recent developments and challenges. Drug Deliv. Transl. Res., 2013, 3(5), 409-415.
[http://dx.doi.org/10.1007/s13346-013-0129-z] [PMID: 24069580]
[54]
Banko, J.L.; Poulin, F.; Hou, L.; DeMaria, C.T.; Sonenberg, N.; Klann, E. The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. J. Neurosci., 2005, 25(42), 9581-9590.
[http://dx.doi.org/10.1523/JNEUROSCI.2423-05.2005] [PMID: 16237163]
[55]
Bodmeier, R.; McGinity, J.W. The preparation and evaluation of drug-containing poly(dl-lactide) microspheres formed by the solvent evaporation method. Pharm. Res., 1987, 4(6), 465-471.
[http://dx.doi.org/10.1023/A:1016419303727] [PMID: 3508558]
[56]
Albisa, A.; Piacentini, E.; Sebastian, V.; Arruebo, M.; Santamaria, J.; Giorno, L. Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm. Res., 2017, 34(6), 1296-1308.
[http://dx.doi.org/10.1007/s11095-017-2146-y] [PMID: 28342057]
[57]
Vega, E.; Egea, M.A.; Calpena, A.C.; Espina, M.; García, M.L. Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA-PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. Int. J. Nanomedicine, 2012, 7, 1357-1371.
[http://dx.doi.org/10.2147/IJN.S28481] [PMID: 22457594]
[58]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release, 1987, 5(1), 23-36.
[http://dx.doi.org/10.1016/0168-3659(87)90034-4]
[59]
Christoper, G.P.; Raghavan, C.V.; Siddharth, K.; Kumar, M.S.; Prasad, H.R. Formulation and optimization of coated PLGA - Zidovudine nanoparticles using factorial design and in vitro in vivo evaluations to determine brain targeting efficiency. Saudi Pharm. J., 2014, 22(2), 133-140.
[http://dx.doi.org/10.1016/j.jsps.2013.04.002] [PMID: 24648825]
[60]
Chacón, M.; Molpeceres, J.; Berges, L.; Guzmán, M.; Aberturas, M.R. Stability and freeze-drying of cyclosporine loaded poly (D, L lactide-glycolide) carriers. Eur. J. Pharm. Sci., 1999, 8(2), 99-107.
[http://dx.doi.org/10.1016/S0928-0987(98)00066-9] [PMID: 10210732]
[61]
Chan, J.M.; Zhang, L.; Yuet, K.P.; Liao, G.; Rhee, J.W.; Langer, R.; Farokhzad, O.C. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials, 2009, 30(8), 1627-1634.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.013] [PMID: 19111339]
[62]
Romero, G.; Estrela-Lopis, I.; Zhou, J.; Rojas, E.; Franco, A.; Espinel, C.S.; Fernández, A.G.; Gao, C.; Donath, E.; Moya, S.E. Surface engineered Poly(lactide-co-glycolide) nanoparticles for intracellular delivery: uptake and cytotoxicity--a confocal raman microscopic study. Biomacromolecules, 2010, 11(11), 2993-2999.
[http://dx.doi.org/10.1021/bm1007822] [PMID: 20882998]
[63]
Nafee, N.; Schneider, M.; Schaefer, U.F.; Lehr, C.M. Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. Int. J. Pharm., 2009, 381(2), 130-139.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.049] [PMID: 19450671]
[64]
Kurakhmaeva, K.B.; Djindjikhashvili, I.A.; Petrov, V.E.; Balabanyan, V.U.; Voronina, T.A.; Trofimov, S.S.; Kreuter, J.; Gelperina, S.; Begley, D.; Alyautdin, R.N. Brain targeting of nerve growth factor using poly (butyl cyanoacrylate) nanoparticles. J. Drug Target., 2009, 17(8), 564-574.
[http://dx.doi.org/10.1080/10611860903112842] [PMID: 19694610]
[65]
Suseela, P.; Saraswathy, S.D. Formulation, characterization and pharmacokinetic evaluation of naringenin- loaded gastroretentive mucoadhesive polymeric nanosystem for oral drug delivery. J. Drug Deliv. Ther., 2015, 5(2), 107-114.http://jddtonline.info/index.php/jddt/article/view/1091
[66]
Khan, A.W.; Kotta, S.; Ansari, S.H.; Sharma, R.K.; Ali, J. Self-Nanoemulsifying Drug Delivery System (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: Design, characterization, in vitro and in vivo evaluation. Drug Deliv., 2015, 22(4), 552-561.
[http://dx.doi.org/10.3109/10717544.2013.878003] [PMID: 24512268]
[67]
Tian, X.H.; Lin, X.N.; Wei, F.; Feng, W.; Huang, Z.C.; Wang, P.; Ren, L.; Diao, Y. Enhanced brain targeting of temozolomide in polysorbate-80 coated polybutylcyanoacrylate nanoparticles. Int. J. Nanomedicine, 2011, 6, 445-452.
[PMID: 21445277]
[68]
Kreuter, J.; Shamenkov, D.; Petrov, V.; Ramge, P.; Cychutek, K.; Koch-Brandt, C.; Alyautdin, R. Apolipoprotein-mediated transport of nanoparticle-bound drugs across the blood-brain barrier. J. Drug Target., 2002, 10(4), 317-325.
[http://dx.doi.org/10.1080/10611860290031877] [PMID: 12164380]
[69]
Bhandari, R.; Paliwal, J.K.; Kuhad, A. Pharmacokinetic-Pharmacodynamic (PK-PD) modeling of effect of naringenin and its surface modified nanocarriers on associated and core behaviors of autism spectrum disorders (ASD). Planta Medica Int Open., 2019, 6(02), e41-e49.
[http://dx.doi.org/10.1055/a-1001-2378]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy