Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

EGFR Inhibitor CL-387785 Suppresses the Progression of Lung Adenocarcinoma

Author(s): Yong Cai, Zhaoying Sheng, Zhiyi Dong and Jiying Wang*

Volume 16, Issue 2, 2023

Published on: 24 June, 2022

Article ID: e290322202797 Pages: 6

DOI: 10.2174/1874467215666220329212300

Price: $65

Abstract

Objective: This study aimed to explore the influence of the irreversible EGFR inhibitor CL-387785 on invasion, metastasis, and radiation sensitization of non-small cell lung cancer cells.

Methods: The proliferation inhibitory rate at different time points was detected by MTT assay. The apoptosis of H1975 cells treated with CL-387785 was detected using flow cytometry. The invasion and migration of H1975 cells treated with CL-387785 were determined by Transwell assay and wound healing assay. The survival fraction (SF) of H1975 cells cultured with CL- 387785 under X-ray (0, 2, 4, 6, 8, and 10 Gy) was detected by cloning formation experiment, and the sensitization ratio (SER) was calculated by clicking the multi-target model to fit the cell survival curve.

Results: CL-387785 restrained H1975 cell proliferation in a concentration- and time-dependent manner. CL-387785 promoted H1975 cell apoptosis and reduced cell migration distance and the number of transmembrane cells. The SF treated by different concentrations of CL-387785 (10, 25, 50, and 100 nM) was all below 0 nM. The radiation SER of CL-387785 (10, 25, 50 and 100 nM) were 1.17, 1.39, 2.88, and 3.64, respectively.

Conclusion: The invasion and metastasis of H1975 cells were restrained by irreversible EGFR inhibitor CL-387785. CL-387785 also exhibited the effect of radiotherapy sensitization.

Keywords: EGFR inhibitor, non-small cell lung cancer, invasion and metastasis, radiotherapy sensitization, chemoradiotherapy, adenocarcinoma.

[1]
Baker, S.; Dahele, M.; Lagerwaard, F.J.; Senan, S. A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat. Oncol., 2016, 11(1), 115.
[http://dx.doi.org/10.1186/s13014-016-0693-8] [PMID: 27600665]
[2]
Matikas, A.; Mistriotis, D.; Georgoulias, V.; Kotsakis, A. Current and future approaches in the management of non-small-cell lung cancer patients with resistance to EGFR TKIs. Clin. Lung Cancer, 2015, 16(4), 252-261.
[http://dx.doi.org/10.1016/j.cllc.2014.12.013] [PMID: 25700775]
[3]
Dhillon, S. Gefitinib: A review of its use in adults with advanced non-small cell lung cancer. Target. Oncol., 2015, 10(1), 153-170.
[http://dx.doi.org/10.1007/s11523-015-0358-9] [PMID: 25637458]
[4]
D’Angelo, S.P.; Pietanza, M.C.; Johnson, M.L.; Riely, G.J.; Miller, V.A.; Sima, C.S.; Zakowski, M.F.; Rusch, V.W.; Ladanyi, M.; Kris, M.G. Incidence of EGFR exon 19 deletions and L858R in tumor specimens from men and cigarette smokers with lung adenocarcinomas. J. Clin. Oncol., 2011, 29(15), 2066-2070.
[http://dx.doi.org/10.1200/JCO.2010.32.6181] [PMID: 21482987]
[5]
Kobayashi, S.; Boggon, T.J.; Dayaram, T.; Jänne, P.A.; Kocher, O.; Meyerson, M.; Johnson, B.E.; Eck, M.J.; Tenen, D.G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2005, 352(8), 786-792.
[http://dx.doi.org/10.1056/NEJMoa044238] [PMID: 15728811]
[6]
Sano, Y.; Hashimoto, E.; Nakatani, N.; Abe, M.; Satoh, Y.; Sakata, K.; Fujii, T.; Fujimoto-Ouchi, K.; Sugimoto, M.; Nagahashi, S.; Aoki, M.; Motegi, H.; Sasaki, E.; Yatabe, Y. Combining onartuzumab with erlotinib inhibits growth of non-small cell lung cancer with activating EGFR mutations and HGF overexpression. Mol. Cancer Ther., 2015, 14(2), 533-541.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0456] [PMID: 25522765]
[7]
Watanuki, Z.; Kosai, H.; Osanai, N.; Ogama, N.; Mochizuki, M.; Tamai, K.; Yamaguchi, K.; Satoh, K.; Fukuhara, T.; Maemondo, M.; Ichinose, M.; Nukiwa, T.; Tanaka, N. Synergistic cytotoxicity of afatinib and cetuximab against EGFR T790M involves Rab11-dependent EGFR recycling. Biochem. Biophys. Res. Commun., 2014, 455(3-4), 269-276.
[http://dx.doi.org/10.1016/j.bbrc.2014.11.003] [PMID: 25446083]
[8]
Aydinlik, S.; Dere, E.; Ulukaya, E. Induction of autophagy enhances apoptotic cell death via epidermal growth factor receptor inhibition by canertinib in cervical cancer cells. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(5), 903-916.
[http://dx.doi.org/10.1016/j.bbagen.2019.02.014] [PMID: 30825616]
[9]
So, K.S.; Kim, C.H.; Rho, J.K.; Kim, S.Y.; Choi, Y.J.; Song, J.S.; Kim, W.S.; Choi, C.M.; Chun, Y.J.; Lee, J.C. Autophagosome-mediated EGFR down-regulation induced by the CK2 inhibitor enhances the efficacy of EGFR-TKI on EGFR-mutant lung cancer cells with resistance by T790M. PLoS One, 2014, 9(12), e114000.
[http://dx.doi.org/10.1371/journal.pone.0114000] [PMID: 25486409]
[10]
Cheng, H.; Nair, S.K.; Murray, B.W. Recent progress on third generation covalent EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(8), 1861-1868.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.067] [PMID: 26968253]
[11]
Kancha, R.K.; von Bubnoff, N.; Bartosch, N.; Peschel, C.; Engh, R.A.; Duyster, J. Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS One, 2011, 6(10), e26760.
[http://dx.doi.org/10.1371/journal.pone.0026760] [PMID: 22046346]
[12]
Yu, Z.; Boggon, T.J.; Kobayashi, S.; Jin, C.; Ma, P.C.; Dowlati, A.; Kern, J.A.; Tenen, D.G.; Halmos, B. Resistance to an irreversible epidermal growth factor receptor (EGFR) inhibitor in EGFR-mutant lung cancer reveals novel treatment strategies. Cancer Res., 2007, 67(21), 10417-10427.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1248] [PMID: 17974985]
[13]
Yamada, T.; Matsumoto, K.; Wang, W.; Li, Q.; Nishioka, Y.; Sekido, Y.; Sone, S.; Yano, S. Hepatocyte growth factor reduces susceptibility to an irreversible epidermal growth factor receptor inhibitor in EGFR-T790M mutant lung cancer. Clin. Cancer Res., 2010, 16(1), 174-183.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1204] [PMID: 20008840]
[14]
Cai, J. Effects of sunitinib and docetaxel on proliferation, apoptosis, cell cycle and expressions of c-met, mek and erk mRNA in A549 cells. Zhengzhou University, 2013, 48(3), 330-335.
[15]
Papadopoulos, E.I.; Yousef, G.M.; Scorilas, A. Cytotoxic activity of sunitinib and everolimus in Caki-1 renal cancer cells is accompanied by modulations in the expression of apoptosis-related microRNA clusters and BCL2 family genes. Biomed. Pharmacother., 2015, 70, 33-40.
[http://dx.doi.org/10.1016/j.biopha.2014.12.043] [PMID: 25776476]
[16]
Lin, C.; Lu, W.; Ren, Z.; Tang, Y.; Zhang, C.; Yang, R.; Chen, Y.; Cao, W.; Wang, L.; Wang, X.; Ji, T. Elevated RET expression enhances EGFR activation and mediates EGFR inhibitor resistance in head and neck squamous cell carcinoma. Cancer Lett., 2016, 377(1), 1-10.
[http://dx.doi.org/10.1016/j.canlet.2016.04.023] [PMID: 27090738]
[17]
Zhou, J.; Wang, J.; Zeng, Y.; Zhang, X.; Hu, Q.; Zheng, J.; Chen, B.; Xie, B.; Zhang, W.M. Implication of epithelial-mesenchymal transition in IGF1R-induced resistance to EGFR-TKIs in advanced non-small cell lung cancer. Oncotarget, 2015, 6(42), 44332-44345.
[http://dx.doi.org/10.18632/oncotarget.6293] [PMID: 26554308]
[18]
Li, F.; Zhu, T.; Cao, B.; Wang, J.; Liang, L. Apatinib enhances antitumour activity of EGFR-TKIs in non-small cell lung cancer with EGFR-TKI resistance. Eur. J. Cancer, 2017, 84, 184-192.
[http://dx.doi.org/10.1016/j.ejca.2017.07.037] [PMID: 28822888]
[19]
Hama, T.; Yuza, Y.; Suda, T.; Saito, Y.; Norizoe, C.; Kato, T.; Moriyama, H.; Urashima, M. Functional mutation analysis of EGFR family genes and corresponding lymph node metastases in head and neck squamous cell carcinoma. Clin. Exp. Metastasis, 2012, 29(1), 19-25.
[http://dx.doi.org/10.1007/s10585-011-9425-5] [PMID: 21953075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy