Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Review Article

Neuroinflammation and Oxidative Stress in Alzheimer’s Disease; Can Nutraceuticals and Functional Foods Come to the Rescue?

Author(s): Olakunle J. Onaolapo, Anthony T. Olofinnade, Folusho O. Ojo and Adejoke Y. Onaolapo*

Volume 21, Issue 2, 2022

Published on: 07 September, 2022

Page: [75 - 89] Pages: 15

DOI: 10.2174/1871523021666220815151559

Price: $65

Abstract

Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is typified by progressive memory loss and spatial awareness with personality changes. The increasing socioeconomic burden associated with AD has made it a focus of extensive research. Ample scientific evidence supports the role of neuroinflammation and oxidative stress in AD pathophysiology, and there is increasing research into the possible role of anti-inflammatory and antioxidative agents as disease modifying therapies. While, the result of numerous preclinical studies has demonstrated the benefits of anti-inflammatory agents, these benefits however have not been replicated in clinical trials, necessitating a further search for more promising anti-inflammatory agents. Current understanding highlights the role of diet in the development of neuroinflammation and oxidative stress, as well as the importance of dietary interventions and lifestyle modifications in mitigating them. The current narrative review examines scientific literature for evidence of the roles (if any) of dietary components, nutraceuticals and functional foods in the prevention or management of AD. It also examines how diet/ dietary components could modulate oxidative stress/inflammatory mediators and pathways that are crucial to the pathogenesis and/or progression of AD.

Keywords: Anti-inflammation, antioxidant, nutrition, disease-modifying, functional foods, neurodegeneration.

« Previous
Graphical Abstract

[1]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[2]
Olofinnade, A.T.; Onaolapo, T.M.; Oladimeji, S.; Fatoki, A.M.; Balogun, C.I.; Onaolapo, A.Y.; Onaolapo, O.J. An evaluation of the effects of pyridoxal phosphate in chlorpromazineinduced parkinsonism using mice. Cent. Nerv. Syst. Agents Med. Chem., 2020, 20(1), 13-25.
[http://dx.doi.org/10.2174/1871524920666200120142508] [PMID: 31987026]
[3]
Pathak, N.; Vimal, S.K.; Tandon, I.; Agrawal, L.; Hongyi, C.; Bhattacharyya, S. Neurodegenerative disorders of Alzheimer, Parkinsonism, amyotrophic lateral sclerosis and multiple sclerosis: An early diagnostic approach for precision treatment. Metab. Brain Dis., 2022, 37, 67-104.
[http://dx.doi.org/10.1007/s11011-021-00800-w]
[4]
Onaolapo, O.J.; Odeniyi, A.O.; Onaolapo, A.Y. Parkinson’s disease: Is there a role for dietary and herbal supplements? CNS Neurol. Disord. Drug Targets, 2021, 20(4), 343-365.
[http://dx.doi.org/10.2174/1871527320666210218082954] [PMID: 33602107]
[5]
Onaolapo, O.J.; Odeniyi, A.O.; Jonathan, S.O.; Samuel, M.O.; Amadiegwu, D.; Olawale, A.; Tiamiyu, A.O.; Ojo, F.O.; Yahaya, H.A.; Ayeni, O.J.; Onaolapo, A.Y. An investigation of the anti-parkinsonism potential of co-enzyme Q10 and co-enzyme Q10/Levodopa-carbidopa combination in mice. Curr. Aging Sci., 2021, 14(1), 62-75.
[http://dx.doi.org/10.2174/1874609812666191023153724] [PMID: 31702498]
[6]
Onaolapo, O.J.; Onaolapo, A.Y.; Olowe, O.A.; Udoh, M.O.; Udoh, D.O.; Nathaniel, I.T. Melatonin and melatonergic influence on neuronal transcrip-tion factors: Implications for the development of novel therapies for neuro-degenerative disorders. Curr. Neuropharmacol., 2020, 18(7), 563-577.
[http://dx.doi.org/10.2174/1570159X18666191230114339] [PMID: 31885352]
[7]
Sahab-Uddin, M.; Kabir, M.T.; Rahman, M.S.; Behl, T.; Jeandet, P.; Ashraf, G.M.; Najda, A.; Bin-Jumah, M.N.; El-Seedi, H.R.; Abdel-Daim, M.M. Revisit-ing the amyloid cascade hypothesis: From anti-Aβ therapeutics to auspicious new ways for Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(16), 5858.
[http://dx.doi.org/10.3390/ijms21165858] [PMID: 32824102]
[8]
Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat., 1995, 8(6), 429-431.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[9]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[10]
Mehta, R.I.; Schneider, J.A. What is ‘Alzheimer’s disease’? The neuropatholog-ical heterogeneity of clinically defined Alzheimer’s dementia. Curr. Opin. Neurol., 2021, 34(2), 237-245.
[http://dx.doi.org/10.1097/WCO.0000000000000912]
[11]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Fein-stein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Her-rup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[12]
Abu-Rumeileh, S.; Steinacker, P.; Polischi, B.; Mammana, A.; Bartoletti-Stella, A.; Oeckl, P.; Baiardi, S.; Zenesini, C.; Huss, A.; Cortelli, P.; Capellari, S.; Ot-to, M.; Parchi, P. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimers Res. Ther., 2020, 12(1), 2.
[http://dx.doi.org/10.1186/s13195-019-0562-4] [PMID: 31892365]
[13]
Sahab-Uddin, M.; Kabir, M.T.; Jalouli, M.; Rahman, M.A.; Jeandet, P.; Behl, T.; Alexiou, A.; Albadrani, G.M.; Abdel-Daim, M.M.; Perveen, A.; Ashraf, G.M. Neuroinflammatory signaling in the pathogenesis of Alzheimer’s disease. Curr. Neuropharmacol., 2022, 20(1), 126-146.
[http://dx.doi.org/10.2174/1570159X19666210826130210] [PMID: 34525932]
[14]
Spano, M.; Di Matteo, G.; Ingallina, C.; Ambroselli, D.; Carradori, S.; Gallo-rini, M.; Giusti, A.M.; Salvo, A.; Grosso, M.; Mannina, L. Modulatory proper-ties of food and nutraceutical components targeting NLRP3 inflammasome ac-tivation. Nutrients, 2022, 14(3), 490.
[http://dx.doi.org/10.3390/nu14030490] [PMID: 35276849]
[15]
White, C.S.; Lawrence, C.B.; Brough, D.; Rivers-Auty, J. Inflammasomes as therapeutic targets for Alzheimer’s disease. Brain Pathol., 2017, 27(2), 223-234.
[http://dx.doi.org/10.1111/bpa.12478] [PMID: 28009077]
[16]
Harrison, J.R.; Owen, M.J. Alzheimer’s disease: The amyloid hypothesis on trial. Br. J. Psychiatry, 2016, 208(1), 1-3.
[http://dx.doi.org/10.1192/bjp.bp.115.167569] [PMID: 26729836]
[17]
Makin, S. The amyloid hypothesis on trial. Nature, 2018, 559(7715), S4-S7.
[http://dx.doi.org/10.1038/d41586-018-05719-4] [PMID: 30046080]
[18]
Panza, F.; Lozupone, M.; Logroscino, G.; Imbimbo, B.P. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat. Rev. Neurol., 2019, 15(2), 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[19]
Wang, S.; Colonna, M. Microglia in Alzheimer’s disease: A target for immunotherapy. J. Leukoc. Biol., 2019, 106(1), JLB.MR0818-319R.
[http://dx.doi.org/10.1002/JLB.MR0818-319R] [PMID: 30725482]
[20]
Gómez-Pinilla, F. Brain foods: The effects of nutrients on brain function. Nat. Rev. Neurosci., 2008, 9(7), 568-578.
[http://dx.doi.org/10.1038/nrn2421] [PMID: 18568016]
[21]
Gomez-Pinilla, F.; Tyagi, E. Diet and cognition. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 726-733.
[http://dx.doi.org/10.1097/MCO.0b013e328365aae3] [PMID: 24071781]
[22]
Vauzour, D.; Camprubi-Robles, M.; Miquel-Kergoat, S.; Andres-Lacueva, C.; Bánáti, D.; Barberger-Gateau, P.; Bowman, G.L.; Caberlotto, L.; Clarke, R.; Hogervorst, E.; Kiliaan, A.J.; Lucca, U.; Manach, C.; Minihane, A.M.; Mitch-ell, E.S.; Perneczky, R.; Perry, H.; Roussel, A.M.; Schuermans, J.; Sijben, J.; Spencer, J.P.E.; Thuret, S.; van de Rest, O.; Vandewoude, M.; Wesnes, K.; Wil-liams, R.J.; Williams, R.S.B.; Ramirez, M. Nutrition for the ageing brain: To-wards evidence for an optimal diet. Ageing Res. Rev., 2017, 35, 222-240.
[http://dx.doi.org/10.1016/j.arr.2016.09.010] [PMID: 27713095]
[23]
Mirmiran, P.; Bahadoran, Z.; Azizi, F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J. Diabetes, 2014, 5(3), 267-281.
[http://dx.doi.org/10.4239/wjd.v5.i3.267] [PMID: 24936248]
[24]
Bilal, M.; Iqbal, M.S.; Shah, S.B.; Rasheed, T.; Iqbal, H.M.N. Diabetic compli-cations and insight into antidiabetic potentialities of ethno- medicinal plants: A review. Recent Pat. Inflamm. Allergy Drug Discov., 2018, 12(1), 7-23.
[http://dx.doi.org/10.2174/1872213X12666180221161410] [PMID: 29473531]
[25]
Nazarian-Samani, Z.; Sewell, R.D.E.; Lorigooini, Z.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on diabetes mellitus and its complica-tions: A systematic review. Curr. Diab. Rep., 2018, 18(10), 72.
[http://dx.doi.org/10.1007/s11892-018-1042-0] [PMID: 30105479]
[26]
Onaolapo, A.Y.; Obelawo, A.Y.; Onaolapo, O.J. Brain ageing, cognition and diet: A review of the emerging roles of food-based nootropics in mitigating age-related memory decline. Curr. Aging Sci., 2019, 12(1), 2-14.
[http://dx.doi.org/10.2174/1874609812666190311160754] [PMID: 30864515]
[27]
Onaolapo, A.Y.; Onaolapo, O.J. Peripheral and central glutamate dyshomeo-stasis in neurodegenerative disorders. Curr. Neuropharmacol., 2021, 19(7), 1069-1089.
[http://dx.doi.org/10.2174/1570159X18666201015161919] [PMID: 33059576]
[28]
McGrattan, A.M.; McGuinness, B.; McKinley, M.C.; Kee, F.; Passmore, P.; Woodside, J.V.; McEvoy, C.T. Diet and inflammation in cognitive ageing and Alzheimer’s disease. Curr. Nutr. Rep., 2019, 8(2), 53-65.
[http://dx.doi.org/10.1007/s13668-019-0271-4] [PMID: 30949921]
[29]
Calder, P.C.; Bosco, N.; Bourdet-Sicard, R.; Capuron, L.; Delzenne, N.; Doré, J.; Franceschi, C.; Lehtinen, M.J.; Recker, T.; Salvioli, S.; Visioli, F. Health relevance of the modification of low grade inflammation in ageing (inflam-mageing) and the role of nutrition. Ageing Res. Rev., 2017, 40, 95-119.
[http://dx.doi.org/10.1016/j.arr.2017.09.001] [PMID: 28899766]
[30]
Devassy, J.G.; Leng, S.; Gabbs, M.; Monirujjaman, M.; Aukema, H.M. Omega-3 polyunsaturated fatty acids and oxylipins in neuroinflammation and man-agement of Alzheimer disease. Adv. Nutr., 2016, 7(5), 905-916.
[http://dx.doi.org/10.3945/an.116.012187] [PMID: 27633106]
[31]
Shastri, A.; Bonifati, D.M.; Kishore, U. Innate immunity and neuroinflamma-tion. Mediators Inflamm., 2013, 2013, 1-19.
[http://dx.doi.org/10.1155/2013/342931] [PMID: 23843682]
[32]
Sankowski, R.; Mader, S.; Valdés-Ferrer, S.I. Systemic inflammation and the brain: Novel roles of genetic, molecular, and environmental cues as drivers of neurodegeneration. Front. Cell. Neurosci., 2015, 9, 28.
[http://dx.doi.org/10.3389/fncel.2015.00028] [PMID: 25698933]
[33]
Murphy, K. Innate immunity: The first lines of defense. In: Janeway's Immunobiology, 8th Ed.; Garland Science, Taylor & Francis Group: Abingdon, UK, 2012.
[34]
Johnston, S.L.; Goldblatt, D.L.; Evans, S.E.; Tuvim, M.J.; Dickey, B.F. Airway epithelial innate immunity. Front. Physiol., 2021, 12, 749077.
[http://dx.doi.org/10.3389/fphys.2021.749077] [PMID: 34899381]
[35]
Roh, J.S.; Sohn, D.H. Damage-associated molecular patterns in inflammatory diseases. Immune Netw., 2018, 18(4), e27.
[http://dx.doi.org/10.4110/in.2018.18.e27] [PMID: 30181915]
[36]
Kempuraj, D.; Thangavel, R.; Selvakumar, G.P.; Zaheer, S.; Ahmed, M.E.; Raikwar, S.P.; Zahoor, H.; Saeed, D.; Natteru, P.A.; Iyer, S.; Zaheer, A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci., 2017, 11, 216.
[http://dx.doi.org/10.3389/fncel.2017.00216] [PMID: 28790893]
[37]
Zengeler, K.E.; Lukens, J.R. Innate immunity at the crossroads of healthy brain maturation and neurodevelopmental disorders. Nat. Rev. Immunol., 2021, 21(7), 454-468.
[http://dx.doi.org/10.1038/s41577-020-00487-7] [PMID: 33479477]
[38]
Amor, S.; McNamara, N.B.; Gerrits, E.; Marzin, M.C.; Kooistra, S.M.; Miron, V.E.; Nutma, E. White matter microglia heterogeneity in the CNS. Acta Neuropathol., 2021, 143(2), 125-141.
[http://dx.doi.org/10.1007/s00401-021-02389-x] [PMID: 34878590]
[39]
Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620.
[http://dx.doi.org/10.1016/j.it.2016.06.006] [PMID: 27443914]
[40]
Hasel, P.; Rose, I.V.L.; Sadick, J.S.; Kim, R.D.; Liddelow, S.A. Neuroinflam-matory astrocyte subtypes in the mouse brain. Nat. Neurosci., 2021, 24(10), 1475-1487.
[http://dx.doi.org/10.1038/s41593-021-00905-6] [PMID: 34413515]
[41]
Hanslik, K.L.; Marino, K.M.; Ulland, T.K. Modulation of glial function in health, aging, and neurodegenerative disease. Front. Cell. Neurosci., 2021, 15, 718324.
[http://dx.doi.org/10.3389/fncel.2021.718324] [PMID: 34531726]
[42]
Valori, C.F.; Guidotti, G.; Brambilla, L.; Rossi, D. Astrocytes: Emerging therapeutic targets in neurological disorders. Trends Mol. Med., 2019, 25(9), 750-759.
[http://dx.doi.org/10.1016/j.molmed.2019.04.010] [PMID: 31122805]
[43]
Chen, Y.; Qin, C.; Huang, J.; Tang, X.; Liu, C.; Huang, K.; Xu, J.; Guo, G.; Tong, A.; Zhou, L. The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif., 2020, 53(3), e12781.
[http://dx.doi.org/10.1111/cpr.12781] [PMID: 32035016]
[44]
Labzin, L.I.; Heneka, M.T.; Latz, E. Innate immunity and neurodegeneration. Annu. Rev. Med., 2018, 69(1), 437-449.
[http://dx.doi.org/10.1146/annurev-med-050715-104343] [PMID: 29106805]
[45]
Mattson, M.P.; Arumugam, T.V. Hallmarks of brain aging: Adaptive and patho-logical modification by metabolic states. Cell Metab., 2018, 27(6), 1176-1199.
[http://dx.doi.org/10.1016/j.cmet.2018.05.011] [PMID: 29874566]
[46]
Nikodemova, M.; Small, A.L.; Kimyon, R.S.; Watters, J.J. Age-dependent differences in microglial responses to systemic inflammation are evident as early as middle age. Physiol. Genomics, 2016, 48(5), 336-344.
[http://dx.doi.org/10.1152/physiolgenomics.00129.2015] [PMID: 26884461]
[47]
Keane, L.; Antignano, I.; Riechers, S.P.; Zollinger, R.; Dumas, A.A.; Offer-mann, N.; Bernis, M.E.; Russ, J.; Graelmann, F.; McCormick, P.N.; Esser, J.; Tejera, D.; Nagano, A.; Wang, J.; Chelala, C.; Biederbick, Y.; Halle, A.; Salo-moni, P.; Heneka, M.T.; Capasso, M. mTOR-dependent translation amplifies microglia priming in aging mice. J. Clin. Invest., 2021, 131(1), e132727.
[http://dx.doi.org/10.1172/JCI132727] [PMID: 33108356]
[48]
Olah, M.; Patrick, E.; Villani, A.C.; Xu, J.; White, C.C.; Ryan, K.J.; Piehowski, P.; Kapasi, A.; Nejad, P.; Cimpean, M.; Connor, S.; Yung, C.J.; Frangieh, M.; McHenry, A.; Elyaman, W.; Petyuk, V.; Schneider, J.A.; Bennett, D.A.; De Ja-ger, P.L.; Bradshaw, E.M. A transcriptomic atlas of aged human microglia. Nat. Commun., 2018, 9(1), 539.
[http://dx.doi.org/10.1038/s41467-018-02926-5] [PMID: 29416036]
[49]
Bonham, L.W.; Sirkis, D.W.; Yokoyama, J.S. The transcriptional landscape of microglial genes in aging and neurodegenerative disease. Front. Immunol., 2019, 10, 1170.
[http://dx.doi.org/10.3389/fimmu.2019.01170] [PMID: 31214167]
[50]
Hefendehl, J.K.; Neher, J.J.; Sühs, R.B.; Kohsaka, S.; Skodras, A.; Jucker, M. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell, 2014, 13(1), 60-69.
[http://dx.doi.org/10.1111/acel.12149] [PMID: 23953759]
[51]
Clarke, L.E.; Liddelow, S.A.; Chakraborty, C.; Münch, A.E.; Heiman, M.; Barres, B.A. Normal aging induces A1-like astrocyte reactivity. Proc. Natl. Acad. Sci. USA, 2018, 115(8), E1896-E1905.
[http://dx.doi.org/10.1073/pnas.1800165115] [PMID: 29437957]
[52]
Reichenbach, N.; Delekate, A.; Plescher, M.; Schmitt, F.; Krauss, S.; Blank, N.; Halle, A.; Petzold, G.C. Inhibition of Stat3‐mediated astrogliosis ameliorates pathology in an Alzheimer’s disease model. EMBO Mol. Med., 2019, 11(2), e9665.
[http://dx.doi.org/10.15252/emmm.201809665] [PMID: 30617153]
[53]
Habib, N.; McCabe, C.; Medina, S.; Varshavsky, M.; Kitsberg, D.; Dvir-Szternfeld, R.; Green, G.; Dionne, D.; Nguyen, L.; Marshall, J.L.; Chen, F.; Zhang, F.; Kaplan, T.; Regev, A.; Schwartz, M. Disease-associated astrocytes in Alzheimer’s disease and aging. Nat. Neurosci., 2020, 23(6), 701-706.
[http://dx.doi.org/10.1038/s41593-020-0624-8] [PMID: 32341542]
[54]
Bondi, H.; Bortolotto, V.; Canonico, P.L.; Grilli, M. Complex and regional-specific changes in the morphological complexity of GFAP+ astrocytes in middle-aged mice. Neurobiol. Aging, 2021, 100, 59-71.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.018] [PMID: 33493951]
[55]
Popov, A.; Brazhe, A.; Denisov, P.; Sutyagina, O.; Li, L.; Lazareva, N.; Verkhratsky, A.; Semyanov, A. Astrocyte dystrophy in ageing brain parallels impaired synaptic plasticity. Aging Cell, 2021, 20(3), e13334.
[http://dx.doi.org/10.1111/acel.13334] [PMID: 33675569]
[56]
Spangenberg, E.E.; Lee, R.J.; Najafi, A.R.; Rice, R.A.; Elmore, M.R.P.; Blurton-Jones, M.; West, B.L.; Green, K.N. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-β pathology. Brain, 2016, 139(4), 1265-1281.
[http://dx.doi.org/10.1093/brain/aww016] [PMID: 26921617]
[57]
Tarkowski, E.; Andreasen, N.; Tarkowski, A.; Blennow, K. Intrathecal in-flammation precedes development of Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2003, 74(9), 1200-1205.
[http://dx.doi.org/10.1136/jnnp.74.9.1200] [PMID: 12933918]
[58]
Zhang, B.; Gaiteri, C.; Bodea, L.G.; Wang, Z.; McElwee, J.; Podtelezhnikov, A.A.; Zhang, C.; Xie, T.; Tran, L.; Dobrin, R.; Fluder, E.; Clurman, B.; Mel-quist, S.; Narayanan, M.; Suver, C.; Shah, H.; Mahajan, M.; Gillis, T.; Mysore, J.; MacDonald, M.E.; Lamb, J.R.; Bennett, D.A.; Molony, C.; Stone, D.J.; Gudnason, V.; Myers, A.J.; Schadt, E.E.; Neumann, H.; Zhu, J.; Emilsson, V. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell, 2013, 153(3), 707-720.
[http://dx.doi.org/10.1016/j.cell.2013.03.030] [PMID: 23622250]
[59]
Wright, A.L.; Zinn, R.; Hohensinn, B.; Konen, L.M.; Beynon, S.B.; Tan, R.P.; Clark, I.A.; Abdipranoto, A.; Vissel, B. Neuroinflammation and neuronal loss precede Aβ plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS One, 2013, 8(4), e59586.
[http://dx.doi.org/10.1371/journal.pone.0059586] [PMID: 23560052]
[60]
Maphis, N.; Xu, G.; Kokiko-Cochran, O.N.; Jiang, S.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T.; Bhaskar, K. Reactive microglia drive tau pathology and con-tribute to the spreading of pathological tau in the brain. Brain, 2015, 138(6), 1738-1755.
[http://dx.doi.org/10.1093/brain/awv081] [PMID: 25833819]
[61]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrish-nan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[62]
Venegas, C.; Kumar, S.; Franklin, B.S.; Dierkes, T.; Brinkschulte, R.; Tejera, D.; Vieira-Saecker, A.; Schwartz, S.; Santarelli, F.; Kummer, M.P.; Griep, A.; Gelpi, E.; Beilharz, M.; Riedel, D.; Golenbock, D.T.; Geyer, M.; Walter, J.; Latz, E.; Heneka, M.T. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017, 552(7685), 355-361.
[http://dx.doi.org/10.1038/nature25158] [PMID: 29293211]
[63]
Jayaraman, A.; Htike, T.T.; James, R.; Picon, C.; Reynolds, R. TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer’s disease hippocampus. Acta Neuropathol. Commun., 2021, 9(1), 159.
[http://dx.doi.org/10.1186/s40478-021-01264-w] [PMID: 34625123]
[64]
Simpson, D.S.A.; Oliver, P.L. ROS generation in Microglia: Understanding oxidative stress and inflammation in neurodegenerative disease. Antioxidants, 2020, 9(8), 743.
[http://dx.doi.org/10.3390/antiox9080743]
[65]
Jian, C.; Wei, L.; Mo, R.; Li, R.; Liang, L.; Chen, L.; Zou, C.; Meng, Y.; Liu, Y.; Zou, D. Microglia mediate the occurrence and development of Alzheimer’s disease through ligand-receptor axis communication. Front. Aging Neurosci., 2021, 13, 731180.
[http://dx.doi.org/10.3389/fnagi.2021.731180] [PMID: 34616287]
[66]
Bronzuoli, M.R.; Facchinetti, R.; Valenza, M.; Cassano, T.; Steardo, L.; Scuderi, C. Astrocyte function is affected by aging and not Alzheimer’s dis-ease: A preliminary investigation in hippocampi of 3xTg-AD mice. Front. Pharmacol., 2019, 10, 644.
[http://dx.doi.org/10.3389/fphar.2019.00644] [PMID: 31244658]
[67]
Nanclares, C.; Baraibar, A.M.; Araque, A.; Kofuji, P. Dysregulation of astro-cyte–neuronal communication in Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(15), 7887.
[http://dx.doi.org/10.3390/ijms22157887] [PMID: 34360652]
[68]
Pike, C.J.; Cummings, B.J.; Cotman, C.W. Early association of reactive astro-cytes with senile plaques in Alzheimer’s disease. Exp. Neurol., 1995, 132(2), 172-179.
[http://dx.doi.org/10.1016/0014-4886(95)90022-5] [PMID: 7789457]
[69]
Pike, C.J.; Cummings, B.J.; Monzavi, R.; Cotman, C.W. β-Amyloid-induced changes in cultured astrocytes parallel reactive astrocytosis associated with senile plaques in Alzheimer’s disease. Neuroscience, 1994, 63(2), 517-531.
[http://dx.doi.org/10.1016/0306-4522(94)90547-9] [PMID: 7891862]
[70]
Matsuoka, Y.; Picciano, M.; Malester, B.; LaFrancois, J.; Zehr, C.; Daeschner, J.M.; Olschowka, J.A.; Fonseca, M.I.; O’Banion, M.K.; Tenner, A.J.; Lemere, C.A.; Duff, K. Inflammatory responses to amyloidosis in a transgenic mouse model of Alzheimer’s disease. Am. J. Pathol., 2001, 158(4), 1345-1354.
[http://dx.doi.org/10.1016/S0002-9440(10)64085-0] [PMID: 11290552]
[71]
Nagele, R.G.; D’Andrea, M.R.; Lee, H.; Venkataraman, V.; Wang, H.Y. Astro-cytes accumulate Aβ42 and give rise to astrocytic amyloid plaques in Alz-heimer disease brains. Brain Res., 2003, 971(2), 197-209.
[http://dx.doi.org/10.1016/S0006-8993(03)02361-8] [PMID: 12706236]
[72]
Avila-Muñoz, E.; Arias, C. When astrocytes become harmful: Functional and inflammatory responses that contribute to Alzheimer’s disease. Ageing Res. Rev., 2014, 18, 29-40.
[http://dx.doi.org/10.1016/j.arr.2014.07.004] [PMID: 25078115]
[73]
Ardura-Fabregat, A.; Boddeke, E.W.G.M.; Boza-Serrano, A.; Brioschi, S.; Castro-Gomez, S.; Ceyzériat, K.; Dansokho, C.; Dierkes, T.; Gelders, G.; Heneka, M.T.; Hoeijmakers, L.; Hoffmann, A.; Iaccarino, L.; Jahnert, S.; Kuhbandner, K.; Landreth, G.; Lonnemann, N.; Löschmann, P.A.; McManus, R.M.; Paulus, A.; Reemst, K.; Sanchez-Caro, J.M.; Tiberi, A.; Van der Perren, A. Vautheny,] A.; Venegas, C.; Webers, A.; Weydt, P.; Wijasa, T.S.; Xiang, X.; Yang, Y. Tar-geting neuroinflammation to treat alzheimer’s disease. CNS Drugs, 2017, 31(12), 1057-1082.
[http://dx.doi.org/10.1007/s40263-017-0483-3] [PMID: 29260466]
[74]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegenera-tion. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[75]
Leszek, J.; Barreto, G.E.; Gąsiorowski, K.; Koutsouraki, E.; Ávila-Rodrigues, M.; Aliev, G. Inflammatory mechanisms and oxidative stress as key factors re-sponsible for progression of neurodegeneration: Role of brain innate immune system. CNS Neurol. Disord. Drug Targets, 2016, 15(3), 329-336.
[http://dx.doi.org/10.2174/1871527315666160202125914] [PMID: 26831258]
[76]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[77]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[78]
Chiurchiù, V.; Orlacchio, A.; Maccarrone, M. Is modulation of oxidative stress an answer? The state of the art of redox therapeutic actions in neurodegenera-tive diseases. Oxid. Med. Cell. Longev., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/7909380] [PMID: 26881039]
[79]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is suscep-tible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[80]
G8 dementia summit declaration. 2013. Available from: https://www.gov.uk/government/publications/g8-dementia-summit-agreements/g8-dementia-summit-declaration [Accessed on: January 4, 2021].
[81]
Vradenburg, G. A pivotal moment in Alzheimer’s disease and dementia: How global unity of purpose and action can beat the disease by 2025. Expert Rev. Neurother., 2015, 15(1), 73-82.
[http://dx.doi.org/10.1586/14737175.2015.995638] [PMID: 25576089]
[82]
Cummings, J.; Aisen, P.S.; DuBois, B.; Frölich, L.; Jack, C.R., Jr; Jones, R.W.; Morris, J.C.; Raskin, J.; Dowsett, S.A.; Scheltens, P. Drug development in Alzheimer’s disease: The path to 2025. Alzheimers Res. Ther., 2016, 8(1), 39.
[http://dx.doi.org/10.1186/s13195-016-0207-9] [PMID: 27646601]
[83]
Wallace, L.; Walsh, S.; Brayne, C. The legacy of the 2013 G8 Dementia Sum-mit: Successes, challenges, and potential ways forward. The Lancet Healthy Longevity, 2021, 2(8), e455-e457.
[http://dx.doi.org/10.1016/S2666-7568(21)00145-8]
[84]
Cummings, J.L.; Tong, G.; Ballard, C. Treatment combinations for Alzheimer’s disease: Current and future pharmacotherapy options. J. Alzheimers Dis., 2019, 67(3), 779-794.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[85]
Mahase, E. Aducanumab: 4 in 10 high dose trial participants experienced brain swelling or bleeding. BMJ, 2021, 375(2975), n2975.
[http://dx.doi.org/10.1136/bmj.n2975] [PMID: 34853005]
[86]
US Food & Drug Administration FDA grants accelerated approval for Alzheimer’s drug. 2021. Available from: https://www.fda.gov/news-events/press-announcements/fda-grants-accelerated-approval-alzheimers-drug [Accessed on: June 17, 2021].
[87]
Breitner, J.; Welsh, K.A.; Helms, M.J.; Gaskell, P.C.; Gau, B.A.; Roses, A.D.; Pericak-Vance, M.A.; Saunders, A.M. Delayed onset of Alzheimer’s disease with nonsteroidal anti-inflammatory and histamine H2 blocking drugs. Neurobiol. Aging, 1995, 16(4), 523-530.
[http://dx.doi.org/10.1016/0197-4580(95)00049-K] [PMID: 8544901]
[88]
Stewart, W.F.; Kawas, C.; Corrada, M.; Metter, E.J. Risk of Alzheimer’s disease and duration of NSAID use. Neurology, 1997, 48(3), 626-632.
[http://dx.doi.org/10.1212/WNL.48.3.626] [PMID: 9065537]
[89]
Anthony, J.C.; Breitner, J.C.S.; Zandi, P.P.; Meyer, M.R.; Jurasova, I.; Norton, M.C.; Stone, S.V. Reduced prevalence of AD in users of NSAIDs and H2 re-ceptor antagonists. Neurology, 2000, 54(11), 2066-2071.
[http://dx.doi.org/10.1212/WNL.54.11.2066] [PMID: 10851364]
[90]
Zandi, P.P.; Anthony, J.C.; Hayden, K.M.; Mehta, K.; Mayer, L.; Breitner, J.C.S. Reduced incidence of AD with NSAID but not H2 receptor antagonists: The cache county study. Neurology, 2002, 59(6), 880-886.
[http://dx.doi.org/10.1212/WNL.59.6.880] [PMID: 12297571]
[91]
Gasparini, L.; Ongini, E.; Wenk, G. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Alzheimer’s disease: Old and new mechanisms of action. J. Neurochem., 2004, 91(3), 521-536.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02743.x] [PMID: 15485484]
[92]
Szekely, C.A.; Green, R.C.; Breitner, J.C.S.; Østbye, T.; Beiser, A.S.; Corrada, M.M.; Dodge, H.H.; Ganguli, M.; Kawas, C.H.; Kuller, L.H.; Psaty, B.M.; Res-nick, S.M.; Wolf, P.A.; Zonderman, A.B.; Welsh-Bohmer, K.A.; Zandi, P.P. No advantage of A 42-lowering NSAIDs for prevention of Alzheimer dementia in six pooled cohort studies. Neurology, 2008, 70(24), 2291-2298.
[http://dx.doi.org/10.1212/01.wnl.0000313933.17796.f6] [PMID: 18509093]
[93]
Vlad, S.C.; Miller, D.R.; Kowall, N.W.; Felson, D.T. Protective effects of NSAIDs on the development of Alzheimer disease. Neurology, 2008, 70(19), 1672-1677.
[http://dx.doi.org/10.1212/01.wnl.0000311269.57716.63] [PMID: 18458226]
[94]
Weng, J.; Zhao, G.; Weng, L.; Guan, J. Aspirin using was associated with slower cognitive decline in patients with Alzheimer’s disease. PLoS One, 2021, 16(6), e0252969.
[http://dx.doi.org/10.1371/journal.pone.0252969] [PMID: 34133445]
[95]
Lim, G.; Yang, F.; Chu, T.; Gahtan, E.; Ubeda, O.; Beech, W.; Overmier, J.B.; Hsiao-Ashec, K.; Frautschy, S.A.; Cole, G.M. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol. Aging, 2001, 22(6), 983-991.
[http://dx.doi.org/10.1016/S0197-4580(01)00299-8] [PMID: 11755007]
[96]
Lim, G.P.; Yang, F.; Chu, T.; Chen, P.; Beech, W.; Teter, B.; Tran, T.; Ubeda, O.; Ashe, K.H.; Frautschy, S.A.; Cole, G.M. Ibuprofen suppresses plaque patholo-gy and inflammation in a mouse model for Alzheimer’s disease. J. Neurosci., 2000, 20(15), 5709-5714.
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05709.2000] [PMID: 10908610]
[97]
Jantzen, P.T.; Connor, K.E.; DiCarlo, G.; Wenk, G.L.; Wallace, J.L.; Rojiani, A.M.; Coppola, D.; Morgan, D.; Gordon, M.N. Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal an-ti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgen-ic mice. J. Neurosci., 2002, 22(6), 2246-2254.
[http://dx.doi.org/10.1523/JNEUROSCI.22-06-02246.2002] [PMID: 11896164]
[98]
Yan, Q.; Zhang, J.; Liu, H.; Babu-Khan, S.; Vassar, R.; Biere, A.L.; Citron, M.; Landreth, G. Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer’s disease. J. Neurosci., 2003, 23(20), 7504-7509.
[http://dx.doi.org/10.1523/JNEUROSCI.23-20-07504.2003] [PMID: 12930788]
[99]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1–42 levels in APPV717I transgenic mice. Brain, 2005, 128(6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[100]
Morihara, T.; Teter, B.; Yang, F.; Lim, G.P.; Boudinot, S.; Boudinot, F.D.; Frautschy, S.A.; Cole, G.M. Ibuprofen suppresses interleukin-1beta induction of pro-amyloidogenic alpha1-antichymotrypsin to ameliorate beta-amyloid (Abeta) pathology in Alzheimer’s models. Neuropsychopharmacology, 2005, 30(6), 1111-1120.
[http://dx.doi.org/10.1038/sj.npp.1300668] [PMID: 15688088]
[101]
Imbimbo, B.P.; Del Giudice, E.; Colavito, D.; D’Arrigo, A. DalleCarbonare, M.; Villetti, G.; Facchinetti, F.; Volta, R.; Pietrini, V.; Baroc, M.F.; Serneels, L.; De Strooper, B.; Leon, A. 1-(3′,4′-Dichloro-2-fluoro[1,1′-biphenyl]-4-yl)-cyclopropanecarboxylic acid (CHF5074), a novel gamma-secretase modulator, reduces brain beta-amyloid pathology in a transgenic mouse model of Alz-heimer’s disease without causing peripheral toxicity. J. Pharmacol. Exp. Ther., 2007, 323(3), 822-830.
[http://dx.doi.org/10.1124/jpet.107.129007] [PMID: 17895400]
[102]
Kukar, T.; Prescott, S.; Eriksen, J.L.; Holloway, V.; Murphy, M.P.; Koo, E.H.; Golde, T.E.; Nicolle, M.M. Chronic administration of R-flurbiprofen attenu-ates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci., 2007, 8(1), 54.
[http://dx.doi.org/10.1186/1471-2202-8-54] [PMID: 17650315]
[103]
Ettcheto, M.; Sánchez-López, E.; Pons, L.; Busquets, O.; Olloquequi, J.; Beas-Zarate, C.; Pallas, M.; García, M.L.; Auladell, C.; Folch, J.; Camins, A. Dexibu-profen prevents neurodegeneration and cognitive decline in APPswe/PS1dE9 through multiple signaling pathways. Redox Biol., 2017, 13, 345-352.
[http://dx.doi.org/10.1016/j.redox.2017.06.003] [PMID: 28646794]
[104]
Ettcheto, M.; Sánchez-Lopez, E.; Cano, A.; Carrasco, M.; Herrera, K.; Manzine, P.R.; Espinosa-Jimenez, T.; Busquets, O.; Verdaguer, E.; Olloquequi, J.; Auladell, C.; Folch, J.; Camins, A. Dexibuprofen ameliorates peripheral and central risk factors associated with Alzheimer’s disease in metabolically stressed APPswe/PS1dE9 mice. Cell Biosci., 2021, 11(1), 141.
[http://dx.doi.org/10.1186/s13578-021-00646-w] [PMID: 34294142]
[105]
Guan, P.P.; Yang, L.Q.; Xu, G.B.; Wang, P. Indomethacin disrupts the for-mation of β-amyloid plaques via an α2-macroglobulin-activating lrp1-dependent mechanism. Int. J. Mol. Sci., 2021, 22(15), 8185.
[http://dx.doi.org/10.3390/ijms22158185] [PMID: 34360951]
[106]
McKee, A.C.; Carreras, I.; Hossain, L.; Ryu, H.; Klein, W.L.; Oddo, S.; LaFerla, F.M.; Jenkins, B.G.; Kowall, N.W.; Dedeoglu, A. Ibuprofen reduces Aβ, hy-perphosphorylated tau and memory deficits in Alzheimer mice. Brain Res., 2008, 1207, 225-236.
[http://dx.doi.org/10.1016/j.brainres.2008.01.095] [PMID: 18374906]
[107]
Carreras, I.; McKee, A.C.; Choi, J.K.; Aytan, N.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer’s disease. Brain Res., 2013, 1541, 115-127.
[http://dx.doi.org/10.1016/j.brainres.2013.10.025] [PMID: 24161403]
[108]
Aisen, P.S.; Schafer, K.A.; Grundman, M.; Pfeiffer, E.; Sano, M.; Davis, K.L.; Farlow, M.R.; Jin, S.; Thomas, R.G.; Thal, L.J. Effects of rofecoxib or naproxen vs. placebo on Alzheimer disease progression: A randomized controlled trial. JAMA, 2003, 289(21), 2819-2826.
[http://dx.doi.org/10.1001/jama.289.21.2819] [PMID: 12783912]
[109]
Reines, S.A.; Block, G.A.; Morris, J.C.; Liu, G.; Nessly, M.L.; Lines, C.R.; Norman, B.A.; Baranak, C.C. Rofecoxib: No effect on Alzheimer’s disease in a 1-year, randomized, blinded, controlled study. Neurology, 2004, 62(1), 66-71.
[http://dx.doi.org/10.1212/WNL.62.1.66] [PMID: 14718699]
[110]
Thal, L.J.; Ferris, S.H.; Kirby, L.; Block, G.A.; Lines, C.R.; Yuen, E.; Assaid, C.; Nessly, M.L.; Norman, B.A.; Baranak, C.C.; Reines, S.A. A randomized, double-blind, study of rofecoxib in patients with mild cognitive impairment. Neuropsychopharmacology, 2005, 30(6), 1204-1215.
[http://dx.doi.org/10.1038/sj.npp.1300690] [PMID: 15742005]
[111]
Soininen, H.; West, C.; Robbins, J.; Niculescu, L. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord., 2007, 23(1), 8-21.
[http://dx.doi.org/10.1159/000096588] [PMID: 17068392]
[112]
Wilcock, G.K.; Black, S.E.; Hendrix, S.B.; Zavitz, K.H.; Swabb, E.A.; Laugh-lin, M.A. Efficacy and safety of tarenflurbil in mild to moderate Alzheimer’s disease: A randomised phase II trial. Lancet Neurol., 2008, 7(6), 483-493.
[http://dx.doi.org/10.1016/S1474-4422(08)70090-5] [PMID: 18450517]
[113]
Green, R.C.; Schneider, L.S.; Amato, D.A.; Beelen, A.P.; Wilcock, G.; Swabb, E.A.; Zavitz, K.H. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized con-trolled trial. JAMA, 2009, 302(23), 2557-2564.
[http://dx.doi.org/10.1001/jama.2009.1866] [PMID: 20009055]
[114]
de Jong, D.; Jansen, R.; Hoefnagels, W.; Jellesma-Eggenkamp, M.; Verbeek, M.; Borm, G.; Kremer, B. No effect of one-year treatment with indomethacin on Alzheimer’s disease progression: A randomized controlled trial. PLoS One, 2008, 3(1), e1475.
[http://dx.doi.org/10.1371/journal.pone.0001475] [PMID: 18213383]
[115]
Jaturapatporn, D.; Isaac, M.G.E.K.N.; McCleery, J.; Tabet, N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Libr., 2012, (2), CD006378.
[http://dx.doi.org/10.1002/14651858.CD006378.pub2] [PMID: 22336816]
[116]
Jordan, F.; Quinn, T.J.; McGuinness, B.; Passmore, P.; Kelly, J.P.; Tudur, S.C.; Murphy, K.; Devane, D. Aspirin and other non-steroidal anti-inflammatory drugs for the prevention of dementia. Cochrane Libr., 2020, 2020(4), CD011459.
[http://dx.doi.org/10.1002/14651858.CD011459.pub2] [PMID: 32352165]
[117]
Rogers, J.; Kirby, L.C.; Hempelman, S.R.; Berry, D.L.; McGeer, P.L.; Kaszniak, A.W.; Zalinski, J.; Cofield, M.; Mansukhani, L.; Willson, P.; Kogan, F. Clini-cal trial of indomethacin in Alzheimer’s disease. Neurology, 1993, 43(8), 1609-1611.
[http://dx.doi.org/10.1212/WNL.43.8.1609] [PMID: 8351023]
[118]
Stuve, O.; Weideman, R.A.; McMahan, D.M.; Jacob, D.A.; Little, B.B. Diclo-fenac reduces the risk of Alzheimer’s disease: A pilot analysis of NSAIDs in two US veteran populations. Ther. Adv. Neurol. Disord., 2020, 13, 1756286420935676.
[http://dx.doi.org/10.1177/1756286420935676] [PMID: 32647537]
[119]
Martin, B.K.; Szekely, C.; Brandt, J.; Piantadosi, S.; Breitner, J.C.; Craft, S.; Evans, D.; Green, R.; Mullan, M. Cognitive function over time in the Alz-heimer’s Disease Anti-inflammatory Prevention Trial (ADAPT): Results of a randomized, controlled trial of naproxen and celecoxib. Arch. Neurol., 2008, 65(7), 896-905.
[http://dx.doi.org/10.1001/archneur.2008.65.7.nct70006] [PMID: 18474729]
[120]
Breitner, J.C.; Baker, L.D.; Montine, T.J.; Meinert, C.L.; Lyketsos, C.G.; Ashe, K.H.; Brandt, J.; Craft, S.; Evans, D.E.; Green, R.C.; Ismail, M.S.; Martin, B.K.; Mullan, M.J.; Sabbagh, M.; Tariot, P.N. Extended results of the Alzheimer’s disease anti‐inflammatory prevention trial. Alzheimers Dement., 2011, 7(4), 402-411.
[http://dx.doi.org/10.1016/j.jalz.2010.12.014] [PMID: 21784351]
[121]
Alzheimer’s Disease Anti-inflammatory Prevention Trial Research Group. Results of a follow‐up study to the randomized Alzheimer’s Disease An-ti‐inflammatory Prevention Trial (ADAPT). Alzheimers Dement., 2013, 9(6), 714-723.
[http://dx.doi.org/10.1016/j.jalz.2012.11.012] [PMID: 23562431]
[122]
Rivers-Auty, J.; Mather, A.E.; Peters, R.; Lawrence, C.B.; Brough, D. Anti-inflammatories in Alzheimer’s disease-Potential therapy or spurious corre-late? Brain Commun., 2020, 2(2), fcaa109.
[http://dx.doi.org/10.1093/braincomms/fcaa109] [PMID: 33134914]
[123]
Burns, D.K.; Alexander, R.C.; Welsh-Bohmer, K.A.; Culp, M.; Chiang, C.; O’Neil, J.; Evans, R.M.; Harrigan, P.; Plassman, B.L.; Burke, J.R.; Wu, J.; Lutz, M.W.; Haneline, S.; Schwarz, A.J.; Schneider, L.S.; Yaffe, K.; Saunders, A.M.; Ratti, E.; Aarsland, D.; Ackermann, O.; Agron-Figueroa, J.; Arnold, T.; Bailey, P.; Ballard, C.; Barton, S.; Belden, C.; Bergthold, J.; Bond, W.; Bradley, R.; Braude, W.; Brody, M.; Brown, R.; Burke, J.; Butchart, J.; Campbell, T.; Carusa, S.; Clarnette, R.; Cohen, R.; Connelly, P.; Copeland, J.; Coulthard, E.; Crusey, J.; Curtis, C.; De Sanctis, V.; Demakis, G.; Denburg, N.; Donikyan, M.; Doo-dy, R.; Ellenbogen, A.; Fleischman, D.; Floel, A.; Forchetti, C.; Galvez-Jimenez, N.; Goldstein, J.; Goldstein, F.; Goozee, K.; Gruener, D.; Halsten, J.; Hassman, H.; Henderson, E.; Herbst, H-P.; Higham, S.; Hofner, R.; Huang, D.R.; Inglis, F.; Johnson, C.; Kass, J.; Kirk, G.; Klostermann, A.; Knopman, A.; Koplin, A.; Krefetz, D.; Kressig, R.; Lai, R.; Lefebvre, G.; Leger, G.; Leibowitz, M.; Levey, A.; Leyhe, T.; Losk, S.; Lyons, K.; Martin, J.; Massman, P.; McWilliam, C.; Micallef, S.; Middleton, L.; Miller, H.; Mintzer, J.; Mitch-ell, R.; Mofsen, R.; Monsch, A.; Moore, P.; Munic-Miller, D.; Nash, M.; Neugroschl, J.; Newson, M.; Noad, R.; Olivera, E.; Olley, A.; Omidvar, O.; Parra, M.; Pearson, S.; Perneczky, R.; Peters, O.; Potter, G.; Price, G.; Raymont, V.; Rice, L.; Ritchie, C.; Ritter, A.; Robinson, J.; Robinson, S.; Ross, J.; Rujes-cu, D.; Sabbagh, M.; Sabet, A.; Samson, L.; Sass, J.; Saxena, M.; Schaerf, F.; Schlegel, E.; Shah, R.; Shingleton, R.; Sohrabi, H.; Stephenson, R.; Stratmann, L.; Tariot, P.; Thein, S.; Till, H.; Voight, N.; Votolato, R.; Wallace, L.; Watson, D.; White, A.; Woodward, M.; Zamrini, E.; Zimmerman, C. Safety and efficacy of pioglitazone for the delay of cognitive impairment in people at risk of Alz-heimer’s disease (TOMMORROW): A prognostic biomarker study and a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol., 2021, 20(7), 537-547.
[http://dx.doi.org/10.1016/S1474-4422(21)00043-0] [PMID: 34146512]
[124]
Saunders, A.M.; Burns, D.K.; Gottschalk, W.K. Reassessment of pioglitazone for Alzheimer’s disease. Front. Neurosci., 2021, 15, 666958.
[http://dx.doi.org/10.3389/fnins.2021.666958] [PMID: 34220427]
[125]
Heneka, M.T.; Landreth, G.E.; Feinstein, D.L. Role for peroxisome prolifera-tor-activated receptor-? in Alzheimer’s disease. Ann. Neurol., 2001, 49(2), 276.
[http://dx.doi.org/10.1002/1531-8249(20010201)49:2<276:AID-ANA53>3.0.CO;2-5] [PMID: 11220752]
[126]
Denner, L.A.; Rodriguez-Rivera, J.; Haidacher, S.J.; Jahrling, J.B.; Carmical, J.R.; Hernandez, C.M.; Zhao, Y.; Sadygov, R.G.; Starkey, J.M.; Spratt, H.; Lux-on, B.A.; Wood, T.G.; Dineley, K.T. Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways. J. Neurosci., 2012, 32(47), 16725-16735.
[http://dx.doi.org/10.1523/JNEUROSCI.2153-12.2012] [PMID: 23175826]
[127]
Jahrling, J.B.; Hernandez, C.M.; Denner, L.; Dineley, K.T. PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer’s dis-ease-related cognitive enhancement. J. Neurosci., 2014, 34(11), 4054-4063.
[http://dx.doi.org/10.1523/JNEUROSCI.4024-13.2014] [PMID: 24623782]
[128]
Cortez, I.; Hernandez, C.M.; Dineley, K.T. Enhancement of select cognitive domains with rosiglitazone implicates dorsal hippocampus circuitry sensitive to PPARγ agonism in an Alzheimer’s mouse model. Brain Behav., 2021, 11(2), e01973.
[http://dx.doi.org/10.1002/brb3.1973] [PMID: 33382528]
[129]
Sato, T.; Hanyu, H.; Hirao, K.; Kanetaka, H.; Sakurai, H.; Iwamoto, T. Efficacy of PPAR-γ agonist pioglitazone in mild Alzheimer disease. Neurobiol. Aging, 2011, 32(9), 1626-1633.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.10.009] [PMID: 19923038]
[130]
Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s dis-ease. Pharmacogenomics J., 2006, 6(4), 246-254.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[131]
Heneka, M.T.; Fink, A.; Doblhammer, G. Effect of pioglitazone medication on the incidence of dementia. Ann. Neurol., 2015, 78(2), 284-294.
[http://dx.doi.org/10.1002/ana.24439] [PMID: 25974006]
[132]
Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol., 2011, 68(1), 45-50.
[http://dx.doi.org/10.1001/archneurol.2010.229] [PMID: 20837824]
[133]
Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87.
[http://dx.doi.org/10.3389/fnut.2018.00087] [PMID: 30298133]
[134]
Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food bioactive com-pounds and emerging techniques for their extraction: Polyphenols as a case study. Foods, 2020, 10(1), 37.
[http://dx.doi.org/10.3390/foods10010037] [PMID: 33374463]
[135]
Hole, K.L.; Williams, R.J. Flavonoids as an intervention for Alzheimer’s disease: Progress and hurdles towards defining a mechanism of action. Brain Plast., 2021, 6(2), 167-192.
[http://dx.doi.org/10.3233/BPL-200098] [PMID: 33782649]
[136]
Onaolapo, O.J.; Onaolapo, A.Y. Nutrition, nutritional deficiencies, and schiz-ophrenia: An association worthy of constant reassessment. World J. Clin. Cases, 2021, 9(28), 8295-8311.
[http://dx.doi.org/10.12998/wjcc.v9.i28.8295] [PMID: 34754840]
[137]
Onaolapo, A.Y.; Onaolapo, O.J. African plants with antidiabetic potentials: Beyond glycaemic control to central nervous system benefits. Curr. Diabetes Rev., 2020, 16(5), 419-437.
[http://dx.doi.org/10.2174/1573399815666191106104941] [PMID: 31702529]
[138]
Sawikr, Y.; Yarla, N.S.; Peluso, I.; Kamal, M.A.; Aliev, G.; Bishayee, A. Neu-roinflammation in Alzheimer’s disease. Adv. Protein Chem. Struct. Biol., 2017, 108, 33-57.
[http://dx.doi.org/10.1016/bs.apcsb.2017.02.001] [PMID: 28427563]
[139]
Crowe, K.M.; Francis, C. Position of the academy of nutrition and dietetics: Functional foods. J. Acad. Nutr. Diet., 2013, 113(8), 1096-1103.
[http://dx.doi.org/10.1016/j.jand.2013.06.002] [PMID: 23885705]
[140]
Buettner, D.; Skemp, S. Blue zones. Am. J. Lifestyle Med., 2016, 10(5), 318-321.
[http://dx.doi.org/10.1177/1559827616637066] [PMID: 30202288]
[141]
Meccariello, R.; D’Angelo, S. Impact of polyphenolic-food on longevity: An elixir of life. An overview. Antioxidants, 2021, 10(4), 507.
[http://dx.doi.org/10.3390/antiox10040507] [PMID: 33805092]
[142]
Custers.; Emma, E.M.; Kiliaan.; Amanda, J. Dietary lipids from body to brain. Prog. Lipid Res., 2022, 85, 101144.
[http://dx.doi.org/10.1016/j.plipres.2021.101144]
[143]
Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. A Biol. Sci. Med. Sci., 2018, 73(3), 318-326.
[http://dx.doi.org/10.1093/gerona/glx227] [PMID: 29244059]
[144]
Galiè, S.; Canudas, S.; Muralidharan, J.; García-Gavilán, J.; Bulló, M.; Salas-Salvadó, J. Impact of nutrition on telomere health: Systematic review of ob-servational cohort studies and randomized clinical trials. Adv. Nutr., 2020, 11(3), 576-601.
[http://dx.doi.org/10.1093/advances/nmz107] [PMID: 31688893]
[145]
Fernández de la Puente, M.; Hernández-Alonso, P.; Canudas, S.; Marti, A.; Fitó, M.; Razquin, C.; Salas-Salvadó, J. Modulation of telomere length by med-iterranean diet, caloric restriction, and exercise: Results from PREDIMED-plus study. Antioxidants, 2021, 10(10), 1596.
[http://dx.doi.org/10.3390/antiox10101596] [PMID: 34679731]
[146]
Polverino, A.; Sorrentino, P.; Pesoli, M.; Mandolesi, L. Nutrition and cogni-tion across the lifetime: An overview on epigenetic mechanisms. AIMS Neurosci., 2021, 8(4), 448-476.
[http://dx.doi.org/10.3934/Neuroscience.2021024] [PMID: 34877399]
[147]
Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Imran, A.; Qasim, M.; Zafar, S.; Kamran, S.K.S.; Razzaq, A.; Aziz, N.; Ahmad, W.; Shabbir, A.; Iqbal, J.; Baig, S.M.; Sun, T. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis., 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12944-019-0965-z] [PMID: 30683111]
[148]
Sofi, F.; Abbate, R.; Gensini, G.F.; Casini, A. Accruing evidence on benefits of adherence to the Mediterranean diet on health: An updated systematic review and meta-analysis. Am. J. Clin. Nutr., 2010, 92(5), 1189-1196.
[http://dx.doi.org/10.3945/ajcn.2010.29673] [PMID: 20810976]
[149]
Yin, W.; Löf, M.; Chen, R.; Hultman, C.M.; Fang, F.; Sandin, S. Mediterranean diet and depression: A population-based cohort study. Int. J. Behav. Nutr. Phys. Act., 2021, 18(1), 153.
[http://dx.doi.org/10.1186/s12966-021-01227-3] [PMID: 34838037]
[150]
Yin, W.; Löf, M.; Pedersen, N.L.; Sandin, S.; Fang, F. Mediterranean dietary pattern at middle age and risk of Parkinson’s disease: A Swedish cohort study. Mov. Disord., 2021, 36(1), 255-260.
[http://dx.doi.org/10.1002/mds.28314] [PMID: 33078857]
[151]
Castro-Barquero, S.; Lamuela-Raventós, R.; Doménech, M.; Estruch, R. Rela-tionship between mediterranean dietary polyphenol intake and obesity. Nutrients, 2018, 10(10), 1523.
[http://dx.doi.org/10.3390/nu10101523] [PMID: 30336572]
[152]
Petrella, C.; Di Certo, M.G.; Gabanella, F.; Barbato, C.; Ceci, F.M.; Greco, A.; Ralli, M.; Polimeni, A.; Angeloni, A.; Severini, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M.; Lucarelli, M.; Severi, C.; Fiore, M. Mediterranean diet, brain and muscle: Olive polyphenols and resveratrol protection in neurodegenerative and neuromuscular disorders. Curr. Med. Chem., 2021, 28(37), 7595-7613.
[http://dx.doi.org/10.2174/0929867328666210504113445] [PMID: 33949928]
[153]
Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vege-tables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in preven-tion of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol., 2019, 175(10), 724-741.
[http://dx.doi.org/10.1016/j.neurol.2019.08.005] [PMID: 31521398]
[154]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of Alzheimer’s disease. Biomolecules, 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]
[155]
Ho, Y.S.; So, K.F.; Chang, R. Drug discovery from Chinese medicine against neurodegeneration in Alzheimer’s and vascular dementia. Chin. Med., 2011, 6(1), 15.
[http://dx.doi.org/10.1186/1749-8546-6-15] [PMID: 21513513]
[156]
Kim, H.G.; Oh, M.S. Nutraceuticals and prevention of neurodegeneration herbal medicines for the prevention and treatment of Alzheimer’s disease. Curr. Pharm. Des., 2012. Epub ahead of print
[PMID: 22211689]
[157]
Jeon, S.G.; Song, E.J.; Lee, D.; Park, J.; Nam, Y.; Kim, J.; Moon, M. Traditional oriental medicines and Alzheimer’s disease. Aging Dis., 2019, 10(2), 307-328.
[http://dx.doi.org/10.14336/AD.2018.0328] [PMID: 31435482]
[158]
Sun, Z.K.; Yang, H.Q.; Chen, S.D. Traditional Chinese medicine: A promising candidate for the treatment of Alzheimer’s disease. Transl. Neurodegener., 2013, 2(1), 6.
[http://dx.doi.org/10.1186/2047-9158-2-6] [PMID: 23445907]
[159]
Wang, Z.Y.; Liu, J.G.; Li, H.; Yang, H.M. Pharmacological effects of active components of Chinese herbal medicine in the treatment of Alzheimer’s dis-ease: A review. Am. J. Chin. Med., 2016, 44(8), 1525-1541.
[http://dx.doi.org/10.1142/S0192415X16500853] [PMID: 27848250]
[160]
Tian, J.; Shi, J.; Zhang, X.; Wang, Y. Herbal therapy: A new pathway for the treatment of Alzheimer’s disease. Alzheimers Res. Ther., 2010, 2(5), 30.
[http://dx.doi.org/10.1186/alzrt54] [PMID: 21067555]
[161]
Wang, Z.; Yang, Y.; Liu, M.; Wei, Y.; Liu, J.; Pei, H.; Li, H. Rhizoma coptidis for Alzheimer’s disease and vascular dementia: A literature review. Curr. Vasc. Pharmacol., 2020, 18(4), 358-368.
[http://dx.doi.org/10.2174/1570161117666190710151545] [PMID: 31291876]
[162]
Chen, X.; Drew, J.; Berney, W.; Lei, W. Neuroprotective natural products for Alzheimer’s disease. Cells, 2021, 10(6), 1309.
[http://dx.doi.org/10.3390/cells10061309] [PMID: 34070275]
[163]
Spencer, S.J.; Korosi, A.; Layé, S.; Shukitt-Hale, B.; Barrientos, R.M. Food for thought: How nutrition impacts cognition and emotion. NPJ Sci. Food, 2017, 1(1), 7.
[http://dx.doi.org/10.1038/s41538-017-0008-y] [PMID: 31304249]
[164]
Dhanasekaran, M.; Holcomb, L.A.; Hitt, A.R.; Tharakan, B.; Porter, J.W.; Young, K.A.; Manyam, B.V. Centella asiatica extract selectively decreases amyloid β levels in hippocampus of Alzheimer’s disease animal model. Phytother. Res., 2009, 23(1), 14-19.
[http://dx.doi.org/10.1002/ptr.2405] [PMID: 19048607]
[165]
Veerendra Kumar, M.H.; Gupta, Y.K. Effect of Centella asiatica on cognition and oxidative stress in an intracerebroventricular streptozotocin model of Alzheimer’s disease in rats. Clin. Exp. Pharmacol. Physiol., 2003, 30(5-6), 336-342.
[http://dx.doi.org/10.1046/j.1440-1681.2003.03842.x] [PMID: 12859423]
[166]
Sehgal, N.; Gupta, A.; Valli, R.K.; Joshi, S.D.; Mills, J.T.; Hamel, E.; Khanna, P.; Jain, S.C.; Thakur, S.S.; Ravindranath, V. Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein recep-tor-related protein in liver. Proc. Natl. Acad. Sci. USA, 2012, 109(9), 3510-3515.
[http://dx.doi.org/10.1073/pnas.1112209109] [PMID: 22308347]
[167]
Zhang, J.; An, S.; Hu, W.; Teng, M.; Wang, X.; Qu, Y.; Liu, Y.; Yuan, Y.; Wang, D. The neuroprotective properties of hericium erinaceus in glutamate-damaged differentiated PC12 cells and an Alzheimer’s disease mouse model. Int. J. Mol. Sci., 2016, 17(11), 1810.
[http://dx.doi.org/10.3390/ijms17111810]
[168]
Yeo, E.T.Y.; Wong, K.W.L.; See, M.L.; Wong, K.Y.; Gan, S.Y.; Chan, E.W.L. Piper sarmentosum Roxb. confers neuroprotection on beta-amyloid (Aβ)-induced microglia-mediated neuroinflammation and attenuates tau hyper-phosphorylation in SH-SY5Y cells. J. Ethnopharmacol., 2018, 217, 187-194.
[http://dx.doi.org/10.1016/j.jep.2018.02.025] [PMID: 29462698]
[169]
Mattioli, R.; Francioso, A.; d’Erme, M.; Trovato, M.; Mancini, P.; Piacentini, L.; Casale, A.; Wessjohann, L.; Gazzino, R.; Costantino, P.; Mosca, L. Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer’s disease. Int. J. Mol. Sci., 2019, 20(3), 708.
[http://dx.doi.org/10.3390/ijms20030708] [PMID: 30736391]
[170]
Sharma, R.; Kuca, K.; Nepovimova, E.; Kabra, A.; Rao, M.M.; Prajapati, P.K. Traditional Ayurvedic and herbal remedies for Alzheimer’s disease: From bench to bedside. Expert Rev. Neurother., 2019, 19(5), 359-374.
[http://dx.doi.org/10.1080/14737175.2019.1596803] [PMID: 30884983]
[171]
Sohn, E.; Kim, Y.J.; Kim, J.H.; Jeong, S.J. Ficus erecta Thunb. leaves amelio-rate cognitive deficit and neuronal damage in a mouse model of amyloid-β-induced Alzheimer’s disease. Front. Pharmacol., 2021, 12, 607403.
[http://dx.doi.org/10.3389/fphar.2021.607403] [PMID: 33935701]
[172]
Yao, Z.; Drieu, K.; Papadopoulos, V. The Ginkgo biloba extract EGb 761 rescues the PC12 neuronal cells from β-amyloid-induced cell death by inhibit-ing the formation of β-amyloid-derived diffusible neurotoxic ligands. Brain Res., 2001, 889(1-2), 181-190.
[http://dx.doi.org/10.1016/S0006-8993(00)03131-0] [PMID: 11166702]
[173]
Qi-hai, G.; Qin, W.; Xie-nan, H.; An-sheng, S.; Jing, N.; Jing-shan, S. Protec-tive effect of Ginkgo biloba leaf extract on learning and memory deficit in-duced by aluminum in model rats. Chin. J. Integr. Med., 2006, 12(1), 37-41.
[http://dx.doi.org/10.1007/BF02857428] [PMID: 16571282]
[174]
Charles, R.; Fanny, L.; Yves, C. Ginkgo biloba extract (EGb 761) in Alz-heimer’s disease: Is there any evidence? Curr. Alzheimer Res., 2007, 4(3), 253-262.
[http://dx.doi.org/10.2174/156720507781077304] [PMID: 17627482]
[175]
Snow, A.D.; Castillo, G.M.; Nguyen, B.P.; Choi, P.Y.; Cummings, J.A.; Cam, J.; Hu, Q.; Lake, T.; Pan, W.; Kastin, A.J.; Kirschner, D.A.; Wood, S.G.; Rock-enstein, E.; Masliah, E.; Lorimer, S.; Tanzi, R.E.; Larsen, L. The Amazon rain forest plant Uncaria tomentosa (cat’s claw) and its specific proanthocyanidin constituents are potent inhibitors and reducers of both brain plaques and tan-gles. Sci. Rep., 2019, 9(1), 561.
[http://dx.doi.org/10.1038/s41598-019-38645-0] [PMID: 30728442]
[176]
Lim, H.S.; Kim, Y.; Sohn, E.; Yoon, J.; Kim, B.Y.; Jeong, S.J. Bojungikgi-tang, a traditional herbal formula, exerts neuroprotective effects and ameliorates memory impairments in Alzheimer’s disease-like experimental models. Nutrients, 2018, 10(12), 1952.
[http://dx.doi.org/10.3390/nu10121952] [PMID: 30544702]
[177]
Sohn, E.; Kim, Y.J.; Jeong, S.J. Korean traditional herbal formula Soshiho-tang attenuates memory impairment and neuronal damage in mice with amy-loid-beta-induced Alzheimer’s disease. Integr. Med. Res., 2021, 10(3), 100723.
[http://dx.doi.org/10.1016/j.imr.2021.100723] [PMID: 33898246]
[178]
Chen, L.; Hu, L.; Zhao, J.; Hong, H.; Feng, F.; Qu, W.; Liu, W. Chotosan im-proves Aβ 1–42 -induced cognitive impairment and neuroinflammatory and apoptotic responses through the inhibition of TLR-4/NF-κB signaling in mice. J. Ethnopharmacol., 2016, 191, 398-407.
[http://dx.doi.org/10.1016/j.jep.2016.03.038] [PMID: 26994819]
[179]
Xiao, H.; Li, H.; Song, H.; Kong, L.; Yan, X.; Li, Y.; Deng, Y.; Tai, H.; Wu, Y.; Ni, Y.; Li, W.; Chen, J.; Yang, J. Shenzao jiannao oral liquid, an herbal formu-la, ameliorates cognitive impairments by rescuing neuronal death and trigger-ing endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. J. Ethnopharmacol., 2020, 259, 112957.
[http://dx.doi.org/10.1016/j.jep.2020.112957] [PMID: 32416248]
[180]
Chan, E.W.L.; Yeo, E.T.Y.; Wong, K.W.L.; See, M.L.; Wong, K.Y.; Gan, S.Y. Piper sarmentosum Roxb. Root extracts confer neuroprotection by attenuating beta amyloid-induced pro-inflammatory cytokines released from microglial cells. Curr. Alzheimer Res., 2019, 16(3), 251-260.
[http://dx.doi.org/10.2174/1567205016666190228124630] [PMID: 30819080]
[181]
Wattanathorn, J.; Mator, L.; Muchimapura, S.; Tongun, T.; Pasuriwong, O.; Piyawatkul, N.; Yimtae, K.; Sripanidkulchai, B.; Singkhoraard, J. Positive modulation of cognition and mood in the healthy elderly volunteer following the administration of Centella asiatica. J. Ethnopharmacol., 2008, 116(2), 325-332.
[http://dx.doi.org/10.1016/j.jep.2007.11.038] [PMID: 18191355]
[182]
Mori, K.; Inatomi, S.; Ouchi, K.; Azumi, Y.; Tuchida, T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive im-pairment: A double-blind placebo-controlled clinical trial. Phytother. Res., 2009, 23(3), 367-372.
[http://dx.doi.org/10.1002/ptr.2634] [PMID: 18844328]
[183]
Li, I.C.; Chang, H.H.; Lin, C.H.; Chen, W.P.; Lu, T.H.; Lee, L.Y.; Chen, Y.W.; Chen, Y.P.; Chen, C.C.; Lin, D.P.C. Prevention of early Alzheimer’s disease by erinacine A-enriched Hericium erinaceus mycelia pilot double-blind placebo-controlled study. Front. Aging Neurosci., 2020, 12, 155.
[http://dx.doi.org/10.3389/fnagi.2020.00155] [PMID: 32581767]
[184]
Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vege-table juices and Alzheimer’s disease: The Kame Project. Am. J. Med., 2006, 119(9), 751-759.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.045] [PMID: 16945610]
[185]
Bowers, Z.; Maiti, P.; Bourcier, A.; Morse, J.; Jenrow, K.; Rossignol, J.; Dun-bar, G.L. Tart cherry extract and omega fatty acids reduce behavioral deficits, gliosis, and amyloid-beta deposition in the 5xFAD mouse model of Alz-heimer’s disease. Brain Sci., 2021, 11(11), 1423.
[http://dx.doi.org/10.3390/brainsci11111423] [PMID: 34827424]
[186]
Balez, R.; Steiner, N.; Engel, M.; Muñoz, S.S.; Lum, J.S.; Wu, Y.; Wang, D.; Vallotton, P.; Sachdev, P.; O’Connor, M.; Sidhu, K.; Münch, G.; Ooi, L. Neu-roprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer’s dis-ease. Sci. Rep., 2016, 6(1), 31450.
[http://dx.doi.org/10.1038/srep31450] [PMID: 27514990]
[187]
Matchynski, J.J.; Lowrance, S.A.; Pappas, C.; Rossignol, J.; Puckett, N.; Sand-strom, M.; Dunbar, G.L. Combinatorial treatment of tart cherry extract and es-sential fatty acids reduces cognitive impairments and inflammation in the mu-p75 saporin-induced mouse model of Alzheimer’s disease. J. Med. Food, 2013, 16(4), 288-295.
[http://dx.doi.org/10.1089/jmf.2012.0131] [PMID: 23566055]
[188]
Li, J.; Cheng, X.Y.; Yang, H.; Li, L.; Niu, Y.; Yu, J.Q.; Li, W.Q.; Yao, Y. Matrine ameliorates cognitive deficits via inhibition of microglia mediated neuroinflammation in an Alzheimer’s disease mouse model. Pharmazie, 2020, 75(7), 344-347.
[http://dx.doi.org/10.1691/ph.2020.0395] [PMID: 32635978]
[189]
Mokarizadeh, N.; Karimi, P.; Erfani, M.; Sadigh-Eteghad, S.; Fathi Maroufi, N.; Rashtchizadeh, N. β-Lapachone attenuates cognitive impairment and neuroin-flammation in beta-amyloid induced mouse model of Alzheimer’s disease. Int. Immunopharmacol., 2020, 81, 106300.
[http://dx.doi.org/10.1016/j.intimp.2020.106300] [PMID: 32070922]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy