Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Anti-inflammatory Activity of PLA2 Inhibitory Saccharumoside-B

Author(s): Surya Prabha Sadhu*, Nagendra Sastry Yarla, Rajeswara Rao Pragada and Prasad Konduri

Volume 21, Issue 2, 2022

Published on: 15 June, 2022

Page: [121 - 134] Pages: 14

DOI: 10.2174/1871523021666220330143058

Price: $65

Abstract

Background: Saccharumoside-B and its analogs were found to have anticancer potential in vitro. The present study reports acute toxicity, molecular docking, ADMET profile analysis, and in vitro and in vivo anti-inflammatory activity of saccharumoside-B for the first time.

Methods: The in vitro enzyme inhibitory activity of saccharumoside-B on PLA2, COX-1, COX-2, and 5-LOX enzymes was evaluated by the cell-free method, and its effect on TNF-α, IL1β, and IL- 6 secretion levels in LPS stimulated THP-1 human monocytes was determined by ELISA-based methods. The anti-inflammatory activity was evaluated in vivo by carrageenan-induced rat paw edema model. To test its binding affinity at the active site pockets of PLA2 enzymes and assess drug-like properties, docking experiments and ADMET studies were performed.

Results: Saccharumoside-B showed selective inhibition of the sPLA2 enzyme (IC50 = 7.53 ± 0.232 μM), and thioetheramide-PC was used as a positive control. It showed significant inhibition (P ≤ 0.05) of TNF-α, IL-1β, and IL-6 cytokines compared to the positive control dexamethasone. Saccharumoside-B showed a dose-dependent inhibition of carrageenan-induced rat paw edema, with a maximum inhibition (76.09 ± 0.75) observed at 3 hours after the phlogistic agent injection. Saccharumoside-B potentially binds to the active site pocket of sPLA2 crystal protein (binding energy -7.6 Kcal/Mol). It complies with Lipinski’s Rule of Five, showing a promising safety profile. The bioactivity scores suggested it to be a better enzyme inhibitor.

Conclusion: Saccharumoside-B showed significant PLA2 inhibition. It can become a potential lead molecule in synthesizing a new class of selective PLA2 inhibitors with a high safety profile in the future.

Keywords: Anti-inflammation, molecular docking, ADMET study, phenolic glycoside ester, saccharumoside-B, PLA2 inhibitor.

Graphical Abstract

[1]
Achoui, M.; Appleton, D.; Abdulla, M.A.; Awang, K.; Mohd, M.A.; Mustafa, M.R. In vitro and in vivo anti-inflammatory activity of 17-O-acetylacuminolide through the inhibition of cytokines, NF-κB translocation and IKKβ activity. PLoS One, 2010, 5(12), e15105.
[http://dx.doi.org/10.1371/journal.pone.0015105] [PMID: 21152019]
[2]
Gunaydin, C.; Bilge, S.S. Effects of nonsteroidal anti-inflammatory drugs at the molecular level. Eurasian J. Med., 2018, 50(2), 116-121.
[http://dx.doi.org/10.5152/eurasianjmed.2018.0010] [PMID: 30002579]
[3]
Krause, D. L.; Müller, N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in alzheimer’s disease. Int. J. Alzheimer’s Dis, 2010, 2010
[4]
Yagami, T.; Koma, H.; Yamamoto, Y. Pathophysiological roles of cyclooxygenases and prostaglandins in the central nervous system. Mol. Neurobiol., 2016, 53(7), 4754-4771.
[http://dx.doi.org/10.1007/s12035-015-9355-3] [PMID: 26328537]
[5]
Rayburn, E.R.; Ezell, S.J.; Zhang, R. Anti-inflammatory agents for cancer therapy. Mol. Cell. Pharmacol., 2009, 1(1), 29-43.
[http://dx.doi.org/10.4255/mcpharmacol.09.05] [PMID: 20333321]
[6]
Weir, M.R. Renal effects of nonselective NSAIDs and coxibs. Cleve. Clin. J. Med., 2002, 69(1)(Suppl. 1), SI53-SI58.
[http://dx.doi.org/10.3949/ccjm.69.Suppl_1.SI53] [PMID: 12086295]
[7]
Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747.
[http://dx.doi.org/10.1093/ajcn/79.5.727] [PMID: 15113710]
[8]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[9]
Yuan, T.; Wan, C.; González-Sarrías, A.; Kandhi, V.; Cech, N.B.; Seeram, N.P. Phenolic glycosides from sugar maple (Acer saccharum) bark. J. Nat. Prod., 2011, 74(11), 2472-2476.
[http://dx.doi.org/10.1021/np200678n] [PMID: 22032697]
[10]
Rayavarapu, S.; Yarla, N.S.; Kadiri, S.K.; Bishayee, A.; Vidavalur, S.; Tadikonda, R.; Basha, M.; Pidugu, V.R.; Dowluru, K.S.V.G.K.; Lakappa, D.B.; Kamal, M.A.; Md Ashraf, G.; Tarasov, V.V.; Chubarev, V.N.; Klochkov, S.G.; Barreto, G.E.; Bachurin, S.O.; Aliev, G. Synthesis of Saccharumoside-B analogue with potential of antiproliferative and pro-apoptotic activities. Sci. Rep., 2017, 7(1), 8309.
[http://dx.doi.org/10.1038/s41598-017-05832-w] [PMID: 28814788]
[11]
Sonoki, K.; Iwase, M.; Sasaki, N.; Ohdo, S.; Higuchi, S.; Takata, Y.; Iida, M. Secretory PLA2 inhibitor indoxam suppresses LDL modification and associated inflammatory responses in TNFalpha-stimulated human endothelial cells. Br. J. Pharmacol., 2008, 153(7), 1399-1408.
[http://dx.doi.org/10.1038/bjp.2008.12] [PMID: 18264128]
[12]
Capper, E.A.; Marshall, L.A. Mammalian phospholipases A(2): Mediators of inflammation, proliferation and apoptosis. Prog. Lipid Res., 2001, 40(3), 167-197.
[http://dx.doi.org/10.1016/S0163-7827(01)00002-9] [PMID: 11275266]
[13]
Chulada, P.C.; Thompson, M.B.; Mahler, J.F.; Doyle, C.M.; Gaul, B.W.; Lee, C.; Tiano, H.F.; Morham, S.G.; Smithies, O.; Langenbach, R. Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res., 2000, 60(17), 4705-4708.
[PMID: 10987272]
[14]
Hong, S.H.; Avis, I.; Vos, M.D.; Martínez, A.; Treston, A.M.; Mulshine, J.L. Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res., 1999, 59(9), 2223-2228.
[PMID: 10232612]
[15]
Romano, M.; Catalano, A.; Nutini, M.; D’Urbano, E.; Crescenzi, C.; Claria, J.; Libner, R.; Davi, G.; Procopio, A. 5-lipoxygenase regulates malignant mesothelial cell survival: Involvement of vascular endothelial growth factor. FASEB J., 2001, 15(13), 2326-2336.
[http://dx.doi.org/10.1096/fj.01-0150com] [PMID: 11689458]
[16]
Chu, J.; Praticò, D. Pharmacologic blockade of 5-lipoxygenase improves the amyloidotic phenotype of an Alzheimer’s disease transgenic mouse model involvement of γ-secretase. Am. J. Pathol., 2011, 178(4), 1762-1769.
[http://dx.doi.org/10.1016/j.ajpath.2010.12.032] [PMID: 21435457]
[17]
Sastry Yarla, N.; Azad, R.; Basha, M.; Rajack, A.; Kaladhar, D.; Kumar Allam, B.; Nand Singh, K.; Kumari, K.S.; Pallu, R.; Parimi, U. 5-lipoxygenase and cyclooxygenase inhibitory dammarane triterpenoid 1 from borassus flabellifer seed coat inhibits tumor necrosis factor-α secretion in LPSinduced THP-1 human monocytes and induces apoptosis in MIA PaCa-2 pancreatic cancer cells. Anti-Cancer Agents Med. Chem. Former. Curr. Med. Chem. Anticancer Agents, 2015, 15(8), 1066-1077.
[http://dx.doi.org/10.2174/1871520615666150202110936]
[18]
Joshi, V.; Venkatesha, S.H.; Ramakrishnan, C.; Nanjaraj Urs, A.N.; Hiremath, V.; Moudgil, K.D.; Velmurugan, D.; Vishwanath, B.S. Celastrol modulates inflammation through inhibition of the catalytic activity of mediators of arachidonic acid pathway: Secretory phospholipase A2 group IIA, 5-lipoxygenase and cyclooxygenase- 2. Pharmacol. Res., 2016, 113(Pt A), 265-275.
[http://dx.doi.org/10.1016/j.phrs.2016.08.035] [PMID: 27597642]
[19]
Yedgar, S.; Lichtenberg, D.; Schnitzer, E. Inhibition of phospholipase A(2) as a therapeutic target. Biochim. Biophys. Acta, 2000, 1488(1-2), 182-187.
[http://dx.doi.org/10.1016/S1388-1981(00)00120-7] [PMID: 11080687]
[20]
Kim, R.R.; Chen, Z.J.; Mann, T.; Bastard, K.F.; Scott, K.; Church, W.B. Structural and functional aspects of targeting the secreted human group IIA phospholipase A2. Molecules, 2020, 25(19), 4459.
[http://dx.doi.org/10.3390/molecules25194459]
[21]
Yarla, N.S.; Bishayee, A.; Vadlakonda, L.; Chintala, R.; Duddukuri, G.R.; Reddanna, P.; Dowluru, K.S. Phospholipase A2 isoforms as novel targets for prevention and treatment of inflammatory and oncologic diseases. Curr. Drug Targets, 2016, 17(16), 1940-1962.
[http://dx.doi.org/10.2174/1389450116666150727122501] [PMID: 26212262]
[22]
Baritaki, S.; de Bree, E.; Chatzaki, E.; Pothoulakis, C. Chronic stress, inflammation, and colon cancer: A CRH system-driven molecular crosstalk. J. Clin. Med., 2019, 8(10), 1669.
[http://dx.doi.org/10.3390/jcm8101669] [PMID: 31614860]
[23]
de Araújo Lopes, A.; da Fonseca, F. N.; Rocha, T. M.; de Freitas, L. B.; Araújo, E. V. O.; Wong, D. V. T.; Lima Júnior, R. C. P.; Leal, L. K. A. M. Eugenol as a promising molecule for the treatment of dermatitis: Antioxidant and anti-inflammatory activities and its nanoformulation. Oxid. Med. Cell. Longev, 2018, 2018
[24]
Deshmukh, S.K.; Srivastava, S.K.; Poosarla, T.; Dyess, D.L.; Holliday, N.P.; Singh, A.P.; Singh, S. Inflammation, immunosuppressive microenvironment and breast cancer: Opportunities for cancer prevention and therapy. Ann. Transl. Med., 2019, 7(20), 593.
[http://dx.doi.org/10.21037/atm.2019.09.68] [PMID: 31807574]
[25]
Hu, S-L.; Wang, K.; Shi, Y-F.; Shao, Z-X.; Zhang, C-X.; Sheng, K-W.; Ge, Z-D.; Chen, J-X.; Wang, X-Y. Downregulating Akt/NF-κB signaling and its antioxidant activity with Loureirin A for alleviating the progression of osteoarthritis: In vitro and vivo studies. Int. Immunopharmacol., 2020, 78, 105953.
[http://dx.doi.org/10.1016/j.intimp.2019.105953] [PMID: 31784401]
[26]
Drewes, A.M.; Olesen, A.E.; Farmer, A.D.; Szigethy, E.; Rebours, V.; Olesen, S.S.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Gastrointestinal pain. Nat. Rev. Dis. Primers, 2020, 6(1), 1-19.
[http://dx.doi.org/10.1038/s41572-019-0135-7] [PMID: 31907359]
[27]
Wu, R.; Wang, L.; Yin, R.; Hudlikar, R.; Li, S.; Kuo, H.D.; Peter, R.; Sargsyan, D.; Guo, Y.; Liu, X.; Kong, A.N. Epigenetics/epigenomics and prevention by curcumin of early stages of inflammatory-driven colon cancer. Mol. Carcinog., 2020, 59(2), 227-236.
[http://dx.doi.org/10.1002/mc.23146] [PMID: 31820492]
[28]
Gilligan, J.P.; Lovato, S.J.; Erion, M.D.; Jeng, A.Y. Modulation of carrageenan-induced hind paw edema by substance P. Inflammation, 1994, 18(3), 285-292.
[http://dx.doi.org/10.1007/BF01534269] [PMID: 7522223]
[29]
Halici, Z.; Dengiz, G.O.; Odabasoglu, F.; Suleyman, H.; Cadirci, E.; Halici, M. Amiodarone has anti-inflammatory and anti-oxidative properties: An experimental study in rats with carrageenan-induced paw edema. Eur. J. Pharmacol., 2007, 566(1-3), 215-221.
[http://dx.doi.org/10.1016/j.ejphar.2007.03.046] [PMID: 17475238]
[30]
Chen, S. Natural products triggering biological targets--a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr. Drug Targets, 2011, 12(3), 288-301.
[http://dx.doi.org/10.2174/138945011794815347] [PMID: 20955151]
[31]
Deng, X.; Dong, Y.; Yi, Q.; Huang, Y.; Zhao, D.; Yang, Y.; Tijssen, P.; Qiu, J.; Liu, K.; Li, Y. The determinants for the enzyme activity of human parvovirus B19 phospholipase A2 (PLA2) and its influence on cultured cells. PLoS One, 2013, 8(4), e61440.
[http://dx.doi.org/10.1371/journal.pone.0061440] [PMID: 23596524]
[32]
Reynolds, L.J.; Hughes, L.L.; Dennis, E.A. Analysis of human synovial fluid phospholipase A2 on short chain phosphatidylcholine-mixed micelles: Development of a spectrophotometric assay suitable for a microtiterplate reader. Anal. Biochem., 1992, 204(1), 190-197.
[http://dx.doi.org/10.1016/0003-2697(92)90160-9] [PMID: 1514686]
[33]
Reddanna, P.; Whelan, J.; Maddipati, K.R.; Reddy, C.C. Purification of arachidonate 5-lipoxygenase from potato tubers. Methods Enzymol., 1990, 187, 268-277.
[http://dx.doi.org/10.1016/0076-6879(90)87031-W] [PMID: 2233349]
[34]
Reddy, D.B.; Reddy, T.C.M.; Jyotsna, G.; Sharan, S.; Priya, N.; Lakshmipathi, V.; Reddanna, P. Chebulagic acid, a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz., induces apoptosis in COLO-205 cell line. J. Ethnopharmacol., 2009, 124(3), 506-512.
[http://dx.doi.org/10.1016/j.jep.2009.05.022] [PMID: 19481594]
[35]
Reddy, C.M.; Bhat, V.B.; Kiranmai, G.; Reddy, M.N.; Reddanna, P.; Madyastha, K.M. Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem. Biophys. Res. Commun., 2000, 277(3), 599-603.
[http://dx.doi.org/10.1006/bbrc.2000.3725] [PMID: 11062000]
[36]
Copeland, R.A.; Williams, J.M.; Giannaras, J.; Nurnberg, S.; Covington, M.; Pinto, D.; Pick, S.; Trzaskos, J.M. Mechanism of selective inhibition of the inducible isoform of prostaglandin G/H synthase. Proc. Natl. Acad. Sci. USA, 1994, 91(23), 11202-11206.
[http://dx.doi.org/10.1073/pnas.91.23.11202] [PMID: 7972034]
[37]
Hemler, M.; Lands, W.E. Purification of the cyclooxygenase that forms prostaglandins. Demonstration of two forms of iron in the holoenzyme. J. Biol. Chem., 1976, 251(18), 5575-5579.
[http://dx.doi.org/10.1016/S0021-9258(17)33098-3] [PMID: 823151]
[38]
Quiroga, R.; Villarreal, M.A. Vinardo: A scoring function based on autodock vina improves scoring, docking, and virtual screening. PLoS One, 2016, 11(5), e0155183.
[http://dx.doi.org/10.1371/journal.pone.0155183] [PMID: 27171006]
[39]
Wang, R.; Lai, L.; Wang, S. Further development and validation of empirical scoring functions for structure-based binding affinity prediction. J. Comput. Aided Mol. Des., 2002, 16(1), 11-26.
[http://dx.doi.org/10.1023/A:1016357811882] [PMID: 12197663]
[40]
OECD test guideline 420, OECD guideline for testing of chemicals, acute oral toxicity-fixed dose procedure. Available from: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl420.pdf Accessed April 24, 2021.
[41]
Morris, C.J. Carrageenan-Induced Paw Edema in the Rat and Mouse.Inflammation Protocols; Humana Press: New Jersey, 2003, Vol. 225, pp. 115-122.
[http://dx.doi.org/10.1385/1-59259-374-7:115]
[42]
Fereidoni, M.; Ahmadiani, A.; Semnanian, S.; Javan, M. An accurate and simple method for measurement of paw edema. J. Pharmacol. Toxicol. Methods, 2000, 43(1), 11-14.
[http://dx.doi.org/10.1016/S1056-8719(00)00089-7] [PMID: 11091125]
[43]
Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc. Soc. Exp. Biol. Med., 1962, 111, 544-547.
[http://dx.doi.org/10.3181/00379727-111-27849] [PMID: 14001233]
[44]
Su, J-Y.; Li, Q-C.; Zhu, L. Evaluation of the in vivo anti-inflammatory activity of a flavone glycoside from Cancrinia discoidea (Ledeb.) Poljak. EXCLI J., 2011, 10, 110-116.
[PMID: 27857669]
[45]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[46]
Brown, K.L.; Davidson, J.; Rotondo, D. Characterisation of the prostaglandin E2-ethanolamide suppression of tumour necrosis factor-α production in human monocytic cells. Biochim. Biophys. Acta, 2013, 1831(6), 1098-1107.
[http://dx.doi.org/10.1016/j.bbalip.2013.03.006] [PMID: 23542062]
[47]
Singh, U.; Tabibian, J.; Venugopal, S.K.; Devaraj, S.; Jialal, I. Development of an in vitro screening assay to test the antiinflammatory properties of dietary supplements and pharmacologic agents. Clin. Chem., 2005, 51(12), 2252-2256.
[http://dx.doi.org/10.1373/clinchem.2005.056093] [PMID: 16166164]
[48]
Steer, J.H.; Kroeger, K.M.; Abraham, L.J.; Joyce, D.A. Glucocorticoids suppress tumor necrosis factor-alpha expression by human monocytic THP-1 cells by suppressing transactivation through adjacent NF-kappa B and c-Jun-activating transcription factor-2 binding sites in the promoter. J. Biol. Chem., 2000, 275(24), 18432-18440.
[http://dx.doi.org/10.1074/jbc.M906304199] [PMID: 10748079]
[49]
Biava, M. Introduction to COX inhibitors. Future Med. Chem., 2018, 10(15), 1737-1740.
[http://dx.doi.org/10.4155/fmc-2018-0159] [PMID: 30019919]
[50]
Lättig, J.; Böhl, M.; Fischer, P.; Tischer, S.; Tietböhl, C.; Menschikowski, M.; Gutzeit, H.O.; Metz, P.; Pisabarro, M.T. Mechanism of inhibition of human secretory phospholipase A2 by flavonoids: Rationale for lead design. J. Comput. Aided Mol. Des., 2007, 21(8), 473-483.
[http://dx.doi.org/10.1007/s10822-007-9129-8] [PMID: 17701137]
[51]
Mouchlis, V.D.; Mavromoustakos, T.M.; Kokotos, G. Design of new secreted phospholipase A2 inhibitors based on docking calculations by modifying the pharmacophore segments of the FPL67047XX inhibitor. J. Comput. Aided Mol. Des., 2010, 24(2), 107-115.
[http://dx.doi.org/10.1007/s10822-010-9319-7] [PMID: 20130961]
[52]
Mouchlis, V.D.; Magrioti, V.; Barbayianni, E.; Cermak, N.; Oslund, R.C.; Mavromoustakos, T.M.; Gelb, M.H.; Kokotos, G. Inhibition of secreted phospholipases A2 by 2-oxoamides based on α-amino acids: Synthesis, in vitro evaluation and molecular docking calculations. Bioorg. Med. Chem., 2011, 19(2), 735-743.
[http://dx.doi.org/10.1016/j.bmc.2010.12.030] [PMID: 21216150]
[53]
Winget, J.M.; Pan, Y.H.; Bahnson, B.J. The interfacial binding surface of phospholipase A2s. Biochim. Biophys. Acta BBA-Mol. Cell Biol. Lipids, 2006, 1761(11), 1260-1269.
[http://dx.doi.org/10.1016/j.bbalip.2006.08.002]
[54]
Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem., 1999, 1(1), 55-68.
[http://dx.doi.org/10.1021/cc9800071] [PMID: 10746014]
[55]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[56]
Shultz, M.D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. J. Med. Chem., 2019, 62(4), 1701-1714.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00686] [PMID: 30212196]
[57]
Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl., 1999, 38(24), 3743-3748.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:24<3743:AID-ANIE3743>3.0.CO;2-U] [PMID: 10649345]
[58]
Ertl, P.; Rohde, B.; Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714-3717.
[http://dx.doi.org/10.1021/jm000942e] [PMID: 11020286]
[59]
Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics, 2019, 11(8), 411.
[http://dx.doi.org/10.3390/pharmaceutics11080411] [PMID: 31412551]
[60]
Ames, B.N.; Gurney, E.G.; Miller, J.A.; Bartsch, H. Carcinogens as frameshift mutagens: Metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc. Natl. Acad. Sci. USA, 1972, 69(11), 3128-3132.
[http://dx.doi.org/10.1073/pnas.69.11.3128] [PMID: 4564203]
[61]
Trifunović, J.; Borčić, V.; Vukmirović, S.; Kon, S.G.; Mikov, M. Retention data of bile acids and their oxo derivatives in characterization of pharmacokinetic properties and in silico ADME modeling. Eur. J. Pharm. Sci., 2016, 92, 194-202.
[http://dx.doi.org/10.1016/j.ejps.2016.07.011] [PMID: 27423261]
[62]
Di Sotto, A.; Di Giacomo, S.; Abete, L.; Božović, M.; Parisi, O.A.; Barile, F.; Vitalone, A.; Izzo, A.A.; Ragno, R.; Mazzanti, G. Genotoxicity assessment of piperitenone oxide: An in vitro and in silico evaluation. Food Chem. Toxicol, 2017, 106(Pt A), 506-513.
[http://dx.doi.org/10.1016/j.fct.2017.06.021] [PMID: 28606765]
[63]
Mahiout, S.; Tagliabue, S.G.; Nasri, A.; Omoruyi, I.M.; Pettersson, L.; Bonati, L.; Pohjanvirta, R. In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicol. In Vitro, 2018, 52, 178-188.
[http://dx.doi.org/10.1016/j.tiv.2018.06.010] [PMID: 29908305]
[64]
Prival, M.J.; Zeiger, E. Chemicals mutagenic in Salmonella typhimurium strain TA1535 but not in TA100. Mutat. Res., 1998, 412(3), 251-260.
[http://dx.doi.org/10.1016/S1383-5718(97)00196-4] [PMID: 9600693]
[65]
Kandagalla, S.; Sharath, B.S.; Bharath, B.R. Molecular docking analysis of curcumin analogues against kinase domain of ALK5. Silico Pharmacol., 2017, 5(11), 15.
[66]
González-Sarrías, A.; Yuan, T.; Seeram, N.P. Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem. Toxicol., 2012, 50(5), 1369-1376.
[http://dx.doi.org/10.1016/j.fct.2012.02.031] [PMID: 22387705]
[67]
Kwon, H-J.; Kim, Y-S.; Hwang, J-W.; Kim, C.Y.; Lee, S-H.; Moon, S-H.; Jeon, B-T.; Park, P-J. Isolation and identification of an anticancer compound from the bark of acer tegmentosum maxim. Process Biochem., 2014, 49(6), 1032-1039.
[http://dx.doi.org/10.1016/j.procbio.2014.03.002]
[68]
Honma, A.; Koyama, T.; Yazawa, K. Anti-hyperglycemic effects of sugar maple acer saccharum and its constituent acertannin. Food Chem., 2010, 123(2), 390-394.
[http://dx.doi.org/10.1016/j.foodchem.2010.04.052]
[69]
Yoshikawa, K.; Kawahara, Y.; Arihara, S.; Hashimoto, T. Aromatic compounds and their antioxidant activity of Acer saccharum. J. Nat. Med., 2011, 65(1), 191-193.
[http://dx.doi.org/10.1007/s11418-010-0450-5] [PMID: 20686865]
[70]
Ramadan, M.F.; Gad, H.A.; Farag, M.A. Chemistry, processing, and functionality of maple food products: An updated comprehensive review. J. Food Biochem., 2021, 45(8), e13832.
[http://dx.doi.org/10.1111/jfbc.13832] [PMID: 34180070]
[71]
Bhatta, S.; Ratti, C.; Poubelle, P.E.; Stevanovic, T. Nutrients, antioxidant capacity and safety of hot water extract from sugar maple (Acer saccharum M.) and Red Maple (Acer rubrum L.) bark. Plant Foods Hum. Nutr., 2018, 73(1), 25-33.
[http://dx.doi.org/10.1007/s11130-018-0656-3] [PMID: 29442262]
[72]
Lei, C-Q.; Wu, X.; Zhong, X.; Jiang, L.; Zhong, B.; Shu, H-B. USP19 inhibits TNF-α- and IL-1β-triggered NF-κB activation by deubiquitinating TAK1. J. Immunol., 2019, 203(1), 259-268.
[http://dx.doi.org/10.4049/jimmunol.1900083] [PMID: 31127032]
[73]
Sooriakumaran, P. COX-2 inhibitors and the heart: Are all coxibs the same? Postgrad. Med. J., 2006, 82(966), 242-245.
[http://dx.doi.org/10.1136/pgmj.2005.042234] [PMID: 16597810]
[74]
Zappavigna, S.; Cossu, A.M.; Grimaldi, A.; Bocchetti, M.; Ferraro, G.A.; Nicoletti, G.F.; Filosa, R.; Caraglia, M. Anti-inflammatory drugs as anticancer agents. Int. J. Mol. Sci., 2020, 21(7), E2605.
[http://dx.doi.org/10.3390/ijms21072605] [PMID: 32283655]
[75]
Fosslien, E. Adverse effects of nonsteroidal anti-inflammatory drugs on the gastrointestinal system. Ann. Clin. Lab. Sci., 1998, 28(2), 67-81.
[PMID: 9558445]
[76]
Harirforoosh, S.; Asghar, W.; Jamali, F. Adverse effects of nonsteroidal antiinflammatory drugs: An update of gastrointestinal, cardiovascular and renal complications. J. Pharm. Pharm. Sci., 2013, 16(5), 821-847.
[http://dx.doi.org/10.18433/J3VW2F] [PMID: 24393558]
[77]
Nguyen, H.T.; Vu, T-Y.; Chandi, V.; Polimati, H.; Tatipamula, V.B. Dual COX and 5-LOX inhibition by clerodane diterpenes from seeds of Polyalthia longifolia (Sonn.) Thwaites. Sci. Rep., 2020, 10(1), 15965.
[http://dx.doi.org/10.1038/s41598-020-72840-8] [PMID: 32994508]
[78]
Abraham, E.; Naum, C.; Bandi, V.; Gervich, D.; Lowry, S.F.; Wunderink, R.; Schein, R.M.; Macias, W.; Skerjanec, S.; Dmitrienko, A.; Farid, N.; Forgue, S.T.; Jiang, F. Efficacy and safety of LY315920Na/S-5920, a selective inhibitor of 14-kDa group IIA secretory phospholipase A2, in patients with suspected sepsis and organ failure. Crit. Care Med., 2003, 31(3), 718-728.
[http://dx.doi.org/10.1097/01.CCM.0000053648.42884.89] [PMID: 12626975]
[79]
Bradley, J.D.; Dmitrienko, A.A.; Kivitz, A.J.; Gluck, O.S.; Weaver, A.L.; Wiesenhutter, C.; Myers, S.L.; Sides, G.D.A. A randomized, double-blinded, placebo-controlled clinical trial of LY333013, a selective inhibitor of group II secretory phospholipase A2, in the treatment of rheumatoid arthritis. J. Rheumatol., 2005, 32(3), 417-423.
[PMID: 15742431]
[80]
Dennis, E.A.; Cao, J.; Hsu, Y-H.; Magrioti, V.; Kokotos, G. Phospholipase A2 enzymes: Physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem. Rev., 2011, 111(10), 6130-6185.
[http://dx.doi.org/10.1021/cr200085w] [PMID: 21910409]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy