Review Article

七元杂环衍生物抗肿瘤、抗菌、抗炎活性的研究进展

卷 29, 期 30, 2022

发表于: 21 June, 2022

页: [5076 - 5096] 页: 21

弟呕挨: 10.2174/0929867329666220328123953

价格: $65

摘要

七元杂环化合物由于其独特的化学结构而成为重要的药物支架。它们广泛存在于天然产物中,并表现出多种生物活性。在过去的30年中,它们已被普遍用于中枢神经系统药物。在过去的十年中,已经对其活动进行了许多研究,包括抗肿瘤,抗菌等。本文综述了近十年来不同种类含氮、氧、硫杂原子、抗肿瘤、抗腐、抗炎活性的七元杂环化合物的研究进展,有望有利于相应适应症新药的开发设计。

关键词: 七元环,杂环化合物,生物活性,抗肿瘤,防腐,抗炎。

[1]
Tandon, R.; Singh, I.; Luxami, V.; Tandon, N.; Paul, K. Recent advances and developments of in vitro evaluation of heterocyclic moie-ties on cancer cell lines. Chem. Rec., 2019, 19(2-3), 362-393.
[http://dx.doi.org/10.1002/tcr.201800024] [PMID: 29943894]
[2]
Hou, R.H.; Scaife, J.; Freeman, C.; Langley, R.W.; Szabadi, E.; Bradshaw, C.M. Relationship between sedation and pupillary function: Comparison of diazepam and diphenhydramine. Br. J. Clin. Pharmacol., 2006, 61(6), 752-760.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02632.x] [PMID: 16722841]
[3]
Kosuge, K.; Nishimoto, M.; Kimura, M.; Umemura, K.; Nakashima, M.; Ohashi, K. Enhanced effect of triazolam with diltiazem. Br. J. Clin. Pharmacol., 1997, 43(4), 367-372.
[http://dx.doi.org/10.1046/j.1365-2125.1997.00580.x] [PMID: 9146848]
[4]
Macnab, M.; Mallows, S. Safety profile of benazepril in essential hypertension. Clin. Cardiol., 1991, 14(4S), 33-37.
[http://dx.doi.org/10.1002/clc.4960141805]
[5]
Bai, Y.; Wu, F.; Liu, C.; Guo, J.; Fu, P.; Li, W.; Xing, B. Interaction between carbamazepine and humic substances: A fluorescence spectroscopy study. Environ. Toxicol. Chem., 2008, 27(1), 95-102.
[http://dx.doi.org/10.1897/07-013.1] [PMID: 18092851]
[6]
King, F.D. Azabicyclic and azatricyclic derivatives, process and intermediates for their preparation and pharmaceutical compositions containing them. Patent WO1992012149,, 1992.
[7]
Gaster, L.M.; Wyman, P.A. Biphenylcarboxamides useful as 5-HT1D antagonists. Patent WO1995030675 1995.
[8]
Shah, J.H.; Hindupur, R.M.; Pati, H.N. Pharmacological and biological activities of benzazepines: An overview. Curr. Bioact. Compd., 2015, 170-188.
[http://dx.doi.org/10.2174/1573407211666150910202200]
[9]
Verma, S.; Kumar, S. A mini review on synthetic approaches and biological activities of benzodiazepines. Mini Rev. Org. Chem., 2017, 14(6), 453-468.
[http://dx.doi.org/10.2174/1570193X14666170511121927]
[10]
Mert, B.D.; Elattar, K.M. Seven-membered rings with three heteroatoms: Chemistry of 1,2,5- and 1,4,5- thiadiazepines. Curr. Org. Chem., 2018, 22(4), 386-410.
[http://dx.doi.org/10.2174/1385272821666170920163512]
[11]
Kaur, M.; Garg, S.; Malhi, D.S.; Sohal, H.S. A review on synthesis, reactions and biological properties of seven membered heterocyclic compounds: Azepine, azepane, azepinone. Curr. Org. Chem., 2021, 25(4), 449-506.
[http://dx.doi.org/10.2174/1385272825999210104222338]
[12]
Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem., 2017, 60(11), 4533-4558.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01761] [PMID: 28195723]
[13]
Mirguet, O.; Gosmini, R.; Toum, J.; Clément, C.A.; Barnathan, M.; Brusq, J.M.; Mordaunt, J.E.; Grimes, R.M.; Crowe, M.; Pineau, O.; Ajakane, M.; Daugan, A.; Jeffrey, P.; Cutler, L.; Haynes, A.C.; Smithers, N.N.; Chung, C.W.; Bamborough, P.; Uings, I.J.; Lewis, A.; Witherington, J.; Parr, N.; Prinjha, R.K.; Nicodème, E. Discovery of epigenetic regulator I-BET762: Lead optimization to afford a clini-cal candidate inhibitor of the BET bromodomains. J. Med. Chem., 2013, 56(19), 7501-7515.
[http://dx.doi.org/10.1021/jm401088k] [PMID: 24015967]
[14]
Coudé, M.M.; Braun, T.; Berrou, J.; Dupont, M.; Bertrand, S.; Masse, A.; Raffoux, E.; Itzykson, R.; Delord, M.; Riveiro, M.E.; Herait, P.; Baruchel, A.; Dombret, H.; Gardin, C. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget, 2015, 6(19), 17698-17712.
[http://dx.doi.org/10.18632/oncotarget.4131] [PMID: 25989842]
[15]
Siu, K.T.; Eda, H.; Santo, L.; Ramachandran, J.; Koulnis, M.; Mertz, J.; Sims, R.J.; Cooper, M.; Raje, N.S. Effect of the BET inhibitor, Cpi-0610, alone and in combination with lenalidomide in multiple myeloma. Blood, 2015, 126(23), 4255-4255.
[http://dx.doi.org/10.1182/blood.V126.23.4255.4255]
[16]
Shapiro, G.I.; Dowlati, A.; LoRusso, P.M.; Eder, J.P.; Anderson, A.; Do, K.T.; Kagey, M.H.; Sirard, C.; Bradner, J.E.; Landau, S.B. Abstract A49: Clinically efficacy of the BET bromodomain inhibitor TEN-010 in an open-label substudy with patients with documented NUT-midline carcinoma (NMC). Mol. Cancer Ther., 2015, 14(12), A49-A49.
[17]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Phil-pott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[18]
da Motta, L.L.; Ledaki, I.; Purshouse, K.; Haider, S.; De Bastiani, M.A.; Baban, D.; Morotti, M.; Steers, G.; Wigfield, S.; Bridges, E.; Li, J.L.; Knapp, S.; Ebner, D.; Klamt, F.; Harris, A.L.; McIntyre, A. The BET inhibitor JQ1 selectively impairs tumour response to hy-poxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene, 2017, 36(1), 122-132.
[http://dx.doi.org/10.1038/onc.2016.184] [PMID: 27292261]
[19]
Jang, J.E.; Eom, J.I.; Jeung, H.K.; Cheong, J.W.; Lee, J.Y.; Kim, J.S.; Min, Y.H. AMPK-ULK1-mediated autophagy confers resistance to BET inhibitor JQ1 in acute myeloid leukemia stem cells. Clin. Cancer Res., 2017, 23(11), 2781-2794.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1903] [PMID: 27864418]
[20]
Yokoyama, Y.; Zhu, H.; Lee, J.H.; Kossenkov, A.V.; Wu, S.Y.; Wickramasinghe, J.M.; Yin, X.; Palozola, K.C.; Gardini, A.; Showe, L.C.; Zaret, K.S.; Liu, Q.; Speicher, D.; Conejo-Garcia, J.R.; Bradner, J.E.; Zhang, Z.; Sood, A.K.; Ordog, T.; Bitler, B.G.; Zhang, R. BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res., 2016, 76(21), 6320-6330.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0854] [PMID: 27803105]
[21]
Nicodeme, E.; Jeffrey, K.L.; Schaefer, U.; Beinke, S.; Dewell, S.; Chung, C.W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.; White, J.; Kirilovsky, J.; Rice, C.M.; Lora, J.M.; Prinjha, R.K.; Lee, K.; Tarakhovsky, A. Suppression of inflammation by a synthetic histone mimic. Nature, 2010, 468(7327), 1119-1123.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[22]
Conway, S.J.; Gardiner, J.; Grove, S.J.A.; Johns, M.K.; Lim, Z.Y.; Painter, G.F.; Robinson, D.E.J.E.; Schieber, C.; Thuring, J.W.; Wong, L.S.M.; Yin, M.X.; Burgess, A.W.; Catimel, B.; Hawkins, P.T.; Ktistakis, N.T.; Stephens, L.R.; Holmes, A.B. Synthesis and bi-ological evaluation of phosphatidylinositol phosphate affinity probes. Org. Biomol. Chem., 2010, 8(1), 66-76.
[http://dx.doi.org/10.1039/B913399B] [PMID: 20024134]
[23]
Krugmann, S.; Anderson, K.E.; Ridley, S.H.; Risso, N.; McGregor, A.; Coadwell, J.; Davidson, K.; Eguinoa, A.; Ellson, C.D.; Lipp, P.; Manifava, M.; Ktistakis, N.; Painter, G.; Thuring, J.W.; Cooper, M.A.; Lim, Z.Y.; Holmes, A.B.; Dove, S.K.; Michell, R.H.; Grewal, A.; Nazarian, A.; Erdjument-Bromage, H.; Tempst, P.; Stephens, L.R.; Hawkins, P.T. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell, 2002, 9(1), 95-108.
[http://dx.doi.org/10.1016/S1097-2765(02)00434-3] [PMID: 11804589]
[24]
Chung, C.W.; Coste, H.; White, J.H.; Mirguet, O.; Wilde, J.; Gosmini, R.L.; Delves, C.; Magny, S.M.; Woodward, R.; Hughes, S.A.; Boursier, E.V.; Flynn, H.; Bouillot, A.M.; Bamborough, P.; Brusq, J.M.G.; Gellibert, F.J.; Jones, E.J.; Riou, A.M.; Homes, P.; Martin, S.L.; Uings, I.J.; Toum, J.; Clément, C.A.; Boullay, A.B.; Grimley, R.L.; Blandel, F.M.; Prinjha, R.K.; Lee, K.; Kirilovsky, J.; Nic-odeme, E. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem., 2011, 54(11), 3827-3838.
[http://dx.doi.org/10.1021/jm200108t] [PMID: 21568322]
[25]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[26]
Mertz, J.A.; Conery, A.R.; Bryant, B.M.; Sandy, P.; Balasubramanian, S.; Mele, D.A.; Bergeron, L.; Sims, R.J. III Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16669-16674.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[27]
Gehling, V.S.; Hewitt, M.C.; Vaswani, R.G.; Leblanc, Y.; Côté, A.; Nasveschuk, C.G.; Taylor, A.M.; Harmange, J.C.; Audia, J.E.; Pardo, E.; Joshi, S.; Sandy, P.; Mertz, J.A.; Sims, R.J., III; Bergeron, L.; Bryant, B.M.; Bellon, S.; Poy, F.; Jayaram, H.; Sankarana-rayanan, R.; Yellapantula, S.; Bangalore Srinivasamurthy, N.; Birudukota, S.; Albrecht, B.K. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med. Chem. Lett., 2013, 4(9), 835-840.
[http://dx.doi.org/10.1021/ml4001485] [PMID: 24900758]
[28]
Albrecht, B.K.; Gehling, V.S.; Hewitt, M.C.; Vaswani, R.G.; Côté, A.; Leblanc, Y.; Nasveschuk, C.G.; Bellon, S.; Bergeron, L.; Camp-bell, R.; Cantone, N.; Cooper, M.R.; Cummings, R.T.; Jayaram, H.; Joshi, S.; Mertz, J.A.; Neiss, A.; Normant, E.; O’Meara, M.; Pardo, E.; Poy, F.; Sandy, P.; Supko, J.; Sims, R.J., III; Harmange, J.C.; Taylor, A.M.; Audia, J.E. Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials. J. Med. Chem., 2016, 59(4), 1330-1339.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01882] [PMID: 26815195]
[29]
Hewitt, M.C.; Leblanc, Y.; Gehling, V.S.; Vaswani, R.G.; Côté, A.; Nasveschuk, C.G.; Taylor, A.M.; Harmange, J.C.; Audia, J.E.; Pardo, E.; Cummings, R.; Joshi, S.; Sandy, P.; Mertz, J.A.; Sims, R.J., III; Bergeron, L.; Bryant, B.M.; Bellon, S.; Poy, F.; Jayaram, H.; Tang, Y.; Albrecht, B.K. Development of methyl isoxazoleazepines as inhibitors of BET. Bioorg. Med. Chem. Lett., 2015, 25(9), 1842-1848.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.045] [PMID: 25851940]
[30]
Filippakopoulos, P.; Picaud, S.; Fedorov, O.; Keller, M.; Wrobel, M.; Morgenstern, O.; Bracher, F.; Knapp, S. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem., 2012, 20(6), 1878-1886.
[http://dx.doi.org/10.1016/j.bmc.2011.10.080] [PMID: 22137933]
[31]
Endo, J.; Hikawa, H.; Hamada, M.; Ishibuchi, S.; Fujie, N.; Sugiyama, N.; Tanaka, M.; Kobayashi, H.; Sugahara, K.; Oshita, K.; Iwata, K.; Ooike, S.; Murata, M.; Sumichika, H.; Chiba, K.; Adachi, K. A phenotypic drug discovery study on thienodiazepine derivatives as inhibitors of T cell proliferation induced by CD28 co-stimulation leads to the discovery of a first bromodomain inhibitor. Bioorg. Med. Chem. Lett., 2016, 26(5), 1365-1370.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.084] [PMID: 26869194]
[32]
Schmees, N.; Buchmann, B.; Haendler, B.; Neuhaus, R.; Lejeune, P.; Kruger, M.; Ernesto, F.A.; Künzer, H.; Rehwinkel, H. 4- substituted pyrrolo- and pyrazolo-diazepines. Patent WO2014128111 2014.
[33]
Vadivelu, S.; Rajagopal, S.; Chinnapattu, M.; Gondrala, P.K.; Sivanandhan, D.; Mulakala, C. Tricyclic fused derivatives of 1- (Cyclo)alkyl pyridin-2-one useful for the treatment of cancer. Patent WO2016157221 2016.
[34]
Liu, D.; Pratt, J.; Wang, L.; Hasvoid, L.A.; Bogdan, A. Bromodomain inhibitors. Patent US20140256710, 2014.
[35]
Li, J.; Wang, P.; Zhou, B.; Shi, J.; Liu, J.; Li, X.; Fan, L.; Zheng, Y.; Ouyang, L. Development of 4,5-dihydro-benzodiazepinone deriva-tives as a new chemical series of BRD4 inhibitors. Eur. J. Med. Chem., 2016, 121, 294-299.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.057] [PMID: 27266999]
[36]
Siegel, S.; Baurle, S.; Cleve, A.; Haendler, B.; Fernández-montalván, A.E.; Mönning, U.; Krause, S.; Lejeune, P.; Busemann, M.; Kuhnke, J. Bicyclo 2,3-benzodiazepines and spirocyclically substituted 2,3-benzodiazepines. Patent WO2012418067 2014.
[37]
Cipolla, L.; Araújo, A.C.; Airoldi, C.; Bini, D. Pyrrolo[2,1-c][1,4]benzodiazepine as a scaffold for the design and synthesis of anti-tumour drugs. Anticancer. Agents Med. Chem., 2009, 9(1), 1-31.
[http://dx.doi.org/10.2174/187152009787047743] [PMID: 19149479]
[38]
Hiller, B.M.; Marmion, D.J.; Gross, R.M.; Thompson, C.A.; Chavez, C.A.; Brundin, P.; Wakeman, D.R.; McMahon, C.W.; Kordower, J.H. Mitomycin-C treatment during differentiation of induced pluripotent stem cell-derived dopamine neurons reduces proliferation with-out compromising survival or function in;vivo. Stem Cells Transl. Med., 2021, 10(2), 278-290.
[http://dx.doi.org/10.1002/sctm.20-0014] [PMID: 32997443]
[39]
Liu, L.F.; Liu, L.F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 1989, 58(1), 351-375.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.002031] [PMID: 2549853]
[40]
Korman, S.; Tendler, M.D. Clinical investigation of cancer chemotherapeutic agents for neoplastic disease. J. New Drugs, 1965, 5(5), 275-285.
[http://dx.doi.org/10.1002/j.1552-4604.1965.tb00247.x] [PMID: 5887953]
[41]
Annor-Gyamfi, J.K.; Jarrett, J.M.; Osazee, J.O.; Bialonska, D.; Whitted, C.; Palau, V.E.; Shilabin, A.G. Synthesis and biological activity of fused tetracyclic Pyrrolo[2,1-c][1,4]benzodiazepines. Heliyon, 2018, 4(2), e00539.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00539] [PMID: 29560454]
[42]
Hartley, J.A.; Spanswick, V.J.; Brooks, N.; Clingen, P.H.; McHugh, P.J.; Hochhauser, D.; Pedley, R.B.; Kelland, L.R.; Alley, M.C.; Schultz, R.; Hollingshead, M.G.; Schweikart, K.M.; Tomaszewski, J.E.; Sausville, E.A.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: Part 1: Cellular pharmacology, in vitro and initial in vivo antitumor activity. Cancer Res., 2004, 64(18), 6693-6699.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2941] [PMID: 15374986]
[43]
Mieczkowski, A.; Psurski, M. Bagiski, M.; Bieszczad, B.; Mroczkowska, M.; Wilczek, M.; Czajkowska, J.; Trzybiski, D.; Woniak, K.; Wietrzyk, J. Novel (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6, 12(2H,11H)-dione derivatives: Selective inhibi-tion of MV-4-11 biphenotypic B myelomonocytic leukemia cells’ growth is accompanied by reactive oxygen species overproduction and apoptosis. Bioorg. Med. Chem. Lett., 2018, 28(4), 618-625.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.034] [PMID: 29395971]
[44]
Xie, M.; Ujjinamatada, R.K.; Sadowska, M.; Lapidus, R.G.; Edelman, M.J.; Hosmane, R.S.A. A novel, broad-spectrum anticancer com-pound containing the imidazo[4,5-e][1,3]diazepine ring system. Bioorg. Med. Chem. Lett., 2010, 20(15), 4386-4389.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.061] [PMID: 20594843]
[45]
Kondaskar, A.; Kondaskar, S.; Kumar, R.; Fishbein, J.C.; Muvarak, N.; Lapidus, R.G.; Sadowska, M.; Edelman, M.J.; Bol, G.M.; Vesuna, F.; Raman, V.; Hosmane, R.S. Novel, broad spectrum anti-cancer agents containing the tricyclic 5:7:5-fused diimidazodiazepine ring system. ACS Med. Chem. Lett., 2010, 2(3), 252-256.
[http://dx.doi.org/10.1021/ml100281b] [PMID: 21572541]
[46]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971]
[47]
Blangy, A.; Lane, H.A.; d’Hérin, P.; Harper, M.; Kress, M.; Nigg, E.A. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 1995, 83(7), 1159-1169.
[http://dx.doi.org/10.1016/0092-8674(95)90142-6] [PMID: 8548803]
[48]
May, R. Gene fishing: Novel actin regulators netted. Trends Cell Biol., 1998, 8(11), 435-435.
[http://dx.doi.org/10.1016/S0962-8924(98)01399-3]
[49]
Weaver, B.A.A.; Cleveland, D.W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 2005, 8(1), 7-12.
[http://dx.doi.org/10.1016/j.ccr.2005.06.011] [PMID: 16023594]
[50]
Wood, K.W.; Chua, P.; Sutton, D.; Jackson, J.R. Centromere-associated protein E: A motor that puts the brakes on the mitotic check-point. Clin. Cancer Res., 2008, 14(23), 7588-7592.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4443] [PMID: 19047083]
[51]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Ohno, H.; Nakamura, S.; Nakanishi, I.; Yamane, M.; Sawada, J.; Asai, A.; Fujii, N. Kinesin spin-dle protein inhibitors with diaryl amine scaffolds: Crystal packing analysis for improved aqueous solubility. ACS Med. Chem. Lett., 2014, 5(5), 566-571.
[http://dx.doi.org/10.1021/ml500016j] [PMID: 24900881]
[52]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Misu, R.; Ohno, H.; Sawada, J.; Asai, A.; Nakamura, S.; Nakanishi, I.; Fujii, N. Optimization of diaryl amine derivatives as kinesin spindle protein inhibitors. Bioorg. Med. Chem., 2014, 22(12), 3171-3179.
[http://dx.doi.org/10.1016/j.bmc.2014.04.008] [PMID: 24794744]
[53]
Budriesi, R.; Cosimelli, B.; Ioan, P.; Ugenti, M.P.; Carosati, E.; Frosini, M.; Fusi, F.; Spisani, R.; Saponara, S.; Cruciani, G.; Novellino, E.; Spinelli, D.; Chiarini, A. L-Type calcium channel blockers: From diltiazem to 1,2,4-oxadiazol-5-ones via thiazinooxadiazol-3-one de-rivatives. J. Med. Chem., 2009, 52(8), 2352-2362.
[http://dx.doi.org/10.1021/jm801351u] [PMID: 19323482]
[54]
López-Cara, L.C.; Conejo-García, A.; Marchal, J.A.; Macchione, G.; Cruz-López, O.; Boulaiz, H.; García, M.A.; Rodríguez-Serrano, F.; Ramírez, A.; Cativiela, C.; Jiménez, A.I.; García-Ruiz, J.M.; Choquesillo-Lazarte, D.; Aránega, A.; Campos, J.M. New (RS)-benzoxazepin-purines with antitumour activity: The chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzo-xazepin-3-yl]-9H-purine. Eur. J. Med. Chem., 2011, 46(1), 249-258.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.011] [PMID: 21126804]
[55]
Cruz-López, O.; Ramírez, A.; Navarro, S.A.; García, M.A.; Marchal, J.A.; Campos, J.M.; Conejo-García, A. 1-(Benzenesulfonyl)-1,5-dihydro-4,1-benzoxazepine as a new scaffold for the design of antitumor compounds. Future Med. Chem., 2017, 9(11), 1129-1140.
[http://dx.doi.org/10.4155/fmc-2017-0006] [PMID: 28722472]
[56]
Hassan, A.Y.; Sarg, M.T.; Bayoumi, A.H.; Kalaf, F.G.A. Design, synthesis, and anticancer activity of novel fused purine analogues. J. Heterocycl. Chem., 2017, 54(6), 3458-3470.
[http://dx.doi.org/10.1002/jhet.2969]
[57]
Ameta, K.L.; Rathore, N.S.; Kumar, B. Synthesis and in vitro anti-breast cancer activity of some novel 1,5-benzothiazepine derivatives. J. Serb. Chem. Soc., 2012, 77(6), 725-731.
[http://dx.doi.org/10.2298/JSC110715219A]
[58]
Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364.
[http://dx.doi.org/10.1517/17425247.2012.724676] [PMID: 22971222]
[59]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[60]
Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characteri-zation of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[61]
Theppawong, A.; Van de Walle, T.; Van Hecke, K.; Grootaert, C.; Van Camp, J.; D’hooghe, M. Synthesis of 1,4;thiazepane;based cur-cuminoids with promising anticancer activity. Chem. A Eur. J.i, 2019, 25, 12583-12600.
[http://dx.doi.org/10.1002/chem.201902549]
[62]
Wang, R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, 16(13), 1792-1798.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[63]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[64]
Zhong, G.; Chen, F.; Cheng, Y.; Tang, C.; Du, J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J. Hypertens., 2003, 21(10), 1879-1885.
[http://dx.doi.org/10.1097/00004872-200310000-00015] [PMID: 14508194]
[65]
Li, L.; Moore, P.K. Could hydrogen sulfide be the next blockbuster treatment for inflammatory disease? Expert Rev. Clin. Pharmacol., 2013, 6(6), 593-595.
[http://dx.doi.org/10.1586/17512433.2013.842126] [PMID: 24164607]
[66]
Li, L.; Bhatia, M.; Zhu, Y.Z.; Zhu, Y.C.; Ramnath, R.D.; Wang, Z.J.; Anuar, F.B.M.; Whiteman, M.; Salto-Tellez, M.; Moore, P.K. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J., 2005, 19(9), 1196-1198.
[http://dx.doi.org/10.1096/fj.04-3583fje] [PMID: 15863703]
[67]
Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y.M.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: A general property and evidence of a tissue type-independent effect. Biochem. Pharmacol., 2012, 83(6), 715-722.
[http://dx.doi.org/10.1016/j.bcp.2011.12.018] [PMID: 22222427]
[68]
Lee, Z.W.; Zhou, J.; Chen, C.S.; Zhao, Y.; Tan, C.H.; Li, L.; Moore, P.K.; Deng, L.W. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One, 2011, 6(6), e21077.
[http://dx.doi.org/10.1371/journal.pone.0021077] [PMID: 21701688]
[69]
Feng, W.; Novera, W.; Peh, K.; Neo, D.; Ramanujulu, P.M.; Moore, P.K.; Deng, L.W.; Dymock, B.W. Discovery of medium ring thio-phosphorus based heterocycles as antiproliferative agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 967-972.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.079] [PMID: 28082040]
[70]
Laufer, S.A.; Margutti, S. Isoxazolone based inhibitors of p38 MAP kinases. J. Med. Chem., 2008, 51(8), 2580-2584.
[http://dx.doi.org/10.1021/jm701343f] [PMID: 18373337]
[71]
Saidachary, G.; Veera Prasad, K.; Divya, D.; Singh, A.; Ramesh, U.; Sridhar, B.; China Raju, B. Convenient one-pot synthesis, anti-mycobacterial and anticancer activities of novel benzoxepinoisoxazolones and pyrazolones. Eur. J. Med. Chem., 2014, 76, 460-469.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.042] [PMID: 24607876]
[72]
Oliveira, M.; de Santana, L.L.B.; Serafim, J.C.; Santos, A.O.; Quintino, M.P.; Correia, J.T.M.; Damasceno, F.; Sabino, J.R.; Pires, T.R.C.; Coelho, P.L.C.; de Faria Lopes, G.P.; Ulrich, H.; Costa, S.L.; Cunha, S. Design, synthesis and cytotoxicity of the antitumor agent 1-azabicycles for chemoresistant glioblastoma cells. Invest. New Drugs, 2020, 38(5), 1257-1271.
[http://dx.doi.org/10.1007/s10637-019-00877-2] [PMID: 31838735]
[73]
Rowinsky, E.K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med., 1997, 48, 353-374.
[http://dx.doi.org/10.1146/annurev.med.48.1.353] [PMID: 9046968]
[74]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[75]
Sun, L.; Veith, J.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel. Bioorg. Med. Chem., 2010, 18(19), 7101-7112.
[http://dx.doi.org/10.1016/j.bmc.2010.07.069] [PMID: 20800500]
[76]
Wetwitayaklung, P.; Phaechamud, T.; Keokitichai, S. The antioxidant activity of caesalpinia sappan l. heartwood in various ages. Naresuan Univ. J. 2005, 13(2), 43-52.
[77]
Wang, Z.; Sun, J.B.; Qu, W.; Guan, F.Q.; Li, L.Z.; Liang, J.Y. Caesappin A and B, two novel protosappanins from Caesalpinia sappan L. Fitoterapia, 2014, 92, 280-284.
[http://dx.doi.org/10.1016/j.fitote.2013.12.004] [PMID: 24334102]
[78]
Xie, J.; Tian, J.; Su, L.; Huang, M.; Zhu, X.; Ye, F.; Wan, Y. Pyrrolo[2,3-c]azepine derivatives: A new class of potent protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(14), 4306-4309.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.052] [PMID: 21696953]
[79]
Pettit, G.R.; Numata, A.; Iwamoto, C.; Usami, Y.; Yamada, T.; Ohishi, H.; Cragg, G.M. Antineoplastic agents. 551. Isolation and struc-tures of bauhiniastatins 1-4 from Bauhinia purpurea. J. Nat. Prod., 2006, 69(3), 323-327.
[http://dx.doi.org/10.1021/np058075+] [PMID: 16562827]
[80]
Gao, H.; Yamasaki, E.F.; Chan, K.K.; Shen, L.L.; Snapka, R.M. DNA sequence specificity for topoisomerase II poisoning by the quinoxaline anticancer drugs XK469 and CQS. Mol. Pharmacol., 2003, 63(6), 1382-1388.
[http://dx.doi.org/10.1124/mol.63.6.1382] [PMID: 12761349]
[81]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018] [PMID: 19782770]
[82]
Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N.P.; Voora, V.; Kancha, R.K. FeCl3 catalysed 7-membered ring formation in a single pot: A new route to indole-fused oxepines/azepines and their cytotoxic activity. Org. Biomol. Chem., 2017, 15(20), 4468-4476.
[http://dx.doi.org/10.1039/C7OB00715A] [PMID: 28497830]
[83]
Sharma, A.; Kishore, D.; Singh, B. An expedient method for the synthesis of 1,2,4-triazolo-fused 1,5-benzodiazepine, 1,5-benzoxazepine, and 1,5-benzothiazepine scaffolds: A novel seven-membered ring system of biological interest. J. Heterocycl. Chem., 2018, 55(3), 586-592.
[http://dx.doi.org/10.1002/jhet.3060]
[84]
An, Y.S.; Hao, Z.F.; Zhang, X.J.; Wang, L.Z. Efficient synthesis and biological evaluation of a novel series of 1,5-benzodiazepine deriv-atives as potential antimicrobial agents. Chem. Biol. Drug Des., 2016, 88(1), 110-121.
[http://dx.doi.org/10.1111/cbdd.12739] [PMID: 26850700]
[85]
Khan, A.J.; Baseer, M.A.; Dhole, J.M.; Shah, S.N. Synthesis, experimental studies of the antimicrobial potential of some novel 1,5-benzothiazepine derivatives. Int. J. Pharm. Sci. Res., 2011, 2(10), 2619-2622.
[86]
Garg, N.; Chandra, T. Archana; Jain, A.B.; Kumar, A. Synthesis and evaluation of some new substituted benzothiazepine and benzox-azepine derivatives as anticonvulsant agents. Eur. J. Med. Chem., 2010, 45(4), 1529-1535.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.001] [PMID: 20163892]
[87]
Grunewald, G.L.; Dahanukar, V.H.; Ching, P.; Criscione, K.R. Effect of ring size or an additional heteroatom on the potency and selec-tivity of bicyclic benzylamine-type inhibitors of phenylethanolamine N-methyltransferase. J. Med. Chem., 1996, 39(18), 3539-3546.
[http://dx.doi.org/10.1021/jm9508292] [PMID: 8784452]
[88]
Neamati, N.; Turpin, J.A.; Winslow, H.E.; Christensen, J.L.; Williamson, K.; Orr, A.; Rice, W.G.; Pommier, Y.; Garofalo, A.; Brizzi, A.; Campiani, G.; Fiorini, I.; Nacci, V. Thiazolothiazepine inhibitors of HIV-1 integrase. J. Med. Chem., 1999, 42(17), 3334-3341.
[http://dx.doi.org/10.1021/jm990047z] [PMID: 10464020]
[89]
Ceylan, M.; Kocyigit, U.M.; Usta, N.C.; Gürbüzlü, B.; Temel, Y.; Alwasel, S.H. Gülçin,İ Synthesis, carbonic anhydrase I and II iso-enzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives. J. Biochem. Mol. Toxicol., 2017, 31(4), e21872.
[http://dx.doi.org/10.1002/jbt.21872] [PMID: 27780313]
[90]
Kang, W.; Du, X.; Wang, L.; Hu, L.; Dong, Y.; Bian, Y.; Li, Y. Structure-activity relationship, cytotoxicity and mode of action of 2-ester-substituted 1,5-benzothiazepines as potent antifungal agents. Chin. J. Chem., 2013, 31(10), 1305-1314.
[http://dx.doi.org/10.1002/cjoc.201300316]
[91]
Spellberg, B.; Bartlett, J.; Wunderink, R.; Gilbert, D.N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am. J. Respir. Crit. Care Med., 2015, 191(2), 135-140.
[http://dx.doi.org/10.1164/rccm.201410-1894OE] [PMID: 25590154]
[92]
Wagman, A.S.; Cirz, R.; McEnroe, G.; Aggen, J.; Linsell, M.S.; Goldblum, A.A.; Lopez, S.; Gomez, M.; Miller, G.; Simons, L.J.; Bel-liotti, T.R.; Harris, C.R.; Poel, T.J.; Melnick, M.J.; Gaston, R.D.; Moser, H.E. Synthesis and microbiological evaluation of novel tetra-cyclic fluoroquinolones. ChemMedChem, 2017, 12(20), 1687-1692.
[http://dx.doi.org/10.1002/cmdc.201700426] [PMID: 28881459]
[93]
Laponogov, I.; Pan, X.S.; Veselkov, D.A.; Cirz, R.T.; Wagman, A.; Moser, H.E.; Fisher, L.M.; Sanderson, M.R.; Sanderson, M.R. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquin-olones. Open Biol., 2016, 6(9), 160157.
[http://dx.doi.org/10.1098/rsob.160157] [PMID: 27655731]
[94]
Nie, Z.; Perretta, C.; Lu, J.; Su, Y.; Margosiak, S.; Gajiwala, K.S.; Cortez, J.; Nikulin, V.; Yager, K.M.; Appelt, K.; Chu, S. Structure-based design, synthesis, and study of potent inhibitors of -ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J. Med. Chem., 2005, 48(5), 1596-1609.
[http://dx.doi.org/10.1021/jm049141s] [PMID: 15743201]
[95]
Beld, J.; Blatti, J.L.; Behnke, C.; Mendez, M.; Burkart, M.D. Evolution of acyl-ACP-thioesterases and -ketoacyl-ACP-synthases re-vealed by protein-protein interactions. J. Appl. Phycol., 2014, 26(4), 1619-1629.
[http://dx.doi.org/10.1007/s10811-013-0203-4] [PMID: 25110394]
[96]
Zhou, Y.; Luo, Y.; Yang, Y.S.; Lu, L.; Zhu, H.L. Study of acylhydrazone derivatives with deoxygenated seven-membered rings as po-tential -ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. MedChemComm, 2016, 7(10), 1980-1987.
[http://dx.doi.org/10.1039/C6MD00263C]
[97]
Zubenko, A.A.; Divaeva, L.N.; Morkovnik, A.S.; Kartsev, V.G.; Drobin, Y.D.; Serbinovskaya, N.M.; Fetisov, L.N.; Bodryakov, A.N.; Bodryakova, M.A.; Lyashenko, L.A.; Klimenko, A.I. Recyclization of 9-bromocotarnine under the action of haloacylhetarenes. synthesis and biological activity of the 4-heteroaroyl-9-bromo-1,2-dihydro-6-methoxy-7,8-methylenedioxy-3-benzazepines. Russ. J. Bioorganic Chem., 2017, 43(5), 583-588.
[http://dx.doi.org/10.1134/S1068162017040173]
[98]
Alrammahi, F.A. Preparation and biological activities of some heterocyclic compounds derivatives from 2-aminothiazoles. Nano Biomed. Eng., 2018, 10(2), 129-140.
[http://dx.doi.org/10.5101/nbe.v10i2.p129-140]
[99]
Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. Design, synthesis and molecular modeling of nonsteroidal anti-inflammatory drugs tagged substituted 1,2,3-triazole derivatives and evaluation of their biological activities. J. Heterocycl. Chem., 2019, 56(4), 1318-1329.
[http://dx.doi.org/10.1002/jhet.3503]
[100]
Jassem, A.M.; Dhumad, A.M. Synthesis, antimicrobial activity, anti-HIV activity, and molecular docking of novel 5-, 6- and 7-membered ring (1H-Pyrrol-2-Yl)aminolactams. ChemistrySelect, 2021, 6(10), 2641-2647.
[http://dx.doi.org/10.1002/slct.202004755]
[101]
Fadok, V.A.; Bratton, D.L.; Konowal, A.; Freed, P.W.; Westcott, J.Y.; Henson, P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β PGE2, and PAF. J. Clin. Invest., 1998, 101(4), 890-898.
[http://dx.doi.org/10.1172/JCI1112] [PMID: 9466984]
[102]
McManus, L.M.; Pinckard, R.N. PAF, a putative mediator of oral inflammation. Crit. Rev. Oral Biol. Med., 2000, 11(2), 240-258.
[http://dx.doi.org/10.1177/10454411000110020701] [PMID: 12002818]
[103]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[104]
Guan, Y.Z.; Shan, S.M.; Zhang, W.; Luo, J.G.; Kong, L.Y. Withanolides from Physalis minima and their inhibitory effects on nitric oxide production. Steroids, 2014, 82(201203), 38-43.
[http://dx.doi.org/10.1016/j.steroids.2014.01.004] [PMID: 24480102]
[105]
Chen, I.H.; Du, Y.C.; Hwang, T.L.; Chen, I.F.; Lan, Y.H.; Yen, H.F.; Chang, F.R.; Wu, Y.C. Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis. Molecules, 2014, 19(4), 4608-4623.
[http://dx.doi.org/10.3390/molecules19044608] [PMID: 24736870]
[106]
Cao, F.; Shao, H.; Li, Q.; Li, J.; Li, W.; Li, C. Anti-inflammatory activity of Gentiana striata Maxim. Nat. Prod. Res., 2012, 26(11), 1038-1044.
[http://dx.doi.org/10.1080/14786419.2010.551643] [PMID: 21985356]
[107]
Lim, H.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of chronic skin inflammation by topical anti-inflammatory flavonoid preparation, Ato formula. Arch. Pharm. Res., 2006, 29(6), 503-507.
[http://dx.doi.org/10.1007/BF02969424] [PMID: 16833019]
[108]
Kwak, W.J.; Kim, J.H.; Ryu, K.H.; Cho, Y.B.; Jeon, S.D.; Moon, C.K. Effects of gentianine on the production of pro-inflammatory cytokines in male Sprague-Dawley rats treated with lipopolysaccharide (LPS). Biol. Pharm. Bull., 2005, 28(4), 750-753.
[http://dx.doi.org/10.1248/bpb.28.750] [PMID: 15802824]
[109]
Yu, F.; Yu, F.; Li, R.; Wang, R. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats. J. Ethnopharmacol., 2004, 95(1), 77-81.
[http://dx.doi.org/10.1016/j.jep.2004.06.025] [PMID: 15374610]
[110]
Mathew, A.; Taranalli, A.D.; Torgal, S.S. Evaluation of anti-inflammatory and wound healing activity of Gentiana lutea rhizome extracts in animals. Pharm. Biol., 2004, 42(1), 8-12.
[http://dx.doi.org/10.1080/13880200390502883]
[111]
Wang, S.; Xu, Y.; Jiang, W.; Zhang, Y. Isolation and identification of constituents with activity of inhibiting nitric oxide production in RAW 264.7 macrophages from Gentiana triflora. Planta Med., 2013, 79(8), 680-686.
[http://dx.doi.org/10.1055/s-0032-1328460] [PMID: 23599008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy