Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Nanoengineered Therapeutic Scaffolds for Burn Wound Management

Author(s): Ziauddin, Tanveer Hussain, Ahsan Nazir, Urwa Mahmood, Misbah Hameed, Seeram Ramakrishna and Sharjeel Abid*

Volume 23, Issue 12, 2022

Published on: 13 May, 2022

Page: [1417 - 1435] Pages: 19

DOI: 10.2174/1389201023666220329162910

Price: $65

Abstract

Background: Wound healing is a complex process, and selecting an appropriate treatment is crucial and varies from one wound to another. Among injuries, burn wounds are more challenging to treat. Different dressings and scaffolds come into play when skin is injured. These scaffolds provide the optimum environment for wound healing. With the advancements in nanoengineering, scaffolds have been engineered to improve wound healing with lower fatality rates.

Objectives: Nanoengineered systems have emerged as one of the most promising candidates for burn wound management. This review paper aims to provide an in-depth understanding of burn wounds and the role of nanoengineering in burn wound management. The advantages of nanoengineered scaffolds, their properties, and their proven effectiveness have been discussed. Nanoparticles and nanofibers-based nanoengineered therapeutic scaffolds provide optimum protection, infection management, and accelerated wound healing due to their unique characteristics. These scaffolds increase cell attachment and proliferation for desired results.

Results: The literature review suggested that the utilization of nanoengineered scaffolds has accelerated burn wound healing. Nanofibers provide better cell attachment and proliferation among different nanoengineered scaffolds because their 3D structure mimics the body's extracellular matrix.

Conclusion: With these advanced nanoengineered scaffolds, better burn wound management is possible due to sustained drug delivery, better cell attachment, and an infection-free environment.

Keywords: Burn wound, nanomedicine, nanoengineering, scaffolds, nanofibers, therapeutic medicine.

Graphical Abstract

[1]
Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for wound healing applications. Polymers (Basel), 2020, 12(9), 1-19.
[http://dx.doi.org/10.3390/polym12092010] [PMID: 32899245]
[2]
Abid, S.; Hussain, T.; Nazir, A.; Zahir, A.; Ramakrishna, S.; Hameed, M.; Khenoussi, N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int. J. Biol. Macromol., 2019, 135, 1222-1236.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.022] [PMID: 31173830]
[3]
Na, R.; Wei, T. Recent perspectives of nanotechnology in burn wounds management: A review. J. Wound Care, 2021, 30(5), 350-370.
[http://dx.doi.org/10.12968/jowc.2021.30.5.350] [PMID: 33979218]
[4]
Mofazzal Jahromi, M.A.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 2018, 123, 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[6]
Krishnan, P.D.; Banas, D.; Durai, R.D.; Kabanov, D.; Hosnedlova, B.; Kepinska, M.; Fernandez, C.; Ruttkay-Nedecky, B.; Nguyen, H.V.; Farid, A.; Sochor, J.; Narayanan, V.H.B.; Kizek, R. Silver nanomaterials for wound dressing applications. Pharmaceutics, 2020, 12(9), 821.
[http://dx.doi.org/10.3390/pharmaceutics12090821] [PMID: 32872234]
[7]
Elahi, N.; Kamali, M.; Baghersad, M.H. Recent biomedical nanoparticles: A review applications. Talanta, 2018, 184, 537-556.
[http://dx.doi.org/10.1016/j.talanta.2018.02.088] [PMID: 29674080]
[8]
Abazari, M.; Ghaffari, A.; Rashidzadeh, H.; Badeleh, S.M.; Maleki, Y. A systematic review on classification, identification, and healing process of burn wound healing. Int. J. Low. Extrem. Wounds, 2020, 1534734620924857.
[http://dx.doi.org/10.1177/1534734620924857] [PMID: 32524874]
[9]
Alven, B.B.S.; Blessing, X.N. Antibiotics Encapsulated Scaffolds as Potential Wound Dressings; Academic Press: London, 2020.
[http://dx.doi.org/10.1016/B978-0-12-820054-4.00007-0]
[10]
Vaheb, M.; Karrabi, M.; Khajeh, M.; Asadi, A.; Shahrestanaki, E.; Sahebkar, M. Evaluation of the effect of platelet-rich fibrin on wound healing at split-thickness skin graft donor sites: A randomized, placebo-controlled, triple-blind study. Int. J. Low. Extrem. Wounds, 2021, 20(1), 29-36.
[http://dx.doi.org/10.1177/1534734619900432] [PMID: 32000549]
[11]
Oualla-bachiri, W.; Fern, A.; Quiñones-vico, M.I. From grafts to human bioengineered vascularized skin substitutes. Polymers (Basel), 2008, 13(4), 1-28.
[12]
Arif, M.M.A.; Fauzi, M.B.; Nordin, A.; Hiraoka, Y.; Tabata, Y.; Yunus, M.H.M.; Heikal, M.; Yunus, M. Fabrication of bio-based gelatin sponge for potential use as a functional acellular skin substitute. Polymers (Basel), 2020, 12(11), 1-19.
[http://dx.doi.org/10.3390/polym12112678] [PMID: 33202700]
[13]
Shores, J.T.; Gabriel, A.; Gupta, S.; Gabriel, A.; Instructor, C.; Linda, L.; Linda, L.; Gupta, S.; Program, R.; Linda, L. Skin substitutes and alternatives: A review. Adv. Skin Wound Care, 2007, 20(9 Pt 1), 493-508.
[http://dx.doi.org/10.1097/01.ASW.0000288217.83128.f3] [PMID: 17762218]
[14]
Teng, S.C. Use of negative pressure wound therapy in burn patients. Int. Wound J., 2016, 13(1)(Suppl. 3), 15-18.
[http://dx.doi.org/10.1111/iwj.12641] [PMID: 27547959]
[15]
Haider, A.; Haider, S.; Rao Kummara, M.; Kamal, T.; Alghyamah, A.A.A.; Jan Iftikhar, F.; Bano, B.; Khan, N.; Amjid Afridi, M.; Soo Han, S.; Alrahlah, A.; Khan, R. Advances in the scaffolds fabrication techniques using biocompatible polymers and their biomedical application: A technical and statistical review. J. Saudi Chem. Soc., 2020, 24(2), 186-215.
[http://dx.doi.org/10.1016/j.jscs.2020.01.002]
[16]
Abazari, M.; Ghaffari, A.; Rashidzadeh, H.; Momeni Badeleh, S.; Maleki, Y. Current status and future outlook of nano-based systems for burn wound management. J. Biomed. Mater. Res. B Appl. Biomater., 2020, 108(5), 1934-1952.
[http://dx.doi.org/10.1002/jbm.b.34535] [PMID: 31886606]
[17]
Christy, P.N.; Basha, S.K.; Kumari, V.S.; Bashir, A.K.H.; Maaza, M.; Kaviyarasu, K.; Arasu, M.V.; Al-Dhabi, N.A.; Ignacimuthu, S. Biopolymeric nanocomposite scaffolds for bone tissue engineering applications – A review. J. Drug Deliv. Sci. Technol., 2019, 2020(55), 101452.
[http://dx.doi.org/10.1016/j.jddst.2019.101452]
[18]
Kaur, R.; Garg, T.; Das Gupta, U.; Gupta, P.; Rath, G.; Goyal, A.K. Preparation and characterization of spray-dried inhalable powders containing nanoaggregates for pulmonary delivery of anti-tubercular drugs. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 182-187.
[http://dx.doi.org/10.3109/21691401.2014.930747] [PMID: 24992699]
[19]
Chen, Q. Biometerials: A Basic Introduction, 1st ed; CRC Press: Boca Raton, 2015.
[20]
Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K.; Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K.; Kaur, P.; Garg, T.; Rath, G.; Murthy, R.S.R.; Goyal, A.K. Surfactant-based drug delivery systems for treating drug-resistant lung cancer. Drug Deliv., 2016, 23(3), 727-738.
[http://dx.doi.org/10.3109/10717544.2014.935530] [PMID: 25013959]
[21]
Sharma, R.; Garg, T.; Goyal, A.K.; Rath, G. Development, optimization and evaluation of polymeric electrospun nanofiber: A tool for local delivery of fluconazole for management of vaginal candidiasis. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 524-531.
[http://dx.doi.org/10.3109/21691401.2014.966194] [PMID: 25315503]
[22]
Sultana, N. Mechanical and biological properties of scaffold materials. In: Functional 3D Tissue Engineering Scaffolds: Materials, Technologies, and Applications; Woodhead Publishing: Duxford, 2018; p. 1-21.
[http://dx.doi.org/10.1016/B978-0-08-100979-6.00001-X]
[23]
Kaur, M.; Malik, B.; Garg, T.; Rath, G.; Goyal, A.K.; Kaur, M.; Malik, B.; Garg, T.; Rath, G.; Goyal, A.K. Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv., 2015, 22(3), 328-334.
[http://dx.doi.org/10.3109/10717544.2014.894594] [PMID: 24611942]
[24]
Chung, H.J.; Park, T.G. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering. Adv. Drug Deliv. Rev., 2007, 59(4-5), 249-262.
[http://dx.doi.org/10.1016/j.addr.2007.03.015] [PMID: 17482310]
[25]
Tran, T.T.; Hamid, Z.A.; Cheong, K.Y. A review of mechanical properties of scaffold in tissue engineering: Aloe vera composites. J. Phys. Conf. Ser., 2018, 1082, 1-6.
[http://dx.doi.org/10.1088/1742-6596/1082/1/012080]
[26]
Aifantis, K.E. The biodegradability of scaffolds reinforced by fibers or tubes for tissue repair. In: Tissue Repair: Reinforced Scaffolds; Li, X., Ed.; Springer: Singapore, 2017; pp. 113-144.
[http://dx.doi.org/10.1007/978-981-10-3554-8_4]
[27]
Goyal, G.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for treating glaucoma. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(5), 365-405.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014010123] [PMID: 25271557]
[28]
Burke, M.; Armstrong, J.P.K.; Goodwin, A.; Deller, R.C.; Carter, B.M.; Harniman, R.L.; Ginwalla, A.; Ting, V.P.; Davis, S.A.; Perriman, A.W. Regulation of scaffold cell adhesion using artificial membrane binding proteins. Macromol. Biosci., 2017, 17(7), 1600523.
[http://dx.doi.org/10.1002/mabi.201600523] [PMID: 28233419]
[29]
Kaur, N.; Garg, T.; Goyal, A.K.; Rath, G. Formulation, optimization and evaluation of curcumin-β-cyclodextrin-loaded sponge for effective drug delivery in thermal burns chemotherapy. Drug Deliv., 2016, 23(7), 2245-2254.
[http://dx.doi.org/10.3109/10717544.2014.963900] [PMID: 25268151]
[30]
Oryan, A.; Alemzadeh, E.; Moshiri, A. Burn wound healing: Present concepts, treatment strategies and future directions. J. Wound Care, 2017, 26(1), 5-19.
[http://dx.doi.org/10.12968/jowc.2017.26.1.5] [PMID: 28103165]
[31]
Norouzi, M.; Sou, M.; Shabani, I. Tissue and cell L. inermis -loaded nano Fi brous Sca Ff olds for wound dressing applications. Tissue Cell, 2018, 51(1), 281-311.
[http://dx.doi.org/10.1016/j.tice.2018.02.004]
[32]
Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: Review and advancements. Crit. Care, 2015, 19(1), 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
[33]
Dhivya, S.; Vijaya, V.; Santhini, E. Review article wound dressings – a review. J. Biol. Macromol, 2015, 5(4), 24-28.
[http://dx.doi.org/10.7603/s40]
[34]
Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; von Klitzing, R.; Erim, F.B. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1161-1165.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.144] [PMID: 28751050]
[35]
Naseri-Nosar, M.; Ziora, Z.M. Wound dressings from naturally-occurring polymers: A review on homopolysaccharide-based composites. Carbohydr. Polym., 2018, 189, 379-398.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.003] [PMID: 29580422]
[36]
Gilotra, S.; Chouhan, D.; Bhardwaj, N.; Nandi, S.K.; Mandal, B.B. Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater. Sci. Eng. C, 2018, 90, 420-432.
[http://dx.doi.org/10.1016/j.msec.2018.04.077] [PMID: 29853108]
[37]
Ahmed, S.; Ikram, S. Chitosan based scaffolds and their applications in wound healing. Achiev. Life Sci., 2016, 10(1), 27-37.
[http://dx.doi.org/10.1016/j.als.2016.04.001]
[38]
Dickinson, L.E.; Gerecht, S. Engineered biopolymeric scaffolds for chronic wound healing. Front. Physiol., 2016, 7(8), 341.
[http://dx.doi.org/10.3389/fphys.2016.00341] [PMID: 27547189]
[39]
George, A.M.; Preetham, S.; Peddireddy, R.; Thakur, G.; Rodrigues, F.C. Biopolymer-Based Scaffolds: Development and Biomedical Applications; Elsevier: Amsterdam, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816897-4.00029-1]
[40]
Seidi, A.; Ramalingam, M. Protocols for biomaterial scaffold fabrication.Integrated Biomaterials in Tissue Engineering; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012, pp. 1-23.
[http://dx.doi.org/10.1002/9781118371183.ch1]
[41]
Bao, Y. Poly(Glyco1ic Acid) bonded fiber structures for cell attachment and transplantation. J. Biomed. Mater. Res., 2013, 27(2), 183-189.
[42]
N, T.; P, P.; P, S. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering. J. Biomed. Mater. Res. A, 2014, 102(10)
[http://dx.doi.org/10.1002/jbma.35010]
[43]
Chakraborty, S.; Gowda, D.V.; Vishal Gupta, N. Development of biodegradable scaffolds loaded with vancomycin micropartricles for the treatment of osteomyelitis. IJRPS, 2019, 10(4), 2612-2621.
[http://dx.doi.org/10.26452/ijrps.v10i4.1519]
[44]
Baek, S.; Park, H.; Chen, K.; Park, H.; Lee, D. Development of an implantable PCL/alginate bilayer scaffold to prevent secondary infections. Korean J. Chem. Eng., 2020, 37(4), 677-687.
[http://dx.doi.org/10.1007/s11814-019-0459-8]
[45]
Janik, H.; Marzec, M. A review: Fabrication of porous polyurethane scaffolds. Mater. Sci. Eng. C, 2015, 48(48), 586-591.
[http://dx.doi.org/10.1016/j.msec.2014.12.037] [PMID: 25579961]
[46]
Izadyari Aghmiuni, A.; Heidari Keshel, S.; Sefat, F. AkbarzadehKhiyavi, A. Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Mater. Sci. Eng. C, 2021, 120, 111752.
[http://dx.doi.org/10.1016/j.msec.2020.111752] [PMID: 33545893]
[47]
Kordjamshidi, A.; Saber-samandari, S.; Ghadiri, M.; Khandan, A. Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceram. Int., 2019, 45(11), 14126-14135.
[http://dx.doi.org/10.1016/j.ceramint.2019.04.113]
[48]
Sun, H.; Hu, C.; Zhou, C.; Wu, L.; Sun, J.; Zhou, X.; Xing, F.; Long, C.; Kong, Q.; Liang, J.; Fan, Y.; Zhang, X. 3D printing of calcium phosphate scaffolds with controlled release of antibacterial functions for jaw bone repair. Mater. Des., 2020, 189, 108540.
[http://dx.doi.org/10.1016/j.matdes.2020.108540]
[49]
Karimi, M.; Asefnejad, A.; Aflaki, D.; Surendar, A.; Baharifar, H.; Saber-Samandari, S.; Khandan, A.; Khan, A.; Toghraie, D. Fabrication of shapeless scaffolds reinforced with baghdadite-magnetite nanoparticles using a 3D printer and freeze-drying technique. J. Mater. Res. Technol., 2021, 14, 3070-3079.
[http://dx.doi.org/10.1016/j.jmrt.2021.08.084]
[50]
Sathain, A.; Monvisade, P.; Siriphannon, P. Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering. Mater. Today Commun., 2021, 26, 102165.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102165]
[51]
Ko, Y.G. Formation of oriented fishbone-like pores in biodegradable polymer scaffolds using directional phase-separation processing. Sci. Rep., 2020, 10(1), 14472.
[http://dx.doi.org/10.1038/s41598-020-71581-y] [PMID: 32879409]
[52]
Yousefi, A.; Powers, J.; Sampson, K.; Wood, K.; Gadola, C.; Zhang, J.; James, P.F.; Powers, J.; Sampson, K.; Wood, K.; Gadola, C.; Zhang, J.; James, P.F. In vitro characterization of hierarchical 3D scaffolds produced by combining additive manufacturing and thermally induced phase separation. J. Biomater. Sci. Polym. Ed., 2020, 0(0), 1-23.
[http://dx.doi.org/10.1080/09205063.2020.1841535] [PMID: 33091329]
[53]
Liu, S.; Zheng, Y.; Wu, Z.; Hu, J.; Liu, R. Preparation and characterization of Aspirin-loaded polylactic acid/graphene oxide biomimetic nanofibrous scaffolds. Polymer (Guildf.), 2020, 211, 123093.
[http://dx.doi.org/10.1016/j.polymer.2020.123093]
[54]
Gautam, S.; Sharma, C.; Purohit, S.D.; Singh, H.; Dinda, A.K.; Potdar, P.D.; Chou, C.F.; Mishra, N.C. Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C, 2021, 119, 111588.
[http://dx.doi.org/10.1016/j.msec.2020.111588] [PMID: 33321633]
[55]
Xie, X.; Chen, Y.; Wang, X.; Xu, X.; Shen, Y.; Khan, R.; Aldalbahi, A.; Fetz, A.E.; Bowlin, G.L.; El-Newehy, M.; Mo, X. Electrospinning nanofiber scaffolds for soft and hard tissue regeneration. J. Mater. Sci. Technol., 2020, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jmst.2020.04.037]
[56]
Lin, W.C. Fibrous scaffolds fabricated using the centrifugal electrospin- ning technique for stimulating the behaviours of fibroblast cells. J. Ind. Text., 2021, 0, 1-25.
[http://dx.doi.org/10.1177/1528083720988127]
[57]
Abid, S.; Hussain, T.; Nazir, A.; Zahir, A.; Khenoussi, N. Acetaminophen loaded nanofibers as a potential contact layer for pain management in burn wounds. Mater. Res. Express, 2018, 5(8), 085017.
[http://dx.doi.org/10.1088/2053-1591/aad2eb]
[58]
Hameed, M.; Rasul, A.; Nazir, A.; Yousaf, A. M.; Hussain, T.; Khan, I. U.; Abbas, G.; Abid, S.; Yousafi, Q. Moxifloxacin-loaded electrospun polymeric composite nanofibers-based wound dressing for enhanced antibacterial activity and healing efficacy. Int. J. Polym. Mater. Polym. Biomater., 2020, 1-9.
[http://dx.doi.org/10.1080/00914037.2020.1785464]
[59]
Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater. Res. Express, 2018, 5(3), 035007.
[http://dx.doi.org/10.1088/2053-1591/aab0b4]
[60]
Abid, S.; Hussain, T.; Nazir, A.; Zahir, A.; Khenoussi, N. A novel double-layered polymeric nanofiber-based dressing with controlled drug delivery for pain management in burn wounds. Polym. Bull., 2019, 76(12), 6387-6411.
[http://dx.doi.org/10.1007/s00289-019-02727-w]
[61]
Mamidi, N.; Romo, I.L.; Leija Gutiérrez, H.M.; Barrera, E.V.; Elías-Zúñiga, A. Development of forcespun fiber-aligned scaffolds from gelatin–zein composites for potential use in tissue engineering and drug release. MRS Commun., 2018, 8(4), 1-8.
[http://dx.doi.org/10.1557/mrc.2018.89]
[62]
Koyyada, A. Recent advancements and associated challenges of scaffold fabrication techniques in tissue engineering applications. Regen. Eng. Transl. Med., 2020, 1, 1-13.
[63]
Gomes, M.E.; Holtorf, H.L.; Reis, R.L.; Mikos, A.G. Influence of the porosity of starch-based fiber mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. 2006, 12(4), 801-809. Available from: https://home.liebertpub.com/ten
[http://dx.doi.org/10.1089/ten.2006.12.801]
[64]
Zhao, P.; Gu, H.; Mi, H.; Rao, C.; Fu, J.; Turng, L. Fabrication of scaffolds in tissue engineering: A review. Front. Mech. Eng., 2018, 13(1), 107-119.
[http://dx.doi.org/10.1007/s11465-018-0496-8]
[65]
Eltom, A.; Zhong, G.; Muhammad, A. Scaffold techniques and designs in tissue engineering functions and purposes: A review. Adv. Mater. Sci. Eng., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/3429527]
[66]
Fereshteh, Z. Freeze-drying technologies for 3D scaffold engineering. Funct. 3D Tissue Eng. Scaffolds Mater. Technol. Appl., 2018, 151-174.
[http://dx.doi.org/10.1016/B978-0-08-100979-6.00007-0]
[67]
Conoscenti, G.; La Carrubba, V.; Brucato, V. A versatile technique to produce porous polymeric scaffolds: The Thermally Induced Phase Separation (TIPS) method. Arch. Chem. Res., 2017, 01(02)
[http://dx.doi.org/10.21767/2572-4657.100012]
[68]
Landsman, T.L.; Weems, A.C.; Hasan, S.M.; Thompson, R.S.; Wilson, T.S.; Maitland, D.J. Embolic applications of shape memory polyurethane scaffolds; Adv. Polyurethane Biomater, 2016, pp. 561-597.
[http://dx.doi.org/10.1016/B978-0-08-100614-6.00020-2]
[69]
Singh, M.; Kasper, F.K.; Mikos, A.G. Tissue Engineering Scaffolds.Biomaterials Science: An Introduction to Materials; Academic Press: Oxford, 2013, pp. 1138-1159.
[http://dx.doi.org/10.1016/B978-0-08-087780-8.00110-8]
[70]
Chaudhary, C.; Garg, T. Scaffolds: A Novel Carrier and Potential Wound Healer. Crit. Rev. Ther. Drug Carrier Syst., 2015, 32(4), 277-321.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2015011246] [PMID: 26080925]
[71]
Chen, Q.; Yang, X.; Li, Y. A Comparative Study on in vitro Enzymatic Degradation of Poly(Glycerol Sebacate) and Poly(Xylitol Sebacate). RSC Advances, 2012, 2(10), 4125-4134.
[http://dx.doi.org/10.1039/c2ra20113e]
[72]
Badekila, A.K.; Kini, S.; Jaiswal, A.K. Fabrication techniques of biomimetic scaffolds in three-dimensional cell culture: A review. J. Cell. Physiol., 2021, 236(2), 741-762.
[http://dx.doi.org/10.1002/jcp.29935] [PMID: 32657458]
[73]
Yildirimer, L.; Thanh, N.T.K.; Seifalian, A.M. Skin regeneration scaffolds: A multimodal bottom-up approach. Trends Biotechnol., 2012, 30(12), 638-648.
[http://dx.doi.org/10.1016/j.tibtech.2012.08.004] [PMID: 22981509]
[74]
Miguel, S.P.; Figueira, D.R.; Simões, D.; Ribeiro, M.P.; Coutinho, P.; Ferreira, P.; Correia, I.J. Electrospun polymeric nanofibres as wound dressings: A review. Colloids Surf. B Biointerfaces, 2018, 169, 60-71.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.011] [PMID: 29747031]
[75]
Xia, Y.; Sun, J.; Zhao, L.; Zhang, F.; Liang, X.J.; Guo, Y.; Weir, M.D.; Reynolds, M.A.; Gu, N.; Xu, H.H.K. Magnetic field and nano-scaffolds with stem cells to enhance bone regeneration. Biomaterials, 2018, 183, 151-170.
[http://dx.doi.org/10.1016/j.biomaterials.2018.08.040] [PMID: 30170257]
[76]
Yi, H.; Ur Rehman, F.; Zhao, C.; Liu, B.; He, N. Recent advances in nano scaffolds for bone repair. Bone Res., 2016, 4(1), 16050.
[http://dx.doi.org/10.1038/boneres.2016.50] [PMID: 28018707]
[77]
Rajangam, T.; An, S.S.A. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. Int. J. Nanomedicine, 2013, 8, 3641-3662.
[http://dx.doi.org/10.2147/IJN.S43945] [PMID: 24106425]
[78]
Heo, D.N.; Yang, D.H.; Lee, J.B.; Bae, M.S.; Kim, J.H.; Moon, S.H.; Chun, H.J.; Kim, C.H.; Lim, H.N.; Kwon, I.K. Burn-wound healing effect of gelatin/polyurethane nanofiber scaffold containing silver-sulfadiazine. J. Biomed. Nanotechnol., 2013, 9(3), 511-515.
[http://dx.doi.org/10.1166/jbn.2013.1509] [PMID: 23621008]
[79]
Romano, I.; Summa, M.; Heredia-Guerrero, J.A.; Spanò, R.; Ceseracciu, L.; Pignatelli, C.; Bertorelli, R.; Mele, E.; Athanassiou, A. Fumarate-loaded electrospun nanofibers with anti-inflammatory activity for fast recovery of mild skin burns. Biomed. Mater., 2016, 11(4), 041001.
[http://dx.doi.org/10.1088/1748-6041/11/4/041001] [PMID: 27481333]
[80]
Kang, Y.O.; Yoon, I.; Lee, S.Y.; Kim, D.; Lee, S.J.; Park, W.H.; Hudson, S.M. Chitosan-Coated Poly (Vinyl Alcohol) Nanofibers For Wound Dressings. Carbohydr. Polym., 2016, 146, 445-454.
[http://dx.doi.org/10.1002/jbm.b.31554] [PMID: 19957357]
[81]
Xie, Z.; Paras, C.B.; Weng, H.; Punnakitikashem, P.; Su, L.C.; Vu, K.; Tang, L.; Yang, J.; Nguyen, K.T. Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater., 2013, 9(12), 9351-9359.
[http://dx.doi.org/10.1016/j.actbio.2013.07.030] [PMID: 23917148]
[82]
Liu, X.; Lin, T.; Gao, Y.; Xu, Z.; Huang, C.; Yao, G.; Jiang, L.; Tang, Y.; Wang, X. Antimicrobial electrospun nanofibers of cellulose acetate and polyester urethane composite for wound dressing. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(6), 1556-1565.
[http://dx.doi.org/10.1002/jbm.b.32724] [PMID: 22692845]
[83]
Znojek-Tymborowska, J.; Kęska, R.; Paradowski, P.T.; Witoński, D. Relevance of infiltration analgesia in pain relief after total knee arthroplasty. Acta Ortop. Bras., 2013, 21(5), 262-265.
[http://dx.doi.org/10.1590/S1413-78522013000500004] [PMID: 24453679]
[84]
Kossovich, L.Y.; Salkovskiy, Y.; Kirillova, I.V. Electrospun chitosan nanofiber materials as burn dressing. IFMBE Proc., 2010, 31, 1212-1214.
[http://dx.doi.org/10.1007/978-3-642-14515-5_307]
[85]
Nezhad-Mokhtari, P.; Akrami-Hasan-Kohal, M.; Ghorbani, M. An injectable chitosan-based hydrogel scaffold containing gold nanoparticles for tissue engineering applications. Int. J. Biol. Macromol., 2020, 154, 198-205.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.112] [PMID: 32184143]
[86]
Akther, F.; Little, P.; Li, Z.; Nguyen, N.T.; Ta, H.T. Hydrogels as Artificial Matrices for Cell Seeding in Microfluidic Devices. RSC Advances, 2020, 10(71), 43682-43703.
[http://dx.doi.org/10.1039/D0RA08566A]
[87]
Milan, P.B.; Kargozar, S.; Joghataie, M.T.; Samadikuchaksaraei, A. Nanoengineered Biomaterials for Skin Regeneration; Elsevier: Amsterdam, 2019.
[http://dx.doi.org/10.1016/B978-0-12-813355-2.00011-9]
[88]
A v, T.; Dinda, A.K.; Koul, V. Evaluation of nano hydrogel composite based on gelatin/HA/CS suffused with Asiatic acid/ZnO and CuO nanoparticles for second degree burns. Mater. Sci. Eng. C, 2018, 89, 378-386.
[http://dx.doi.org/10.1016/j.msec.2018.03.034] [PMID: 29752110]
[89]
Alapure, B.V.; Lu, Y.; He, M.; Chu, C.C.; Peng, H.; Muhale, F.; Brewerton, Y.L.; Bunnell, B.; Hong, S. Accelerate Healing of Severe Burn Wounds by Mouse Bone Marrow Mesenchymal Stem Cell-Seeded Biodegradable Hydrogel Scaffold Synthesized from Arginine-Based Poly(ester amide) and Chitosan. Stem Cells Dev., 2018, 27(23), 1605-1620.
[http://dx.doi.org/10.1089/scd.2018.0106] [PMID: 30215325]
[90]
Chakrabarti, S.; Mazumder, B.; Rajkonwar, J.; Pathak, M.P.; Patowary, P.; Chattopadhyay, P. BFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci. Rep., 2021, 11(1), 1-10.
[http://dx.doi.org/10.1038/s41598-021-82888-9]
[91]
Kalirajan, C.; Palanisamy, T. A ZnO-curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(38), 5873-5886.
[http://dx.doi.org/10.1039/C9TB01097A] [PMID: 31512714]
[92]
Pandey, M.; Mohamad, N.; Low, W.L.; Martin, C.; Mohd Amin, M.C. Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds. Drug Deliv. Transl. Res., 2017, 7(1), 89-99.
[http://dx.doi.org/10.1007/s13346-016-0341-8] [PMID: 27815776]
[93]
Boucard, N.; Viton, C.; Agay, D.; Mari, E.; Roger, T.; Chancerelle, Y.; Domard, A. The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 2007, 28(24), 3478-3488.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.021] [PMID: 17482258]
[94]
Wang, T.; Zhu, X-K.; Xue, X-T.; Wu, D-Y. Hydrogel Sheets of Chitosan, Honey and Gelatin as Burn Wound Dressings. Carbohydr. Polym., 2012, 88(1), 75-83.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.069]
[95]
Shen, Y.I.; Song, H.G.; Papa, A.; Burke, J.; Volk, S.W.; Gerecht, S. Acellular Hydrogels for Regenerative Burn Wound Healing: Translation from a Porcine Model. J. Invest. Dermatol., 2015, 135(10), 2519-2529.
[http://dx.doi.org/10.1038/jid.2015.182] [PMID: 26358387]
[96]
Chakavala, S.R.; Patel, N.G.; Pate, N.V.; Thakkar, V.T.; Patel, K.V.; Gandhi, T.R. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J. Pharm. Bioallied Sci., 2012, 4(March)(Suppl. 1), S54-S56.
[http://dx.doi.org/10.4103/0975-7406.94131] [PMID: 23066206]
[97]
Zhu, C.; Zhao, J.; Kempe, K.; Wilson, P.; Wang, J.; Velkov, T.; Li, J.; Davis, T.P.; Whittaker, M.R.; Haddleton, D.M. A Hydrogel-Based Localized Release of Colistin for Antimicrobial Treatment of Burn Wound Infection. Macromol. Biosci., 2017, 17(2), 1-7.
[http://dx.doi.org/10.1002/mabi.201600320] [PMID: 27619320]
[98]
Roy, D.C.; Tomblyn, S.; Isaac, K.M.; Kowalczewski, C.J.; Burmeister, D.M.; Burnett, L.R.; Christy, R.J. Ciprofloxacin-loaded keratin hydrogels reduce infection and support healing in a porcine partial-thickness thermal burn. Wound Repair Regen., 2016, 24(4), 657-668.
[http://dx.doi.org/10.1111/wrr.12449] [PMID: 27238250]
[99]
Catanzano, O.; Esposito, V.D.; Pulcrano, G.; Maiolino, S.; Ambrosio, M.R.; Esposito, M.; Miro, A.; Ungaro, F.; Formisano, P.; Catania, M.R.; Quaglia, F. Ultra-Small Silver Nanoparticles Loaded in Alginate-Hyaluronic Acid Hybrid Hydrogels for Treating Infected Wounds. Int. J. Polym. Mater., 2017, 66(12), 626-634.
[http://dx.doi.org/10.1080/00914037.2016.1252358]
[100]
Gupta, A.; Upadhyay, N.K.; Parthasarathy, S.; Rajagopal, C.; Roy, P.K. Nitrofurazone-Loaded PVA – PEG Semi-IPN for Application as Hydrogel Dressing for Normal and Burn Wounds. J. Appl. Polym. Sci., 2013, 128(6), 4031-4039.
[http://dx.doi.org/10.1002/app.38594]
[101]
Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater., 2019, 4, 271-292.
[http://dx.doi.org/10.1016/j.bioactmat.2019.10.005] [PMID: 31709311]
[102]
Miyazaki, H.; Kinoshita, M.; Saito, A.; Fujie, T.; Kabata, K.; Hara, E.; Ono, S.; Takeoka, S.; Saitoh, D. An ultrathin poly(L-lactic acid) nanosheet as a burn wound dressing for protection against bacterial infection. Wound Repair Regen., 2012, 20(4), 573-579.
[http://dx.doi.org/10.1111/j.1524-475X.2012.00811.x] [PMID: 22712440]
[103]
Sezer, A.D.; Hatipoğlu, F.; Cevher, E.; Oğurtan, Z.; Baş, A.L.; Akbuğa, J. Chitosan film containing fucoidan as a wound dressing for dermal burn healing: Preparation and in vitro/in vivo evaluation. AAPS PharmSciTech, 2007, 8(2), 39.
[http://dx.doi.org/10.1208/pt0802039] [PMID: 17622117]
[104]
Morgado, P.I.; Miguel, S.P.; Correia, I.J.; Aguiar-Ricardo, A. Ibuprofen loaded PVA/chitosan membranes: A highly efficient strategy towards an improved skin wound healing. Carbohydr. Polym., 2017, 159, 136-145.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.029] [PMID: 28038742]
[105]
Ito, K.; Saito, A.; Fujie, T.; Nishiwaki, K.; Miyazaki, H.; Kinoshita, M.; Saitoh, D.; Ohtsubo, S.; Takeoka, S. Sustainable antimicrobial effect of silver sulfadiazine-loaded nanosheets on infection in a mouse model of partial-thickness burn injury. Acta Biomater., 2015, 24, 87-95.
[http://dx.doi.org/10.1016/j.actbio.2015.05.035] [PMID: 26079191]
[106]
Nunes, P.S.; Rabelo, A.S.; Souza, J.C.; Santana, B.V.; da Silva, T.M.M.; Serafini, M.R.; Dos Passos Menezes, P.; Dos Santos Lima, B.; Cardoso, J.C.; Alves, J.C.S.; Frank, L.A.; Guterres, S.S.; Pohlmann, A.R.; Pinheiro, M.S.; de Albuquerque, R.L.C.; Araújo, A.A. Gelatin-based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine model. Int. J. Pharm., 2016, 513(1-2), 473-482.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.040] [PMID: 27633280]
[107]
Dantas, M.D.M.; Cavalcante, D.R.R.; Araújo, F.E.N.; Barretto, S.R.; Aciole, G.T.S.; Pinheiro, A.L.B.; Ribeiro, M.A.G.; Lima-Verde, I.B.; Melo, C.M.; Cardoso, J.C.; Albuquerque Júnior, R.L. Improvement of dermal burn healing by combining sodium alginate/chitosan-based films and low level laser therapy. J. Photochem. Photobiol. B, 2011, 105(1), 51-59.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.06.009] [PMID: 21803596]
[108]
Shettigar, U.R.; Jagannathan, R.; Natarajan, R. Collagen film for burn wound dressings reconstituted from animal intestines. Artif. Organs, 1982, 6(3), 256-260.
[http://dx.doi.org/10.1111/j.1525-1594.1982.tb01670.x] [PMID: 7181726]
[109]
A v, T.; Mohanty, S.; Dinda, A.K.; Koul, V. Fabrication and evaluation of gelatin/hyaluronic acid/chondroitin sulfate/asiatic acid based biopolymeric scaffold for the treatment of second-degree burn wounds - wistar rat model study. Biomed. Mater., 2020, 15(5), 055016.
[http://dx.doi.org/10.1088/1748-605X/ab8721]
[110]
Glat, P.M.; Zhang, S.H.; Burkey, B.A.; Davis, W.J. Clinical evaluation of a silver-impregnated foam dressing in paediatric partial-thickness burns. J. Wound Care, 2015, 24(Sup4a)(Suppl. 4a), S4-S10.
[http://dx.doi.org/10.12968/jowc.2015.24.Sup4a.S4] [PMID: 25853563]
[111]
Li, Z.; Wang, H.; Yang, B.; Sun, Y.; Huo, R. Three-dimensional graphene foams loaded with bone marrow derived mesenchymal stem cells promote skin wound healing with reduced scarring. Mater. Sci. Eng. C, 2015, 57, 181-188.
[http://dx.doi.org/10.1016/j.msec.2015.07.062] [PMID: 26354253]
[112]
Sanad, R.A.; Abdel-bar, H.M. Chitosan – Hyaluronic Acid Composite Sponge Scaffold Enriched with Andrographolide-Loaded Lipid Nanoparticles for Enhanced Wound; Elsevier Ltd., 2017.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.098]
[113]
Nguyen, V.C.; Nguyen, V.B.; Hsieh, M. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int. J. Polym. Sci., 2013, 7, 1-9.
[http://dx.doi.org/10.1155/2013/106570]
[114]
Pei, Z.; Sun, Q.; Sun, X.; Wang, Y.; Zhao, P. Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing. Biomed. Mater. Eng., 2015, 26(1)(Suppl. 1), S111-S118.
[http://dx.doi.org/10.3233/BME-151296] [PMID: 26405868]
[115]
Nosrati, H.; Aramideh Khouy, R.; Nosrati, A.; Khodaei, M.; Banitalebi-Dehkordi, M.; Ashrafi-Dehkordi, K.; Sanami, S.; Alizadeh, Z. Nanocomposite scaffolds for accelerating chronic wound healing by enhancing angiogenesis. J. Nanobiotechnology, 2021, 19(1), 1.
[http://dx.doi.org/10.1186/s12951-020-00755-7] [PMID: 33397416]
[116]
Rajendran, N.K.; Sundar, S.; Kumar, D.; Houreld, N.N.; Abrahamse, H. A review on nanoparticle based treatment for wound healing. J. Drug Deliv. Sci. Technol., 2018, 44, 421-430.
[http://dx.doi.org/10.1016/j.jddst.2018.01.009]
[117]
Tan, S.H.; Ngo, Z.H.; Leavesley, D.; Liang, K. Recent advances in the design of three-dimensional and bioprinted scaffolds for fullthickness wound healing. 2021. Available from: https://home.liebertpub.com/teb
[http://dx.doi.org/10.1089/ten.teb.2020.0339]
[118]
Cheng, R.Y.; Eylert, G.; Gariepy, J-M.; He, S.; Ahmad, H.; Gao, Y.; Priore, S.; Hakimi, N.; Jeschke, M.G.; Günther, A. Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns. Biofabrication, 2020, 12(2), 025002.
[http://dx.doi.org/10.1088/1758-5090/ab6413] [PMID: 32015225]
[119]
Dash, B.C.; Xu, Z.; Lin, L.; Koo, A.; Ndon, S.; Berthiaume, F.; Dardik, A.; Hsia, H. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering (Basel), 2018, 5(1), 23.
[http://dx.doi.org/10.3390/bioengineering5010023] [PMID: 29522497]
[120]
Baeza, A.; Ruiz-Molina, D.; Vallet-Regí, M. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: Inorganic nanoparticles and nanoscale metal-organic frameworks. Expert Opin. Drug Deliv., 2017, 14(6), 783-796.
[http://dx.doi.org/10.1080/17425247.2016.1229298] [PMID: 27575454]
[121]
Sanchez, C.; Belleville, P.; Popall, M.; Nicole, L. Applications of advanced hybrid organic-inorganic nanomaterials: From laboratory to market. Chem. Soc. Rev., 2011, 40(2), 696-753.
[http://dx.doi.org/10.1039/c0cs00136h] [PMID: 21229132]
[122]
Järvinen, T.A.H.; Rashid, J.; Valmari, T.; May, U.; Ahsan, F. Systemically Administered, Target-Specific Therapeutic Recombinant Proteins and Nanoparticles for Regenerative Medicine. ACS Biomater. Sci. Eng., 2017, 3(7), 1273-1282.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00746] [PMID: 33440515]
[123]
Mala, R.; Rani, M.J.; Prasath, N.H.; Celsia, A.S.R. A Review on Nano Material Based Drug Delivery for Burn Injury A Review on Nano Material Based Drug Delivery for Burn Injury. AIP Conf. Proc., 2019, 2015, 020012.
[http://dx.doi.org/10.1063/1.5100697]
[124]
Juncos, A.D.; Dunne, N.J.; Mccarthy, H.O. Materials Science & Engineering C Electrospinning of Natural Polymers for the Production of Nanofibres for Wound Healing Applications. Mater. Sci. Eng. C, 2020, 114(February), 110994.
[http://dx.doi.org/10.1016/j.msec.2020.110994]
[125]
Paper, O. Microfluidic-assisted production of poly(ɛ -caprolactone) and cellulose acetate nanoparticles: Effects of polymers, surfactants, and flow rate ratios. Polym. Bull., 2020, 1(0123456789), 1-18.
[http://dx.doi.org/10.1007/s00289-020-03367-1]
[126]
Khan, I.U.; Serra, C.A.; Anton, N.; Vandamme, T.F.; Ullah, I.; Serra, C.A.; Anton, N.; Vandamme, T.F. Production of nanoparticle drug delivery systems with microfluidics tools. Expert Opin. Drug Deliv., 2015, 12(4), 547-562.
[http://dx.doi.org/10.1517/17425247.2015.974547] [PMID: 25345543]
[127]
Zhang, Y.; Wischke, C.; Mittal, S.; Mitra, A.; Schwendeman, S.P. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide. Mol. Pharm., 2016, 13(8), 2622-2630.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00961] [PMID: 27144450]
[128]
Chereddy, K.K.; Her, C.H.; Comune, M.; Moia, C.; Lopes, A.; Porporato, P.E.; Vanacker, J.; Lam, M.C.; Steinstraesser, L.; Sonveaux, P.; Zhu, H.; Ferreira, L.S.; Vandermeulen, G.; Préat, V. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing. J. Control. Release, 2014, 194(1), 138-147.
[http://dx.doi.org/10.1016/j.jconrel.2014.08.016] [PMID: 25173841]
[129]
Ali, M.; Jahromi, M.; Karimi, M.; Azadmanesh, K. The Effect of Chitosan-Tripolyphosphate Nanoparticles on Maturation and Function of Dendritic Cells. Comp. Clin. Pathol., 2013, 23(5), 1421-1427.
[http://dx.doi.org/10.1007/s00580-013-1799-0]
[130]
Shrestha, A.; Hamblin, M.R.; Kishen, A. Characterization of a conjugate between Rose Bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin. Antimicrob. Agents Chemother., 2012, 56(9), 4876-4884.
[http://dx.doi.org/10.1128/AAC.00810-12] [PMID: 22777042]
[131]
Dai, T.; Tanaka, M.; Huang, Y-Y.; Hamblin, M.R. Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Rev. Anti Infect. Ther., 2011, 9(7), 857-879.
[http://dx.doi.org/10.1586/eri.11.59] [PMID: 21810057]
[132]
Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611.
[http://dx.doi.org/10.1016/j.bcp.2008.08.008] [PMID: 18775680]
[133]
Lee, J.; Kim, J.; Go, J.; Lee, J.H.; Han, D.W.; Hwang, D.; Lee, J. Transdermal treatment of the surgical and burned wound skin via phytochemical-capped gold nanoparticles. Colloids Surf. B Biointerfaces, 2015, 135, 166-174.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.058] [PMID: 26263209]
[134]
Akturk, O.; Kismet, K.; Yasti, A.C.; Kuru, S.; Duymus, M.E.; Kaya, F.; Caydere, M.; Hucumenoglu, S.; Keskin, D. Collagen/gold nanoparticle nanocomposites: A potential skin wound healing biomaterial. J. Biomater. Appl., 2016, 31(2), 283-301.
[http://dx.doi.org/10.1177/0885328216644536] [PMID: 27095659]
[135]
Alvarez, G.S.; Hélary, C.; Mebert, A.M.; Desimone, M.F.; Alvarez, G.S.; Hélary, C.; Mebert, A.M.; Wang, X.; Federico, M. Antibiotic-loaded silica nanoparticle – collagen composite hydrogels with prolonged antimicrobial activity for wound infection prevention to cite this version: HAL Id: Hal-01138991. J. Mater. Chem. B Mater. Biol. Med., 2015, 2(29), 4660-4670.
[http://dx.doi.org/10.1039/c4tb00327f]
[136]
Bahadoran, M.; Shamloo, A.; Nokoorani, Y.D. Development of a polyvinyl Alcohol/Sodium alginate hydrogel-based scaffold incorporating BFGF-encapsulated microspheres for accelerated wound healing. Sci. Rep., 2020, 10(1), 1-18.
[http://dx.doi.org/10.1038/s41598-020-64480-9]
[137]
Mehrabani, M.G.; Karimian, R.; Mehramouz, B.; Rahimi, M.; Kafil, H.S. Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int. J. Biol. Macromol., 2018, 114, 961-971.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.128] [PMID: 29581004]
[138]
Tabaii, M.J.; Emtiazi, G. Transparent nontoxic antibacterial wound dressing based on silver nano particle/bacterial cellulose nano composite synthesized in the presence of tripolyphosphate. J. Drug Deliv. Sci. Technol., 2018, 44, 244-253.
[http://dx.doi.org/10.1016/j.jddst.2017.12.019]
[139]
Biswas, D.P.; O’Brien-Simpson, N.M.; Reynolds, E.C.; O’Connor, A.J.; Tran, P.A. Comparative study of novel in situ decorated porous chitosan-selenium scaffolds and porous chitosan-silver scaffolds towards antimicrobial wound dressing application. J. Colloid Interface Sci., 2018, 515, 78-91.
[http://dx.doi.org/10.1016/j.jcis.2018.01.007] [PMID: 29331783]
[140]
Chen, J.; Liu, Z.; Chen, M.; Zhang, H.; Li, X. Electrospun gelatin fibers with a multiple release of antibiotics accelerate dermal regeneration in infected deep burns. Macromol. Biosci., 2016, 16(9), 1368-1380.
[http://dx.doi.org/10.1002/mabi.201600108] [PMID: 27276339]
[141]
Hanani, F.; Shahitha, F.; Hussain, J.; Sileshi, S.; Syaiful, M.; Abdull, B.; Yusuff, M.M. A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Mater. Sci. Eng. C, 2017, 79, 151-160.
[http://dx.doi.org/10.1016/j.msec.2017.05.028]
[142]
Law, N.; Doney, B.; Glover, H.; Qin, Y.; Aman, Z.M.; Sercombe, T.B.; Liew, L.J.; Dilley, R.J.; Doyle, B.J. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater., 2018, 77, 389-399.
[http://dx.doi.org/10.1016/j.jmbbm.2017.09.031] [PMID: 29017117]
[143]
Gholipourmalekabadi, M.; Samadikuchaksaraei, A.; Seifalian, A.M.; Urbanska, A.M.; Ghanbarian, H.; Hardy, J.G.; Omrani, M.D.; Mozafari, M.; Reis, R.L.; Kundu, S.C. Silk fibroin/amniotic membrane 3D bi-layered artificial skin. Biomed. Mater., 2018, 13(3), 035003.
[http://dx.doi.org/10.1088/1748-605X/aa999b] [PMID: 29125135]
[144]
Blažević, F.; Milekić, T.; Romić, M.D.; Juretić, M.; Pepić, I.; Filipović-Grčić, J.; Lovrić, J.; Hafner, A. Nanoparticle-mediated interplay of chitosan and melatonin for improved wound epithelialisation. Carbohydr. Polym., 2016, 146, 445-454.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.074] [PMID: 27112895]
[145]
Selvan, N.K.; Shanmugarajan, T.S.; Naga, V.; Arjun, V. Hydrogel based scaffolding polymeric biomaterials: Approaches towards skin tissue regeneration. J. Drug Deliv. Sci. Technol., 2020, 55, 101456.
[http://dx.doi.org/10.1016/j.jddst.2019.101456]
[146]
Calo, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J., 2015, 65, 252-267.
[http://dx.doi.org/10.1016/j.eurpolymj.2014.11.024]
[147]
Madaghiele, M.; Demitri, C.; Sannino, A.; Ambrosio, L. Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns Trauma, 2014, 2(4), 153-161.
[http://dx.doi.org/10.4103/2321-3868.143616] [PMID: 27602378]
[148]
Anjum, S.; Arora, A.; Alam, M.S.; Gupta, B. Development of antimicrobial and scar preventive chitosan hydrogel wound dressings. Int. J. Pharm., 2016, 508(1-2), 92-101.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.013] [PMID: 27163526]
[149]
Seisenbaeva, G.A.; Fromell, K.; Vinogradov, V.V.; Terekhov, A.N.; Pakhomov, A.V.; Nilsson, B.; Ekdahl, K.N.; Vinogradov, V.V.; Kessler, V.G. Dispersion of TiO2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci. Rep., 2017, 7(1), 1-11.
[http://dx.doi.org/10.1038/s41598-017-15792-w]
[150]
Arafa, M.G.; El-Kased, R.F.; Elmazar, M.M. Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci. Rep., 2018, 8(1), 1-16.
[http://dx.doi.org/10.1038/s41598-018-31895-4]
[151]
Hassiba, A.J.; El Zowalaty, M.E.; Nasrallah, G.K.; Webster, T.J.; Luyt, A.S.; Abdullah, A.M.; Elzatahry, A.A. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond.), 2016, 11(6), 715-737.
[http://dx.doi.org/10.2217/nnm.15.211] [PMID: 26744905]
[152]
Guo, X.; Liu, Y.; Bera, H.; Zhang, H.; Chen, Y.; Cun, D.; Foderà, V.; Yang, M. α-lactalbumin-based nanofiber dressings improve burn wound healing and reduce scarring. ACS Appl. Mater. Interfaces, 2020, 12(41), 45702-45713.
[http://dx.doi.org/10.1021/acsami.0c05175] [PMID: 32667794]
[153]
Hromadka, M.; Collins, J.B.; Reed, C.; Han, L.; Kolappa, K.K.; Cairns, B.A.; Andrady, T.; van Aalst, J.A. Nanofiber applications for burn care. J. Burn Care Res., 2008, 29(5), 695-703.
[http://dx.doi.org/10.1097/BCR.0b013e31818480c9] [PMID: 18779672]
[154]
Taylor, P.; Sundaramurthi, D.; Krishnan, U.M. Electrospun nanofibers as scaffolds for skin tissue engineering electrospun nanofibers as scaffolds for skin. Polym. Rev. (Phila. Pa.), 2014, 54(2), 348-376.
[http://dx.doi.org/10.1080/15583724.2014.881374]
[155]
Borkow, G.; Gabbay, J.; Dardik, R.; Eidelman, A.I.; Lavie, Y.; Grunfeld, Y.; Ikher, S.; Huszar, M.; Zatcoff, R.C.; Marikovsky, M. Molecular mechanisms of enhanced wound healing by copper oxide-impregnated dressings. Wound Repair Regen., 2010, 18(2), 266-275.
[http://dx.doi.org/10.1111/j.1524-475X.2010.00573.x] [PMID: 20409151]
[156]
Dwivedi, C.; Pandey, H.; Pandey, A.C.; Ramteke, P.W. Nanofibre based smart pharmaceutical scaffolds for wound repair and regenerations. Curr. Pharm. Des., 2016, 22(11), 1460-1471.
[http://dx.doi.org/10.2174/1381612822666151215103553] [PMID: 26666999]
[157]
Tan, L.; Hu, J.; Huang, H.; Han, J.; Hu, H. Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. Int. J. Biol. Macromol., 2015, 79, 469-476.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.014] [PMID: 26003301]
[158]
Banerjee, K.; Madhyastha, H.; Madhyastha, R.; Nakajima, Y. Nanoceutical adjuncts as wound healing material: Precepts and prospects. Adv. Heal. Care Mater., 2021, 2(3), 1-34.
[http://dx.doi.org/10.20944/preprints202103.0031.v1]
[159]
Kostakova, E.; Seps, M.; Pokorny, P.; Lukas, D. Study of polycaprolactone wet electrospinning process. Express Polym. Lett., 2014, 8(8), 554-564.
[http://dx.doi.org/10.3144/expresspolymlett.2014.59]
[160]
Steffens, D.; Mathor, M.B.; Soster, P.R.D.L.; Vergani, G.; Luco, D.P.; Pranke, P. Treatment of a burn animal model with functionalized tridimensional electrospun biomaterials. J. Biomater. Appl., 2017, 32(5), 663-676.
[http://dx.doi.org/10.1177/0885328217735933] [PMID: 28992774]
[161]
Keirouz, A.; Chung, M.; Kwon, J.; Fortunato, G.; Radacsi, N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4), e1626.
[http://dx.doi.org/10.1002/wnan.1626] [PMID: 32166881]
[162]
Rahmani Del Bakhshayesh, A.; Annabi, N.; Khalilov, R.; Akbarzadeh, A.; Samiei, M.; Alizadeh, E.; Alizadeh-Ghodsi, M.; Davaran, S.; Montaseri, A. Recent advances on biomedical applications of scaffolds in wound healing and dermal tissue engineering. Artif. Cells Nanomed. Biotechnol., 2018, 46(4), 691-705.
[http://dx.doi.org/10.1080/21691401.2017.1349778] [PMID: 28697631]
[163]
Yang, L.; Conley, B.M.; Cerqueira, S.R.; Pongkulapa, T.; Wang, S.; Lee, J.K.; Lee, K.B. Effective modulation of CNS inhibitory microenvironment using bioinspired hybrid-nanoscaffold-based therapeutic interventions. Adv. Mater., 2020, 32(43), e2002578.
[http://dx.doi.org/10.1002/adma.202002578] [PMID: 32893402]
[164]
Wang, Y.; Maitz, P.K.M. Advances and new technologies in the treatment of burn injury. Adv. Drug Deliv. Rev., 2018, 123, 1-2.
[http://dx.doi.org/10.1016/j.addr.2017.11.011] [PMID: 29273168]
[165]
Asiri, A.; Saidin, S.; Sani, M.H.; Al-Ashwal, R.H. Epidermal and fibroblast growth factors incorporated polyvinyl alcohol electrospun nanofibers as biological dressing scaffold. Sci. Rep., 2021, 11(1), 1-14.
[http://dx.doi.org/10.1038/s41598-021-85149-x]
[166]
Dhandayuthapani, B.; Krishnan, U.M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater., 2010, 94(1), 264-272.
[http://dx.doi.org/10.1002/jbm.b.31651] [PMID: 20524203]
[167]
Kheradvar, S.A.; Nourmohammadi, J.; Tabesh, H.; Bagheri, B. Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing. Colloids Surf. B Biointerfaces, 2018, 166, 9-16.
[http://dx.doi.org/10.1016/j.colsurfb.2018.03.004] [PMID: 29525623]
[168]
Xu, F.; Weng, B.; Gilkerson, R.; Materon, L.A.; Lozano, K. Development of tannic acid/chitosan/pullulan composite nanofibers from aqueous solution for potential applications as wound dressing. Carbohydr. Polym., 2015, 115, 16-24.
[http://dx.doi.org/10.1016/j.carbpol.2014.08.081] [PMID: 25439862]
[169]
Pan, J.F.; Liu, N.H.; Sun, H.; Xu, F. Preparation and characterization of electrospun PLCL/Poloxamer nanofibers and dextran/gelatin hydrogels for skin tissue engineering. PLoS One, 2014, 9(11), e112885.
[http://dx.doi.org/10.1371/journal.pone.0112885] [PMID: 25405611]
[170]
Kim, S.E.; Heo, D.N.; Lee, J.B.; Kim, J.R.; Park, S.H.; Jeon, S.H.; Kwon, I.K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater., 2009, 4(4), 044106.
[http://dx.doi.org/10.1088/1748-6041/4/4/044106] [PMID: 19671952]
[171]
Zhu, X.; Cui, W.; Li, X.; Jin, Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules, 2008, 9(7), 1795-1801.
[http://dx.doi.org/10.1021/bm800476u] [PMID: 18578495]
[172]
Yuan, T.T.; DiGeorge Foushee, A.M.; Johnson, M.C.; Jockheck-Clark, A.R.; Stahl, J.M. Development of electrospun chitosan-polyethylene oxide/fibrinogen biocomposite for potential wound healing applications. Nanoscale Res. Lett., 2018, 13(1), 88.
[http://dx.doi.org/10.1186/s11671-018-2491-8] [PMID: 29611009]
[173]
Fan, X.; Chen, K.; He, X.; Li, N.; Huang, J.; Tang, K.; Li, Y.; Wang, F. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing. Int. J. Biol. Macromol., 2016, 91, 15-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.094] [PMID: 27238587]
[174]
Zhang, H.; Xia, J.; Pang, X.; Zhao, M.; Wang, B.; Yang, L.; Wan, H.; Wu, J.; Fu, S. Magnetic nanoparticle-loaded electrospun polymeric nanofibers for tissue engineering. Mater. Sci. Eng. C, 2017, 73, 537-543.
[http://dx.doi.org/10.1016/j.msec.2016.12.116] [PMID: 28183642]
[175]
Xi Loh, E.Y.; Fauzi, M.B.; Ng, M.H.; Ng, P.Y.; Ng, S.F.; Ariffin, H.; Mohd Amin, M.C.I. Cellular and molecular interaction of human dermal fibroblasts with bacterial nanocellulose composite hydrogel for tissue regeneration. ACS Appl. Mater. Interfaces, 2018, 10(46), 39532-39543.
[http://dx.doi.org/10.1021/acsami.8b16645] [PMID: 30372014]
[176]
Oryan, A.; Jalili, M.; Kamali, A.; Nikahval, B. The concurrent use of probiotic microorganism and collagen hydrogel/scaffold enhances burn wound healing: An in vivo evaluation. Burns, 2018, 44(7), 1775-1786.
[http://dx.doi.org/10.1016/j.burns.2018.05.016] [PMID: 30078473]
[177]
Sun, G.; Zhang, X.; Shen, Y-I.; Sebastian, R.; Dickinson, L.E.; Fox-Talbot, K.; Reinblatt, M.; Steenbergen, C.; Harmon, J.W.; Gerecht, S. Dextran hydrogel scaffolds enhance angiogenic responses and promote complete skin regeneration during burn wound healing. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 20976-20981.
[http://dx.doi.org/10.1073/pnas.1115973108] [PMID: 22171002]
[178]
Fu, S-Z.; Meng, X-H.; Fan, J.; Yang, L-L.; Wen, Q-L.; Ye, S-J.; Lin, S.; Wang, B-Q.; Chen, L-L.; Wu, J-B.; Chen, Y.; Fan, J-M.; Li, Z. Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J. Biomed. Mater. Res. B Appl. Biomater., 2014, 102(3), 533-542.
[http://dx.doi.org/10.1002/jbm.b.33032] [PMID: 24115465]
[179]
Geesala, R.; Bar, N.; Dhoke, N.R.; Basak, P.; Das, A. Porous polymer scaffold for on-site delivery of stem cells--Protects from oxidative stress and potentiates wound tissue repair. Biomaterials, 2016, 77, 1-13.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.003] [PMID: 26576045]
[180]
Shan, Y-H.; Peng, L-H.; Liu, X.; Chen, X.; Xiong, J.; Gao, J-Q. Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm., 2015, 479(2), 291-301.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.067] [PMID: 25556053]
[181]
Adeli-Sardou, M.; Yaghoobi, M.M.; Torkzadeh-Mahani, M.; Dodel, M. Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. Int. J. Biol. Macromol., 2019, 124, 478-491.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.237] [PMID: 30500508]
[182]
Bayat, S.; Amiri, N.; Pishavar, E.; Kalalinia, F.; Movaffagh, J.; Hashemi, M. Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models. Life Sci., 2019, 229, 57-66.
[http://dx.doi.org/10.1016/j.lfs.2019.05.028] [PMID: 31085247]
[183]
Mohseni, M.; Shamloo, A.; Aghababaei, Z.; Vossoughi, M.; Moravvej, H. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: In vitro study. Artif. Organs, 2016, 40(8), 765-773.
[http://dx.doi.org/10.1111/aor.12682] [PMID: 27094090]
[184]
Jeong, L.; Kim, M.H.; Jung, J.Y.; Min, B.M.; Park, W.H. Effect of silk fibroin nanofibers containing silver sulfadiazine on wound healing. Int. J. Nanomedicine, 2014, 9(1), 5277-5287.
[http://dx.doi.org/10.2147/IJN.S71295] [PMID: 25484581]
[185]
Gholipour-Kanani, A.; Bahrami, S.H.; Joghataie, M.T.; Samadikuchaksaraei, A.; Ahmadi-Taftie, H.; Rabbani, S.; Kororian, A.; Erfani, E. Tissue engineered poly(caprolactone)-chitosan-poly(vinyl alcohol) nanofibrous scaffolds for burn and cutting wound healing. IET Nanobiotechnol., 2014, 8(2), 123-131.
[http://dx.doi.org/10.1049/iet-nbt.2012.0050] [PMID: 25014084]
[186]
Gholipour-Kanani, A.; Mohsenzadegan, M.; Fayyazi, M.; Bahrami, H.; Samadikuchaksaraei, A. Poly (ɛ-caprolactone)-chitosan-poly (vinyl alcohol) nanofibrous scaffolds for skin excisional and burn wounds in a canine model. IET Nanobiotechnol., 2018, 12(5), 619-625.
[http://dx.doi.org/10.1049/iet-nbt.2017.0115] [PMID: 30095423]
[187]
Henriksen, J.L.; Sørensen, N.B.; Fink, T.; Zachar, V.; Porsborg, S.R. Systematic review of stem-cell-based therapy of burn wounds: Lessons learned from animal and clinical studies. Cells, 2020, 9(12), E2545.
[http://dx.doi.org/10.3390/cells9122545] [PMID: 33256038]
[188]
Steffens, D.; Leonardi, D.; Soster, P.R. da L.; Lersch, M.; Rosa, A.; Crestani, T.; Scher, C.; de Morais, M.G.; Costa, J.A.V.; Pranke, P. Development of a new nanofiber scaffold for use with stem cells in a third degree burn animal model. Burns, 2014, 40(8), 1650-1660.
[http://dx.doi.org/10.1016/j.burns.2014.03.008] [PMID: 24794225]
[189]
Manconi, M.; Manca, M. L.; Caddeo, C.; Cencetti, C.; di Meo, C.; Zoratto, N.; Nacher, A.; Fadda, A. M.; Matricardi, P. Preparation of gellan-cholesterol nanohydrogels embedding baicalin and evaluation of their wound healing activity. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft fur Pharm. Verfahrenstechnik e.V, 2018, 127, 244-249.
[http://dx.doi.org/10.1016/j.ejpb.2018.02.015]
[190]
Mohd Zohdi, R.; Abu Bakar Zakaria, Z.; Yusof, N.; Mohamed Mustapha, N.; Abdullah, M.N.H. Gelam (Melaleuca spp.) honey-based hydrogel as burn wound dressing. Evid. Based Complement. Alternat. Med., 2012, 2012, 843025.
[http://dx.doi.org/10.1155/2012/843025] [PMID: 21941590]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy