Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Perspective

AT1 Receptor as a Potential Target in Amphetamine-induced Neuroinflammation

Author(s): Ricardo Jorge Cabrera, Lucia Baiardi and Claudia Bregonzio*

Volume 29, Issue 5, 2022

Published on: 19 May, 2022

Page: [371 - 374] Pages: 4

DOI: 10.2174/0929866529666220330154218

Next »
[1]
Ransohoff, R.M.; Brown, M.A. Innate immunity in the central nervous system. J. Clin. Invest., 2012, 122(4), 1164-1171.
[http://dx.doi.org/10.1172/JCI58644] [PMID: 22466658]
[2]
Yang, Q.Q.; Zhou, J.W. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia, 2019, 67(6), 1017-1035.
[http://dx.doi.org/10.1002/glia.23571] [PMID: 30548343]
[3]
Steinkellner, T.; Freissmuth, M.; Sitte, H.H.; Montgomery, T. The ugly side of amphetamines: Short- and long-term toxicity of 3,4-methylenedioxymethamphetamine (MDMA, ‘Ecstasy’), metham-phetamine and D-amphetamine. Biol. Chem., 2011, 392(1-2), 103-115.
[http://dx.doi.org/10.1515/bc.2011.016] [PMID: 21194370]
[4]
Levi, M.S.; Divine, B.; Hanig, J.P.; Doerge, D.R.; Vanlandingham, M.M.; George, N.I.; Twaddle, N.C.; Bowyer, J.F. A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia and neurotoxicity in male Sprague-Dawley rats during the waking (lights off) cycle. Neurotoxicol. Teratol., 2012, 34(2), 253-262.
[http://dx.doi.org/10.1016/j.ntt.2012.01.007] [PMID: 22289608]
[5]
Ricaurte, G.A.; Mechan, A.O.; Yuan, J.; Hatzidimitriou, G.; Xie, T.; Mayne, A.H.; McCann, U.D. Amphetamine treatment similar to that used in the treatment of adult attention-deficit/hyperactivity disorder damages dopaminergic nerve endings in the striatum of adult nonhuman primates. J. Pharmacol. Exp. Ther., 2005, 315(1), 91-98.
[http://dx.doi.org/10.1124/jpet.105.087916] [PMID: 16014752]
[6]
Moratalla, R.; Khairnar, A.; Simola, N.; Granado, N.; García-Montes, J.R.; Porceddu, P.F.; Tizabi, Y.; Costa, G.; Morelli, M. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog. Neurobiol., 2017, 155, 149-170.
[http://dx.doi.org/10.1016/j.pneurobio.2015.09.011] [PMID: 26455459]
[7]
Kettenmann, H.; Hanisch, U.K.; Noda, M.; Verkhratsky, A. Physiology of microglia. Physiol. Rev., 2011, 91(2), 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[8]
Sekine, Y.; Ouchi, Y.; Sugihara, G.; Takei, N.; Yoshikawa, E.; Nakamura, K.; Iwata, Y.; Tsuchiya, K.J.; Suda, S.; Suzuki, K.; Kawai, M.; Takebayashi, K.; Yamamoto, S.; Matsuzaki, H.; Ueki, T.; Mori, N.; Gold, M.S.; Cadet, J.L. Methamphetamine causes microglial activation in the brains of human abusers. J. Neurosci., 2008, 28(22), 5756-5761.
[http://dx.doi.org/10.1523/JNEUROSCI.1179-08.2008] [PMID: 18509037]
[9]
Shaerzadeh, F.; Streit, W.J.; Heysieattalab, S.; Khoshbouei, H. Methamphetamine neurotoxicity, microglia, and neuroinflammation. J. Neuroinflammation, 2018, 15(1), 341.
[http://dx.doi.org/10.1186/s12974-018-1385-0] [PMID: 30541633]
[10]
Rose, J.M.; Audus, K.L. AT1 receptors mediate angiotensin II uptake and transport by bovine brain microvessel endothelial cells in primary culture. J. Cardiovasc. Pharmacol., 1999, 33(1), 30-35.
[http://dx.doi.org/10.1097/00005344-199901000-00005] [PMID: 9890393]
[11]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[PMID: 10977869]
[12]
Hunyady, L.; Catt, K.J. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol. Endocrinol., 2006, 20(5), 953-970.
[http://dx.doi.org/10.1210/me.2004-0536] [PMID: 16141358]
[13]
Timmermans, P.B.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.A.; Smith, R.D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev., 1993, 45(2), 205-251.
[PMID: 8372104]
[14]
Barnes, J.M.; Steward, L.J.; Barber, P.C.; Barnes, N.M. Identification and characterisation of angiotensin II receptor subtypes in human brain. Eur. J. Pharmacol., 1993, 230(3), 251-258.
[http://dx.doi.org/10.1016/0014-2999(93)90558-Y] [PMID: 8440303]
[15]
Saavedra, J.M.; Sánchez-Lemus, E.; Benicky, J. Blockade of brain angiotensin II AT1 receptors ameliorates stress, anxiety, brain inflammation and ischemia: Therapeutic implications. Psychoneuroendocrinology, 2011, 36(1), 1-18.
[http://dx.doi.org/10.1016/j.psyneuen.2010.10.001] [PMID: 21035950]
[16]
Mertens, B.; Vanderheyden, P.; Michotte, Y.; Sarre, S. The role of the central renin-angiotensin system in Parkinson’s disease. J. Renin Angiotensin Aldosterone Syst., 2010, 11(1), 49-56.
[http://dx.doi.org/10.1177/1470320309347789] [PMID: 19861346]
[17]
Labandeira-Garcia, J.L.; Rodriguez-Pallares, J.; Villar-Cheda, B.; Rodríguez-Perez, A.I.; Garrido-Gil, P.; Guerra, M.J. Aging, Angiotensin system and dopaminergic degeneration in the substantia nigra. Aging Dis., 2011, 2(3), 257-274.
[PMID: 22396877]
[18]
Labandeira-Garcia, J.L.; Rodriguez-Pallares, J.; Rodríguez-Perez, A.I.; Garrido-Gil, P.; Villar-Cheda, B.; Valenzuela, R.; Guerra, M.J. Brain angiotensin and dopaminergic degeneration: Relevance to Parkinson’s disease. Am. J. Neurodegener. Dis., 2012, 1(3), 226-244.
[PMID: 23383395]
[19]
Paz, M.C.; Assis, M.A.; Cabrera, R.J.; Cancela, L.M.; Bregonzio, C. The AT1 angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol. Synapse, 2011, 65(6), 505-512.
[http://dx.doi.org/10.1002/syn.20868] [PMID: 20936684]
[20]
Paz, M.C.; Marchese, N.A.; Cancela, L.M.; Bregonzio, C. Angiotensin II AT1 receptors are involved in neuronal activation induced by amphetamine in a two-injection protocol. BioMed Res. Int., 2013, 2013, 534817.
[http://dx.doi.org/10.1155/2013/534817] [PMID: 24089683]
[21]
Paz, M.C.; Marchese, N.A.; Stroppa, M.M.; Gerez de Burgos, N.M.; Imboden, H.; Baiardi, G.; Cancela, L.M.; Bregonzio, C. Involvement of the brain renin-angiotensin system (RAS) in the neuroadaptive responses induced by amphetamine in a two-injection protocol. Behav. Brain Res., 2014, 272, 314-323.
[http://dx.doi.org/10.1016/j.bbr.2014.07.021] [PMID: 25046593]
[22]
Marchese, N.A.; Occhieppo, V.B.; Basmadjian, O.M.; Casarsa, B.S.; Baiardi, G.; Bregonzio, C. Angiotensin II modulates amphetamine-induced glial and brain vascular responses, and attention deficit via angiotensin type 1 receptor: Evidence from brain regional sensitivity to amphetamine. Eur. J. Neurosci., 2020, 51(4), 1026-1041.
[http://dx.doi.org/10.1111/ejn.14605] [PMID: 31646669]
[23]
Casarsa, B.S.; Marinzalda, M.A.; Marchese, N.A.; Paz, M.C.; Vivas, L.; Baiardi, G.; Bregonzio, C. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality. Neuroscience, 2015, 307, 1-13.
[http://dx.doi.org/10.1016/j.neuroscience.2015.08.027] [PMID: 26299338]
[24]
Thomas, D.M.; Dowgiert, J.; Geddes, T.J.; Francescutti-Verbeem, D.; Liu, X.; Kuhn, D.M. Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci. Lett., 2004, 367(3), 349-354.
[http://dx.doi.org/10.1016/j.neulet.2004.06.065] [PMID: 15337264]
[25]
Basmadjian, O.M.; Occhieppo, V.B.; Marchese, N.A.; Silvero, C.M.J.; Becerra, M.C.; Baiardi, G.; Bregonzio, C. Amphetamine induces oxidative stress, glial activation and transient angiogenesis in prefrontal cortex via AT1-R. Front. Pharmacol., 2021, 12, 647747.
[http://dx.doi.org/10.3389/fphar.2021.647747] [PMID: 34012397]
[26]
Occhieppo, V.B.; Marchese, N.A.; Rodríguez, I.D.; Basmadjian, O.M.; Baiardi, G.; Bregonzio, C. Neurovascular unit alteration in somatosensory cortex and enhancement of thermal nociception induced by amphetamine involves central AT1 receptor activation. Eur. J. Neurosci., 2017, 45(12), 1586-1593.
[http://dx.doi.org/10.1111/ejn.13594] [PMID: 28449313]
[27]
Jiang, L.; Zhu, R.; Bu, Q.; Li, Y.; Shao, X.; Gu, H.; Kong, J.; Luo, L.; Long, H.; Guo, W.; Tian, J.; Zhao, Y.; Cen, X. Brain renin-angiotensin system blockade attenuates methamphetamine-induced hyperlocomotion and neurotoxicity. Neurotherapeutics, 2018, 15(2), 500-510.
[http://dx.doi.org/10.1007/s13311-018-0613-8] [PMID: 29464572]
[28]
Rodriguez-Pallares, J.; Rey, P.; Parga, J.A.; Muñoz, A.; Guerra, M.J.; Labandeira-Garcia, J.L. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol. Dis., 2008, 31(1), 58-73.
[http://dx.doi.org/10.1016/j.nbd.2008.03.003] [PMID: 18499466]
[29]
Rodriguez-Perez, A.I.; Dominguez-Meijide, A.; Lanciego, J.L.; Guerra, M.J.; Labandeira-Garcia, J.L. Dopaminergic degeneration is enhanced by chronic brain hypoperfusion and inhibited by angiotensin receptor blockage. Age (Dordr.), 2013, 35(5), 1675-1690.
[http://dx.doi.org/10.1007/s11357-012-9470-2] [PMID: 22986582]
[30]
Labandeira-García, J.L.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Valenzuela, R.; Borrajo, A.; Rodríguez-Perez, A.I. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front. Neuroanat., 2014, 8, 67.
[PMID: 25071471]
[31]
Dominguez-Meijide, A.; Rodriguez-Perez, A.I.; Diaz-Ruiz, C.; Guerra, M.J.; Labandeira-Garcia, J.L. Dopamine modulates astroglial and microglial activity via glial renin-angiotensin system in cultures. Brain Behav. Immun., 2017, 62, 277-290.
[http://dx.doi.org/10.1016/j.bbi.2017.02.013] [PMID: 28232171]

© 2024 Bentham Science Publishers | Privacy Policy