[1]
Breinlinger, S.; Phillips, T.J.; Haram, B.N.; Mareš, J.; Martínez Yerena, J.A.; Hrouzek, P.; Sobotka, R.; Henderson, W.M.; Schmieder, P.; Williams, S.M.; Lauderdale, J.D.; Wilde, H.D.; Gerrin, W.; Kust, A.; Washington, J.W.; Wagner, C.; Geier, B.; Liebeke, M.; Enke, H.; Niedermeyer, T.H.J.; Wilde, S.B. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science, 2021, 371(6536), eaax9050.
[http://dx.doi.org/10.1126/science.aax9050] [PMID: 33766860]
[http://dx.doi.org/10.1126/science.aax9050] [PMID: 33766860]
[2]
van Aarde, R.J.; Pimm, S.L.; Guldemond, R.; Huang, R.; Maré, C. The 2020 elephant die-off in Botswana. PeerJ, 2021, 9, e10686.
[http://dx.doi.org/10.7717/peerj.10686] [PMID: 33510975]
[http://dx.doi.org/10.7717/peerj.10686] [PMID: 33510975]
[3]
Wang, H.; Xu, C.; Liu, Y.; Jeppesen, E.; Svenning, J.C.; Wu, J.; Zhang, W.; Zhou, T.; Wang, P.; Nangombe, S.; Ma, J. From unusual suspect to serial killer: Cyanotoxins boosted by climate change may jeopardize African megafauna. Innovation., 2021., 100092.
[4]
Bižić, M.; Klintzsch, T.; Ionescu, D.; Hindiyeh, M.Y.; Günthel, M.; Muro-Pastor, A.M.; Eckert, W.; Urich, T.; Keppler, F.; Grossart, H.P. Aquatic and terrestrial cyanobacteria produce methane. Sci. Adv., 2020, 6(3), eaax5343.
[http://dx.doi.org/10.1126/sciadv.aax5343] [PMID: 31998836]
[http://dx.doi.org/10.1126/sciadv.aax5343] [PMID: 31998836]
[5]
Janssen, E.M. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. Water Res., 2019, 151, 488-499.
[http://dx.doi.org/10.1016/j.watres.2018.12.048] [PMID: 30641464]
[http://dx.doi.org/10.1016/j.watres.2018.12.048] [PMID: 30641464]
[6]
Fidor, A.; Konkel, R.; Mazur-Marzec, H. Bioactive peptides produced by cyanobacteria of the genus Nostoc: A review. Mar. Drugs, 2019, 17(10), 561.
[http://dx.doi.org/10.3390/md17100561] [PMID: 31569531]
[http://dx.doi.org/10.3390/md17100561] [PMID: 31569531]
[7]
Welker, M.; von Döhren, H. Cyanobacterial peptides - nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev., 2006, 30(4), 530-563.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00022.x] [PMID: 16774586]
[http://dx.doi.org/10.1111/j.1574-6976.2006.00022.x] [PMID: 16774586]
[8]
Laub, J.; Henriksen, P.; Brittain, S.M.; Wang, J.; Carmichael, W.W.; Rinehart, K.L.; Moestrup, O. [ADMAdda5]-microcystins in Planktothrix agardhii strain PH-123 (cyanobacteria)--importance for monitoring of microcystins in the environment. Environ. Toxicol., 2002, 17(4), 351-357.
[http://dx.doi.org/10.1002/tox.10042] [PMID: 12203956]
[http://dx.doi.org/10.1002/tox.10042] [PMID: 12203956]
[9]
Sivonen, K.; Carmichael, W.W.; Namikoshi, M.; Rinehart, K.L.; Dahlem, A.M.; Niemelä, S.I. Isolation and characterization of hepatotoxic microcystin homologs from the filamentous freshwater cyanobacterium Nostoc sp. strain 152. Appl. Environ. Microbiol., 1990, 56(9), 2650-2657.
[http://dx.doi.org/10.1128/aem.56.9.2650-2657.1990] [PMID: 2125813]
[http://dx.doi.org/10.1128/aem.56.9.2650-2657.1990] [PMID: 2125813]
[10]
Mazur-Marzec, H.; Fidor, A.; Cegłowska, M.; Wieczerzak, E.; Kropidłowska, M.; Goua, M.; Macaskill, J.; Edwards, C. Cyanopeptolins with trypsin and chymotrypsin inhibitory activity from the cyanobacterium Nostoc edaphicum CCNP1411. Mar. Drugs, 2018, 16(7), 220.
[http://dx.doi.org/10.3390/md16070220] [PMID: 29949853]
[http://dx.doi.org/10.3390/md16070220] [PMID: 29949853]
[11]
Fidor, A.; Grabski, M.; Gawor, J.; Gromadka, R.; Węgrzyn, G.; Mazur-Marzec, H. Nostoc edaphicum CCNP1411 from the Baltic Sea-a new producer of nostocyclopeptides. Mar. Drugs, 2020, 18(9), 442.
[http://dx.doi.org/10.3390/md18090442] [PMID: 32858999]
[http://dx.doi.org/10.3390/md18090442] [PMID: 32858999]
[12]
Mehner, C.; Müller, D.; Kehraus, S.; Hautmann, S.; Gütschow, M.; König, G.M. New peptolides from the cyanobacterium Nostoc insulare as selective and potent inhibitors of human leukocyte elastase. ChemBioChem, 2008, 9(16), 2692-2703.
[http://dx.doi.org/10.1002/cbic.200800415] [PMID: 18924217]
[http://dx.doi.org/10.1002/cbic.200800415] [PMID: 18924217]
[13]
Murakami, M.; Suzuki, S.; Itou, Y.; Kodani, S.; Ishida, K. New anabaenopeptins, potent carboxypeptidase-A inhibitors from the cyanobacterium Aphanizomenon flos-aquae. J. Nat. Prod., 2000, 63(9), 1280-1282.
[http://dx.doi.org/10.1021/np000120k] [PMID: 11000037]
[http://dx.doi.org/10.1021/np000120k] [PMID: 11000037]
[14]
Harms, H.; Kurita, K.L.; Pan, L.; Wahome, P.G.; He, H.; Kinghorn, A.D.; Carter, G.T.; Linington, R.G. Discovery of anabaenopeptin 679 from freshwater algal bloom material: Insights into the structure-activity relationship of anabaenopeptin protease inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(20), 4960-4965.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.008] [PMID: 27641470]
[http://dx.doi.org/10.1016/j.bmcl.2016.09.008] [PMID: 27641470]
[15]
Weiss, C.; Sammet, B.; Sewald, N. Recent approaches for the synthesis of modified cryptophycins. Nat. Prod. Rep., 2013, 30(7), 924-940.
[http://dx.doi.org/10.1039/c3np70022d] [PMID: 23732943]
[http://dx.doi.org/10.1039/c3np70022d] [PMID: 23732943]
[16]
Weiss, C.; Figueras, E.; Borbely, A.N.; Sewald, N. Cryptophycins: Cytotoxic cyclodepsipeptides with potential for tumor targeting. J. Pept. Sci., 2017, 23(7-8), 514-531.
[http://dx.doi.org/10.1002/psc.3015] [PMID: 28661555]
[http://dx.doi.org/10.1002/psc.3015] [PMID: 28661555]
[17]
D’Agostino, G.; del Campo, J.; Mellado, B.; Izquierdo, M.A.; Minarik, T.; Cirri, L.; Marini, L.; Perez-Gracia, J.L.; Scambia, G. A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer. Int. J. Gynecol. Cancer, 2006, 16(1), 71-76.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00276.x] [PMID: 16445613]
[http://dx.doi.org/10.1111/j.1525-1438.2006.00276.x] [PMID: 16445613]
[18]
Edelman, M.J.; Gandara, D.R.; Hausner, P.; Israel, V.; Thornton, D.; DeSanto, J.; Doyle, L.A. Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer. Lung Cancer, 2003, 39(2), 197-199.
[http://dx.doi.org/10.1016/S0169-5002(02)00511-1] [PMID: 12581573]
[http://dx.doi.org/10.1016/S0169-5002(02)00511-1] [PMID: 12581573]
[19]
Liu, Y.; Zhang, W.; Li, L.; Salvador, L.A.; Chen, T.; Chen, W.; Felsenstein, K.M.; Ladd, T.B.; Price, A.R.; Golde, T.E.; He, J.; Xu, Y.; Li, Y.; Luesch, H. Cyanobacterial peptides as a prototype for the design of potent β-secretase inhibitors and the development of selective chemical probes for other aspartic proteases. J. Med. Chem., 2012, 55(23), 10749-10765.
[http://dx.doi.org/10.1021/jm301630s] [PMID: 23181502]
[http://dx.doi.org/10.1021/jm301630s] [PMID: 23181502]
[20]
Xu, H.; Bao, K.; Tang, S.; Ai, J.; Hu, H.; Zhang, W. Cyanobacterial peptides as a prototype for the design of cathepsin D inhibitors. J. Pept. Sci., 2017, 23(9), 701-706.
[http://dx.doi.org/10.1002/psc.3014] [PMID: 28585417]
[http://dx.doi.org/10.1002/psc.3014] [PMID: 28585417]