Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Medicinal Herbs from Phytoinformatics: An Aid for Skin Burn Management

Author(s): Deepti Sharma, Sapna Jain, Amit Kumar Mishra, Ruby Sharma* and Ankit Tanwar*

Volume 23, Issue 12, 2022

Published on: 13 May, 2022

Page: [1436 - 1448] Pages: 13

DOI: 10.2174/1389201023666220310141308

Price: $65

Abstract

Skin burn injury is the most common cause of trauma that is still considered a dreadful condition in healthcare emergencies around the globe. Due to the availability of a variety of regimes, their management remains a dynamical challenge for the entire medical and paramedical community. Indeed, skin burn injuries are accompanied by a series of several devastating events that lead to sepsis and multiple organ dysfunction syndromes. Hence, the challenge lies in the development of a better understanding as well as clear diagnostic criteria and predictive biomarkers, which are important in their management. Though there are several regimes available in the market, there are still numerous limitations and challenges in the management. In this review article, we have discussed the various biomarkers that could be targeted for managing skin burn injuries. Instead of focusing on allopathic medication that has its adverse events per se, we have discussed the history, ethnopharmacology properties, and prospects of identified phytomedicines from a well-established herbal informatics model. This review article not only discusses the benefits of scrutinized phytocompounds but also the development of novel druggable phyto-compounds to target skin burn injury at a lower cost with no adverse effects.

Keywords: Skin burn injury, herbal informatics, phytoinformatics, phytocompounds, medicinal herbs, scarring.

[1]
Tredget, E.E.; Shankowsky, H.A.; Taerum, T.V.; Moysa, G.L.; Alton, J.D. The role of inhalation injury in burn trauma. A Canadian experience. Ann. Surg., 1990, 212(6), 720-727.
[http://dx.doi.org/10.1097/00000658-199012000-00011] [PMID: 2256764]
[2]
Inalsingh, C.H. An experience in treating five hundred and one patients with keloids. Johns Hopkins Med. J., 1974, 134(5), 284-290.
[PMID: 4826125]
[3]
Sterling, J.; Gibran, N.S.; Klein, M.B. Acute management of hand burns. Hand Clin., 2009, 25(4), 453-459.
[http://dx.doi.org/10.1016/j.hcl.2009.06.010] [PMID: 19801119]
[4]
Tredget, E.E. Management of the acutely burned upper extremity. Hand Clin., 2000, 16(2), 187-203.
[http://dx.doi.org/10.1016/S0749-0712(21)00196-7] [PMID: 10791166]
[5]
Tambuscio, A.; Governa, M.; Caputo, G.; Barisoni, D. Deep burn of the hands: Early surgical treatment avoids the need for late revisions? Burns, 2006, 32(8), 1000-1004.
[http://dx.doi.org/10.1016/j.burns.2006.02.011] [PMID: 16949210]
[6]
Wang, Y.; Beekman, J.; Hew, J.; Jackson, S.; Issler-Fisher, A.C.; Parungao, R.; Lajevardi, S.S.; Li, Z.; Maitz, P.K.M. Burn injury: Challenges and advances in burn wound healing, infection, pain and scarring. Adv. Drug Deliv. Rev., 2018, 123, 3-17.
[http://dx.doi.org/10.1016/j.addr.2017.09.018] [PMID: 28941987]
[8]
Jeschke, M.G.; van Baar, M.E.; Choudhry, M.A.; Chung, K.K.; Gibran, N.S.; Logsetty, S. Burn injury. Nat. Rev. Dis. Primers, 2020, 6(1), 11.
[http://dx.doi.org/10.1038/s41572-020-0145-5] [PMID: 32054846]
[9]
Stanojcic, M.; Abdullahi, A.; Rehou, S.; Parousis, A.; Jeschke, M.G. Pathophysiological response to burn injury in adults. Ann. Surg., 2018, 267(3), 576-584.
[http://dx.doi.org/10.1097/SLA.0000000000002097] [PMID: 29408836]
[10]
Porter, C.; Tompkins, R.G.; Finnerty, C.C.; Sidossis, L.S.; Suman, O.E.; Herndon, D.N. The metabolic stress response to burn trauma: current understanding and therapies. Lancet, 2016, 388(10052), 1417-1426.
[http://dx.doi.org/10.1016/S0140-6736(16)31469-6] [PMID: 27707498]
[11]
Mofazzal Jahromi, M.A.; Sahandi Zangabad, P.; Moosavi Basri, S.M.; Sahandi Zangabad, K.; Ghamarypour, A.; Aref, A.R.; Karimi, M.; Hamblin, M.R. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv. Drug Deliv. Rev., 2018, 123, 33-64.
[http://dx.doi.org/10.1016/j.addr.2017.08.001] [PMID: 28782570]
[12]
Busch, K-H.; Aliu, A.; Walezko, N.; Aust, M. Medical needling: Effect on skin erythema of hypertrophic burn scars. Cureus, 2018, 10(9), e3260.
[http://dx.doi.org/10.7759/cureus.3260] [PMID: 30430049]
[13]
Rowan, M.P.; Cancio, L.C.; Elster, E.A.; Burmeister, D.M.; Rose, L.F.; Natesan, S.; Chan, R.K.; Christy, R.J.; Chung, K.K. Burn wound healing and treatment: review and advancements. Crit. Care, 2015, 19(1), 243.
[http://dx.doi.org/10.1186/s13054-015-0961-2] [PMID: 26067660]
[14]
Novelli, S.; García-Muret, P.; Mozos, A.; Sierra, J.; Briones, J. Total body-surface area as a new prognostic variable in mycosis fungoides and Sézary syndrome. Leuk. Lymphoma, 2016, 57(5), 1060-1066.
[http://dx.doi.org/10.3109/10428194.2015.1057894] [PMID: 27096891]
[15]
Roshangar, L.; Soleimani Rad, J.; Kheirjou, R.; Reza Ranjkesh, M.; Ferdowsi Khosroshahi, A. Skin burns: Review of molecular mechanisms and therapeutic approaches. Wounds, 2019, 31(12), 308-315.
[PMID: 31730513]
[16]
Sproston, N.R.; Ashworth, J.J. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol., 2018, 9, 754.
[http://dx.doi.org/10.3389/fimmu.2018.00754] [PMID: 29706967]
[17]
Jaskiewicz, M.; Orlowska, M.; Olizarowicz, G.; Migon, D.; Grzywacz, D.; Kamysz, W. Rapid screening of antimicrobial synthetic peptides. Int. J. Pept. Res. Ther., 2016, 22(2), 155-161.
[http://dx.doi.org/10.1007/s10989-015-9494-4] [PMID: 27226784]
[18]
Jindal, H.M.; Le, C.F.; Mohd Yusof, M.Y.; Velayuthan, R.D.; Lee, V.S.; Zain, S.M.; Isa, D.M.; Sekaran, S.D. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against streptococcus pneumoniae. PLoS One, 2015, 10(6), e0128532.
[http://dx.doi.org/10.1371/journal.pone.0128532] [PMID: 26046345]
[19]
Agier, J.; Brzezińska-Błaszczyk, E. Cathelicidins and defensins regulate mast cell antimicrobial activity. Postepy Hig. Med. Dosw., 2016, 70(0), 618-636.
[http://dx.doi.org/10.5604/17322693.1205357] [PMID: 27333932]
[20]
Heyneman, A.; Hoeksema, H.; Vandekerckhove, D.; Pirayesh, A.; Monstrey, S. The role of silver sulphadiazine in the conservative treatment of partial thickness burn wounds: A systematic review. Burns, 2016, 42(7), 1377-1386.
[http://dx.doi.org/10.1016/j.burns.2016.03.029] [PMID: 27126813]
[21]
Mohseni, M.; Shamloo, A.; Aghababaei, Z.; Vossoughi, M.; Moravvej, H. Antimicrobial wound dressing containing silver sulfadiazine with high biocompatibility: In vitro study: Antimicrobial wound dressing containing ssd. Artif. Organs, 2016, 40(8), 765-773.
[http://dx.doi.org/10.1111/aor.12682] [PMID: 27094090]
[22]
Champagne, V.K.; Helfritch, D.J. A demonstration of the antimicrobial effectiveness of various copper surfaces. J. Biol. Eng., 2013, 7(1), 8.
[http://dx.doi.org/10.1186/1754-1611-7-8] [PMID: 23537176]
[23]
Moghaddam, A.S.; Raji, A.; Movaffagh, J.; Yazdi, A.T.; Mahmoudi, M. Effects of autologous keratinocyte cell spray with and without chitosan on third degree burn healing: an animal experiment. Wounds, 2014, 26(4), 109-117.
[PMID: 25855999]
[24]
Zahmatkesh, M.; Manesh, M.J.; Babashahabi, R. Effect of Olea ointment and Acetate Mafenide on burn wounds - A randomized clinical trial. Iran. J. Nurs. Midwifery Res., 2015, 20(5), 599-603.
[http://dx.doi.org/10.4103/1735-9066.164507] [PMID: 26457099]
[25]
Souto, E.B.; Ribeiro, A.F.; Ferreira, M.I.; Teixeira, M.C.; Shimojo, A.A.M.; Soriano, J.L.; Naveros, B.C.; Durazzo, A.; Lucarini, M.; Souto, S.B.; Santini, A. New nanotechnologies for the treatment and repair of skin burns infections. Int. J. Mol. Sci., 2020, 21(2), 393.
[http://dx.doi.org/10.3390/ijms21020393] [PMID: 31936277]
[26]
Ajmal, G.; Bonde, G.V.; Mittal, P.; Khan, G.; Pandey, V.K.; Bakade, B.V.; Mishra, B. Biomimetic PCL-gelatin based nanofibers loaded with ciprofloxacin hydrochloride and quercetin: A potential antibacterial and anti-oxidant dressing material for accelerated healing of a full thickness wound. Int. J. Pharm., 2019, 567, 118480.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118480] [PMID: 31255776]
[27]
Zhou, L.; Cai, L.; Ruan, H.; Zhang, L.; Wang, J.; Jiang, H.; Wu, Y.; Feng, S.; Chen, J. Electrospun chitosan oligosaccharide/polycaprolactone nanofibers loaded with wound-healing compounds of Rutin and Quercetin as antibacterial dressings. Int. J. Biol. Macromol., 2021, 183, 1145-1154.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.031] [PMID: 33965491]
[28]
Kim, M.H.; Park, H.; Nam, H.C.; Park, S.R.; Jung, J.Y.; Park, W.H. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing. Carbohydr. Polym., 2018, 181, 579-586.
[http://dx.doi.org/10.1016/j.carbpol.2017.11.109] [PMID: 29254010]
[29]
Liu, H-F.; Zhang, F.; Lineaweaver, W.C. A brief history of the treatment of burns. Ann. Plast. Surg., 2016, 78(2)(Suppl. 1), S2-S8.
[http://dx.doi.org/10.1097/SAP.0000000000000896] [PMID: 28079548]
[30]
The healing hand. Man and wound in the ancient world. Med. Hist., 1976, 20(4), 461.
[31]
Markatos, K.; Tzivra, A.; Tsoutsos, S.; Tsourouflis, G.; Karamanou, M.; Androutsos, G. Ambroise Paré (1510-1590) and his innovative work on the treatment of war injuries. Surg. Innov., 2018, 25(2), 183-186.
[http://dx.doi.org/10.1177/1553350617744901] [PMID: 29202658]
[33]
Curling, T.B. On acute ulceration of the duodenum, in cases of burn. Med. Chir. Trans., 1842, 25(1), 260-281.
[http://dx.doi.org/10.1177/095952874202500119] [PMID: 20895752]
[34]
Klasen, H.J. Skin grafting by the reverdin method and subsequent developments.History of Free Skin Grafting; Springer Berlin Heidelberg: Berlin, Heidelberg, 1981, pp. 9-46.
[http://dx.doi.org/10.1007/978-3-642-81653-6_2]
[35]
Ganatra, S.; Cohen, D. Silver nitrate burn of the lower lip: a case report. Gen. Dent., 2016, 64(1), 75-77.
[PMID: 26742172]
[36]
Judkins, K.C. Total burn care. Burns, 1997, 23(3), 273-274.
[http://dx.doi.org/10.1016/S0305-4179(97)87239-7]
[37]
Monafo, WW; Moyer, CA The treatment of extensive thermal burns with 0.5% silver nitrate solution. Ann N Y Acad Sci, 1968, 150(3 Early Treatme), 937-945.
[38]
Owens, C.J.; Yarbrough, D.R., III; Brackett, N.C., Jr Nephrotic syndrome following topically applied sulfadiazine silver therapy. Arch. Intern. Med., 1974, 134(2), 332-335.
[http://dx.doi.org/10.1001/archinte.1974.00320200142021] [PMID: 4843201]
[39]
Eldad, A.; Neuman, A.; Weinberg, A.; Benmeir, P.; Rotem, M.; Wexler, M.R. Silver sulphadiazine-induced haemolytic anaemia in a glucose-6-phosphate dehydrogenase-deficient burn patient. Burns, 1991, 17(5), 430-432.
[http://dx.doi.org/10.1016/S0305-4179(05)80083-X] [PMID: 1760119]
[40]
Kulick, M.I.; Wong, R.; Okarma, T.B.; Falces, E.; Berkowitz, R.L. Prospective study of side effects associated with the use of silver sulfadiazine in severely burned patients. Ann. Plast. Surg., 1985, 14(5), 407-419.
[http://dx.doi.org/10.1097/00000637-198505000-00003] [PMID: 4083697]
[41]
Magnotti, L.J.; Deitch, E.A. Burns, bacterial translocation, gut barrier function, and failure. J. Burn Care Rehabil., 2005, 26(5), 383-391.
[http://dx.doi.org/10.1097/01.bcr.0000176878.79267.e8] [PMID: 16151282]
[42]
Nagoba, B.S.; Gandhi, R.C.; Hartalkar, A.R.; Wadher, B.J.; Selkar, S.P. Simple, effective and affordable approach for the treatment of burns infections. Burns, 2010, 36(8), 1242-1247.
[http://dx.doi.org/10.1016/j.burns.2010.05.011] [PMID: 20554394]
[43]
Church, D.; Elsayed, S.; Reid, O.; Winston, B.; Lindsay, R. Burn wound infections. Clin. Microbiol. Rev., 2006, 19(2), 403-434.
[http://dx.doi.org/10.1128/CMR.19.2.403-434.2006] [PMID: 16614255]
[44]
Conil, J.M.; Georges, B.; Breden, A.; Segonds, C.; Lavit, M.; Seguin, T.; Coley, N.; Samii, K.; Chabanon, G.; Houin, G.; Saivin, S. Increased amikacin dosage requirements in burn patients receiving a once-daily regimen. Int. J. Antimicrob. Agents, 2006, 28(3), 226-230.
[http://dx.doi.org/10.1016/j.ijantimicag.2006.04.015] [PMID: 16908121]
[45]
Kiser, T.H.; Hoody, D.W.; Obritsch, M.D.; Wegzyn, C.O.; Bauling, P.C.; Fish, D.N. Levofloxacin pharmacokinetics and pharmacodynamics in patients with severe burn injury. Antimicrob. Agents Chemother., 2006, 50(6), 1937-1945.
[http://dx.doi.org/10.1128/AAC.01466-05] [PMID: 16723549]
[46]
Mohr, J.F., III; Ostrosky-Zeichner, L.; Wainright, D.J.; Parks, D.H.; Hollenbeck, T.C.; Ericsson, C.D. Pharmacokinetic evaluation of single-dose intravenous daptomycin in patients with thermal burn injury. Antimicrob. Agents Chemother., 2008, 52(5), 1891-1893.
[http://dx.doi.org/10.1128/AAC.01321-07] [PMID: 18299410]
[47]
Craig, W.A. Does the dose matter? Clin. Infect. Dis., 2001, 33(Suppl. 3), S233-s237.
[http://dx.doi.org/10.1086/321854]
[48]
Guggenheim, M.; Zbinden, R.; Handschin, A.E.; Gohritz, A.; Altintas, M.A.; Giovanoli, P. Changes in bacterial isolates from burn wounds and their antibiograms: a 20-year study (1986-2005). Burns, 2009, 35(4), 553-560.
[http://dx.doi.org/10.1016/j.burns.2008.09.004] [PMID: 19167827]
[49]
Castiglioni, A. A History of Medicine, 1st ed; Routledge: London, England, 2019.
[http://dx.doi.org/10.4324/9780429019883]
[50]
Leroi-Gourhan, A. The flowers found with shanidar IV, a neanderthal burial in Iraq. Science, 1975, 190(4214), 562-564.
[http://dx.doi.org/10.1126/science.190.4214.562]
[51]
Govindachari, T.R.; Suresh, G.; Gopalakrishnan, G.; Banumathy, B.; Masilamani, S. Identification of antifungal compounds from the seed oil ofAzadirachta Indica. Phytoparasitica, 1998, 26(2), 109-116.
[http://dx.doi.org/10.1007/BF02980677]
[52]
Tanwar, A.; Thakur, P.; Chawla, R.; Ansari, M.M.; Chakotiya, A.S.; Gusain, S.; Goel, R.; Arora, R.; Sharma, R.K.; Khan, H.A. Curative remedies for rheumatoid arthritis: herbal informatics approach for rational based selection of natural plant products. Indian J. Tradit. Knowl., 2017, 16(1), 128-133.
[53]
Ali, A. textbook of pharmacognosy; publication and information directorateNew Delhi, 1993, p. 381-384. Available from: http://www.sciepub.com/reference/38183
[54]
Hossain, M.A.; Shah, M.D.; Sakari, M. Gas chromatography-mass spectrometry analysis of various organic extracts of Merremia borneensis from Sabah. Asian Pac. J. Trop. Med., 2011, 4(8), 637-641.
[http://dx.doi.org/10.1016/S1995-7645(11)60162-4] [PMID: 21914542]
[55]
Purohit, A.P.; Kokate, C.K.; Gokhale, S.B. Prakashan, Nirali , Eds.; A Text Book Of Pharmacognosy; BookGanga.com, 2021. Available from: https://www.bookganga.com/eBooks/Books/details/4928486951473462741?BookName=A-Text-Book-Of-Pharmacognosy [cited 2021 Jul 12].
[56]
Bwala, D.G.; Elisha, I.L.; Habu, K.A.; Dogonyaro, B.B.; Kaikabo, A.A. Management of surgical wounds using crude neem oil in one year old Ram: A successful report. Available from: https://academicjournals.org/journal/JVMAH/article-full-text-pdf/923FBE73626 [cited 2021 Jul 12].
[57]
Osunwoke, E.A.; Olotu, E.J.; Allison, T.A.; Onyekwere, J.C. The wound healing effects of aqueous leave extracts of Azadirachta Indica on wistar rats. J. Nat. Sci. Res., 2013, 3(6), 181-186.
[58]
Nagesh, H.; Basavanna, P.; Kishore, M. Evaluation of wound healing activity of ethanolic extract of Azadirachta indica leaves on incision and excision wound models in Wister albino rats. Int. J. Basic Clin. Pharmacol., 2015, 4(6), 1178-1182.
[http://dx.doi.org/10.18203/2319-2003.ijbcp20151354]
[59]
Maan, P.; Yadav, K.S.; Yadav, N.P. Wound healing activity of azadirachta indica a. juss stem bark in mice. Pharmacogn. Mag., 2017, 13(Suppl. 2), S316-S320.
[http://dx.doi.org/10.4103/0973-1296.210163]
[60]
Hedberg, I.; Hedberg, O.; Madati, P.J.; Mshigeni, K.E.; Mshiu, E.N.; Samuelsson, G. Inventory of plants used in traditional medicine in Tanzania. II. Plants of the families Dilleniaceae--Opiliaceae. J. Ethnopharmacol., 1983, 9(1), 105-127.
[http://dx.doi.org/10.1016/0378-8741(83)90030-2] [PMID: 6668952]
[61]
Shinwari, M.I.; Khan, M.A. Folk use of medicinal herbs of Margalla Hills National Park, Islamabad. J. Ethnopharmacol., 2000, 69(1), 45-56.
[http://dx.doi.org/10.1016/S0378-8741(99)00135-X] [PMID: 10661883]
[62]
Abdelgadir, H.A.; Van Staden, J. Ethnobotany, ethnopharmacology and toxicity of Jatropha curcas L. (Euphorbiaceae): A review. S. Afr. J. Bot., 2013, 88, 204-218.
[http://dx.doi.org/10.1016/j.sajb.2013.07.021]
[63]
Esimone, C.; Nworu, C.; Jackson, C. Cutaneous wound healing activity of a herbal ointment containing the leaf extract of Jatropha curcas L. (Euphorbiaceae). 2008. Available from: https://www.semanticscholar.org/paper/1b3aafcdc71c3f6e07775a1fae70698986836083
[64]
Shetty, S.; Udupa, S.L.; Udupa, A.L.; Vollala, V.R. Wound healing activities of bark extract of Jatropha curcas Linn in albino rats. Saudi Med. J., 2006, 27(10), 1473-1476.
[PMID: 17013466]
[65]
Lambole, V.; Kumar, U. Effect of Moringa oleifera Lam. on normal and dexamethasone suppressed wound healing. Asian Pac. J. Trop. Biomed., 2012, 2(1), S219-S223.
[http://dx.doi.org/10.1016/S2221-1691(12)60163-4]
[66]
Gothai, S.; Arulselvan, P.; Tan, W.S.; Fakurazi, S. Wound healing properties of ethyl acetate fraction of Moringa oleifera in normal human dermal fibroblasts. J. Intercult. Ethnopharmacol., 2016, 5(1), 1-6.
[http://dx.doi.org/10.5455/jice.20160201055629]
[67]
Prevalence of dietary supplements and ayurvedic medicines’ intake by patients taking prescribed allopathic medicines at Lucknow. 2012. Available from: https://ijpsr.com/bft-article/prevalence-of-dietary-supplements-and-ayurvedic-medicines-intake-by-patients-taking-prescribed-allopathic-medicines-at-lucknow/?view=fulltext [cited 2021 Jul 12].
[68]
Matysik, G.; Wójciak-Kosior, M.; Paduch, R. The influence of Calendulae officinalis flos extracts on cell cultures, and the chromatographic analysis of extracts. J. Pharm. Biomed. Anal., 2005, 38(2), 285-292.
[http://dx.doi.org/10.1016/j.jpba.2004.12.034] [PMID: 15925220]
[69]
Kishimoto, S.; Maoka, T.; Sumitomo, K.; Ohmiya, A. Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci. Biotechnol. Biochem., 2005, 69(11), 2122-2128.
[http://dx.doi.org/10.1271/bbb.69.2122] [PMID: 16306694]
[70]
Chandran, P.K.; Kuttan, R. Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns. J. Clin. Biochem. Nutr., 2008, 43(2), 58-64.
[http://dx.doi.org/10.3164/jcbn.2008043] [PMID: 18818737]
[71]
Leila, M.L.P.; Ruy de Souza, L.J.; Leonice, M.F.T.; Vinaud, M.C.; Realino de Paula, J.; Paulo, N.M. Wound healing and anti-inflammatory effect in animal models of calendula officinalis L. growing in Brazil. Evid. Based Complement. Alternat. Med., 2012, 2012, 375671.
[72]
Ji, K.; Fang, L.; Zhao, H.; Li, Q.; Shi, Y.; Xu, C.; Wang, Y.; Du, L.; Wang, J.; Liu, Q. Ginger oleoresin alleviated γ-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 1480294.
[http://dx.doi.org/10.1155/2017/1480294] [PMID: 29181121]
[73]
Schadich, E.; Hlaváč, J.; Volná, T.; Varanasi, L.; Hajdúch, M.; Džubák, P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. BioMed Res. Int., 2016, 2016, 2173275.
[http://dx.doi.org/10.1155/2016/2173275] [PMID: 26942188]
[74]
Rahayu, K.I.N.; Suharto, I.P.S.; Etika, A.N.; Nurseskasatmata, S.E. The Effect of Ginger Extract (Zingiber Officinale Roscoe) on the Number of Neutrophil Cells, Fibroblast and Epithelialization on Incision Wound. J. Phys. Conf. Ser., 2020, 1569(3), 032063.
[http://dx.doi.org/10.1088/1742-6596/1569/3/032063]
[75]
Nwofia, G.E.; Ojimelukwe, P.; Eji, C. Chemical composition of leaves, fruit pulp and seeds in some Carica papaya (L) morphotypes. 2012. Available from: https://www.semanticscholar.org/paper/0c542583f5e20b9f1786d92023c823962f2615f8 [cited 2021 Jul 12].
[76]
Bennett, R.N.; Kiddle, G.; Wallsgrove, R.M. Biosynthesis of benzylglucosinolate, cyanogenic glucosides and phenylpropanoids in Carica papaya. Phytochemistry, 1997, 45(1), 59-66.
[http://dx.doi.org/10.1016/S0031-9422(96)00787-X]
[77]
Dr. Duke’s Phytochemical and Ethnobotanical Databases at NAL. Usda.gov, Available from: https://phytochem.nal.usda.gov/phytochem/search [Cited 2021 Jul 12].
[78]
Ikram, E.H.K.; Stanley, R.; Netzel, M.; Fanning, K. Phytochemicals of papaya and its traditional health and culinary uses – A review. J. Food Compos. Anal., 2015, 41, 201-211.
[http://dx.doi.org/10.1016/j.jfca.2015.02.010]
[79]
Rivera-Pastrana, D.M.; Yahia, E.M.; González-Aguilar, G.A. Phenolic and carotenoid profiles of papaya fruit (Carica papaya L.) and their contents under low temperature storage. J. Sci. Food Agric., 2010, 90(14), 2358-2365.
[http://dx.doi.org/10.1002/jsfa.4092] [PMID: 20632382]
[80]
Thiyagarajan, S.; Lydia, E.; Riyazudin, M.; John, S. Investigation on the phytochemicals present in the fruit peel of Carica papaya and evaluation of its antioxidant properties. Int. J. Health Allied Sci., 2016, 5(4), 247.
[http://dx.doi.org/10.4103/2278-344X.194127]
[81]
Mbah-omeje, K.N.; Ugwu, C.C.; Ezugwu, I.R.; Iloputaife, E.J. Antimicrobial and phytochemical studies of Carica papaya leaves against Escherichia coli and staphylococcus aureus. World J. Pharm. Pharm. Sci., 2018, 7, 180-189.
[82]
Gomes, M.T.R.; Mello, V.J.; Rodrigues, K.C.; Bemquerer, M.P.; Lopes, M.T.P.; Faça, V.M.; Salas, C.E. Isolation of two plant proteinases in latex from Carica candamarcensis acting as mitogens for mammalian cells. Planta Med., 2005, 71(3), 244-248.
[http://dx.doi.org/10.1055/s-2005-837824] [PMID: 15770545]
[83]
Hakim, R.F. Fakhrurrazi, Dinni. Effect of Carica papaya extract toward incised wound healing process in mice (Mus musculus) clinically and histologically. Evid. Based Complement. Alternat. Med., 2019, 2019, 8306519.
[http://dx.doi.org/10.1155/2019/8306519] [PMID: 31827564]
[84]
Sumpio, B.E.; Cordova, A.C.; Berke-Schlessel, D.W.; Qin, F.; Chen, Q.H. Green tea, the “Asian paradox,” and cardiovascular disease. J. Am. Coll. Surg., 2006, 202(5), 813-825.
[http://dx.doi.org/10.1016/j.jamcollsurg.2006.01.018] [PMID: 16648021]
[85]
Hajiaghaalipour, F.; Kanthimathi, M.S.; Abdulla, M.A.; Sanusi, J. The effect of Camellia sinensis on wound healing potential in an animal model. Evid. Based Complement. Alternat. Med., 2013, 2013, 386734.
[http://dx.doi.org/10.1155/2013/386734] [PMID: 23864889]
[86]
Woollard, A.C.; Tatham, K.C.; Barker, S. The influence of essential oils on the process of wound healing: a review of the current evidence. J. Wound Care, 2007, 16(6), 255-257.
[http://dx.doi.org/10.12968/jowc.2007.16.6.27064] [PMID: 17722522]
[87]
Vakilian, K.; Atarha, M.; Bekhradi, R.; Chaman, R. Healing advantages of lavender essential oil during episiotomy recovery: a clinical trial. Complement. Ther. Clin. Pract., 2011, 17(1), 50-53.
[http://dx.doi.org/10.1016/j.ctcp.2010.05.006] [PMID: 21168115]
[88]
Koca Kutlu, A.; Ceçen, D.; Gürgen, S.G.; Sayın, O.; Cetin, F. A comparison study of growth factor expression following treatment with transcutaneous electrical nerve stimulation, saline solution, povidone-iodine, and lavender oil in wounds healing. Evid. Based Complement. Alternat. Med., 2013, 2013, 361832.
[http://dx.doi.org/10.1155/2013/361832] [PMID: 23861704]
[89]
Mori, H-M.; Kawanami, H.; Kawahata, H.; Aoki, M. Wound healing potential of lavender oil by acceleration of granulation and wound contraction through induction of TGF-β in a rat model. BMC Complement. Altern. Med., 2016, 16(1), 144.
[http://dx.doi.org/10.1186/s12906-016-1128-7] [PMID: 27229681]
[90]
Prasad, V.; Jain, V.; Girish, D.; Dorle, A.K. Wound-healing property of Momordica charantia L. fruit powder. J. Herb. Pharmacother., 2006, 6(3-4), 105-115.
[http://dx.doi.org/10.1080/J157v06n03_05] [PMID: 17317652]
[91]
Pişkin, A.; Altunkaynak, B.Z.; Tümentemur, G.; Kaplan, S.; Yazıcı, O.B.; Hökelek, M. The beneficial effects of Momordica charantia (bitter gourd) on wound healing of rabbit skin. J. Dermatolog. Treat., 2014, 25(4), 350-357.
[http://dx.doi.org/10.3109/09546634.2012.713459] [PMID: 22812507]
[92]
Henrotin, Y.; Priem, F.; Mobasheri, A. Curcumin: a new paradigm and therapeutic opportunity for the treatment of osteoarthritis: curcumin for osteoarthritis management. Springerplus, 2013, 2(1), 56.
[http://dx.doi.org/10.1186/2193-1801-2-56] [PMID: 23487030]
[93]
Nih.gov. Available from: https://pubmed.ncbi.nlm.nih.gov/21642934/ [cited 2021 Jul 12].
[94]
Akbik, D.; Ghadiri, M.; Chrzanowski, W.; Rohanizadeh, R. Curcumin as a wound healing agent. Life Sci., 2014, 116(1), 1-7.
[http://dx.doi.org/10.1016/j.lfs.2014.08.016] [PMID: 25200875]
[95]
Ktari, N.; Trabelsi, I.; Bardaa, S.; Triki, M.; Bkhairia, I.; Ben Slama-Ben Salem, R.; Nasri, M.; Ben Salah, R. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds. Int. J. Biol. Macromol., 2017, 95, 625-634.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.091] [PMID: 27914964]
[96]
Zhang, Y.J.; Tanaka, T.; Iwamoto, Y.; Yang, C.R.; Kouno, I. Novel norsesquiterpenoids from the roots of Phyllanthus emblica. J. Nat. Prod., 2000, 63(11), 1507-1510.
[http://dx.doi.org/10.1021/np000135i] [PMID: 11087593]
[97]
Sumitra, M.; Manikandan, P.; Gayathri, V.S.; Mahendran, P.; Suguna, L. Emblica officinalis exerts wound healing action through up-regulation of collagen and extracellular signal-regulated kinases (ERK1/2). Wound Repair Regen., 2009, 17(1), 99-107.
[http://dx.doi.org/10.1111/j.1524-475X.2008.00446.x] [PMID: 19152656]
[98]
Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules, 2018, 24(1), 119.
[http://dx.doi.org/10.3390/molecules24010119] [PMID: 30598012]
[99]
Shenoy, C.; Patil, M.B.; Kumar, R.; Patil, S. Preliminary phytochemical investigation and wound healing activity of allium cepa linn (Liliaceae) 2021. Available from: https://innovareacademics. in/journal/ijpps/Vol1Issue2/208.pdf (accessed Nov 14, 2021).
[100]
Boudreau, M.D.; Beland, F.A. An evaluation of the biological and toxicological properties of Aloe barbadensis (miller), Aloe vera. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2006, 24(1), 103-154.
[http://dx.doi.org/10.1080/10590500600614303] [PMID: 16690538]
[101]
West, D.P.; Zhu, Y.F. Evaluation of aloe vera gel gloves in the treatment of dry skin associated with occupational exposure. Am. J. Infect. Control, 2003, 31(1), 40-42.
[http://dx.doi.org/10.1067/mic.2003.12] [PMID: 12548256]
[102]
Dat, A.D.; Poon, F.; Pham, K.B.T.; Doust, J. Aloe vera for treating acute and chronic wounds. Cochrane Database Syst. Rev., 2012, (2), CD008762.
[http://dx.doi.org/10.1002/14651858.CD008762.pub2] [PMID: 22336851]
[103]
Sahu, P.K.; Giri, D.D.; Singh, R.; Pandey, P.; Gupta, S.; Shrivastava, A.K.; Kumar, A.; Pandey, K.D. Therapeutic and medicinal uses of aloe vera: A review. Pharmacol. Pharm., 2013, 04(08), 599-610.
[http://dx.doi.org/10.4236/pp.2013.48086]
[104]
Ahmad, T.; Cawood, M.; Iqbal, Q.; Ariño, A.; Batool, A.; Tariq, R.M.S.; Azam, M.; Akhtar, S. Phytochemicals in Daucus carota and Their Health Benefits-Review Article. Foods, 2019, 8(9), 424.
[http://dx.doi.org/10.3390/foods8090424] [PMID: 31546950]
[105]
Hashemi, S.A.; Madani, S.A.; Abediankenari, S. The review on properties of aloe vera in healing of cutaneous wounds. BioMed Res. Int., 2015, 2015, 714216.
[http://dx.doi.org/10.1155/2015/714216] [PMID: 26090436]
[106]
Patil, M.V.K.; Kandhare, A.D.; Bhise, S.D. Pharmacological evaluation of ethanolic extract of Daucus carota Linn root formulated cream on wound healing using excision and incision wound model. Asian Pac. J. Trop. Biomed., 2012, 2(2), S646-S655.
[http://dx.doi.org/10.1016/S2221-1691(12)60290-1]
[107]
Tanwar, A.; Chawla, R.; Basu, M.; Arora, R.; Khan, H.A. FRI0032 curative effect of camellia sinensis (CS) against opportunistic infection in vulnerable animal model of rheumatoid arthritis. Ann. Rheum. Dis., 2017, 76, 491.
[108]
Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res., 2011, 2(1), 3-8.
[http://dx.doi.org/10.4103/2231-4040.79796] [PMID: 22171285]
[109]
Primasari, A.; Raja Sinulingga, E. Differences of wound healing in the buccal part and oral mucosa labial after giving lemongrass extracts (Cymbopogon ciratus). Int. J. Homeopathy Nat. Med., 2019, 5(1), 36.
[110]
Amabye, T.G. Phytochemical andantimicrobial potentials leaves extract of eucalyptus globulus oil from maichew tigray ethiopia. Int. J. Complement. Altern. Med., 2016, 3(1), 62.
[111]
Tanwar, A.; Zaidi, A.A.; Kaur, H.; Rana, N.; Chawla, R.; Basu, M.; Arora, R.; Khan, H.A. In silico bioprospection analysis for identification of herbal compound targeting Clostridium difficile. Indian J. Tradit. Knowl., 2019, 18(4), 655-661.
[112]
Tanwar, A.; Thakur, P.; Chawla, R.; Jaiswal, S.; Chakotiya, A.S.; Goel, R.; Sharma, R.K.; Khan, H.A.; Arora, R. Targeting antibiotic resistant salmonella enterica: bio-matrix based selection and bioactivity prediction of potential nutraceuticals. Biochem. Anal. Biochem., 2015, 4(217), 2161-1009.
[113]
Wardhan, R.; Tanwar, A.; Dutta, P.; Jha, I.; Sharma, R.; Ali Zaidi, A.; Chawla, R.; Arora, R.; Khan, H.A. Herbal Informatics: A Unique Model to Identify the Anti-Cancerous Agents for Targeting Lung Cancer. Preprints, 20202020, 120132.
[http://dx.doi.org/10.20944/preprints202012.0132.v1]
[114]
Balkrishna, A.; Thakur, P.; Singh, S.; Singh, N.; Tanwar, A.; Sharma, R.K. In silico screening for investigating the potential activity of phytoligands against SARS-CoV-2. JoLS. J. Life Sci., 2021, 3(1), 18-39.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy