Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in Antineoplastic, Antibacterial, and Anti-inflammatory Activities of Seven-membered Heterocyclic Derivatives

Author(s): Bin Li, Chen Chen, Jingjing Jia and Ling He*

Volume 29, Issue 30, 2022

Published on: 21 June, 2022

Page: [5076 - 5096] Pages: 21

DOI: 10.2174/0929867329666220328123953

Price: $65

Abstract

Seven-membered heterocyclic compounds are important drug scaffolds because of their unique chemical structures. They widely exist in natural products and show a variety of biological activities. They have been used commonly in central nervous system drugs in the past 30 years. In the past decade, many studies have been conducted on their activities, including antitumor, antibacterial, etc. Herein, we summarize the research advances in different kinds of seven-membered heterocyclic compounds containing nitrogen, oxygen, and sulfur heteroatoms with antitumor, antisepsis, and anti-inflammation activities in the past ten years, which are expected to be beneficial to the development and design of novel drugs for the corresponding indications.

Keywords: Seven-membered ring, heterocyclic compounds, biological activities, antitumor, antisepsis, antiinflammation.

[1]
Tandon, R.; Singh, I.; Luxami, V.; Tandon, N.; Paul, K. Recent advances and developments of in vitro evaluation of heterocyclic moie-ties on cancer cell lines. Chem. Rec., 2019, 19(2-3), 362-393.
[http://dx.doi.org/10.1002/tcr.201800024] [PMID: 29943894]
[2]
Hou, R.H.; Scaife, J.; Freeman, C.; Langley, R.W.; Szabadi, E.; Bradshaw, C.M. Relationship between sedation and pupillary function: Comparison of diazepam and diphenhydramine. Br. J. Clin. Pharmacol., 2006, 61(6), 752-760.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02632.x] [PMID: 16722841]
[3]
Kosuge, K.; Nishimoto, M.; Kimura, M.; Umemura, K.; Nakashima, M.; Ohashi, K. Enhanced effect of triazolam with diltiazem. Br. J. Clin. Pharmacol., 1997, 43(4), 367-372.
[http://dx.doi.org/10.1046/j.1365-2125.1997.00580.x] [PMID: 9146848]
[4]
Macnab, M.; Mallows, S. Safety profile of benazepril in essential hypertension. Clin. Cardiol., 1991, 14(4S), 33-37.
[http://dx.doi.org/10.1002/clc.4960141805]
[5]
Bai, Y.; Wu, F.; Liu, C.; Guo, J.; Fu, P.; Li, W.; Xing, B. Interaction between carbamazepine and humic substances: A fluorescence spectroscopy study. Environ. Toxicol. Chem., 2008, 27(1), 95-102.
[http://dx.doi.org/10.1897/07-013.1] [PMID: 18092851]
[6]
King, F.D. Azabicyclic and azatricyclic derivatives, process and intermediates for their preparation and pharmaceutical compositions containing them. Patent WO1992012149,, 1992.
[7]
Gaster, L.M.; Wyman, P.A. Biphenylcarboxamides useful as 5-HT1D antagonists. Patent WO1995030675 1995.
[8]
Shah, J.H.; Hindupur, R.M.; Pati, H.N. Pharmacological and biological activities of benzazepines: An overview. Curr. Bioact. Compd., 2015, 170-188.
[http://dx.doi.org/10.2174/1573407211666150910202200]
[9]
Verma, S.; Kumar, S. A mini review on synthetic approaches and biological activities of benzodiazepines. Mini Rev. Org. Chem., 2017, 14(6), 453-468.
[http://dx.doi.org/10.2174/1570193X14666170511121927]
[10]
Mert, B.D.; Elattar, K.M. Seven-membered rings with three heteroatoms: Chemistry of 1,2,5- and 1,4,5- thiadiazepines. Curr. Org. Chem., 2018, 22(4), 386-410.
[http://dx.doi.org/10.2174/1385272821666170920163512]
[11]
Kaur, M.; Garg, S.; Malhi, D.S.; Sohal, H.S. A review on synthesis, reactions and biological properties of seven membered heterocyclic compounds: Azepine, azepane, azepinone. Curr. Org. Chem., 2021, 25(4), 449-506.
[http://dx.doi.org/10.2174/1385272825999210104222338]
[12]
Liu, Z.; Wang, P.; Chen, H.; Wold, E.A.; Tian, B.; Brasier, A.R.; Zhou, J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem., 2017, 60(11), 4533-4558.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01761] [PMID: 28195723]
[13]
Mirguet, O.; Gosmini, R.; Toum, J.; Clément, C.A.; Barnathan, M.; Brusq, J.M.; Mordaunt, J.E.; Grimes, R.M.; Crowe, M.; Pineau, O.; Ajakane, M.; Daugan, A.; Jeffrey, P.; Cutler, L.; Haynes, A.C.; Smithers, N.N.; Chung, C.W.; Bamborough, P.; Uings, I.J.; Lewis, A.; Witherington, J.; Parr, N.; Prinjha, R.K.; Nicodème, E. Discovery of epigenetic regulator I-BET762: Lead optimization to afford a clini-cal candidate inhibitor of the BET bromodomains. J. Med. Chem., 2013, 56(19), 7501-7515.
[http://dx.doi.org/10.1021/jm401088k] [PMID: 24015967]
[14]
Coudé, M.M.; Braun, T.; Berrou, J.; Dupont, M.; Bertrand, S.; Masse, A.; Raffoux, E.; Itzykson, R.; Delord, M.; Riveiro, M.E.; Herait, P.; Baruchel, A.; Dombret, H.; Gardin, C. BET inhibitor OTX015 targets BRD2 and BRD4 and decreases c-MYC in acute leukemia cells. Oncotarget, 2015, 6(19), 17698-17712.
[http://dx.doi.org/10.18632/oncotarget.4131] [PMID: 25989842]
[15]
Siu, K.T.; Eda, H.; Santo, L.; Ramachandran, J.; Koulnis, M.; Mertz, J.; Sims, R.J.; Cooper, M.; Raje, N.S. Effect of the BET inhibitor, Cpi-0610, alone and in combination with lenalidomide in multiple myeloma. Blood, 2015, 126(23), 4255-4255.
[http://dx.doi.org/10.1182/blood.V126.23.4255.4255]
[16]
Shapiro, G.I.; Dowlati, A.; LoRusso, P.M.; Eder, J.P.; Anderson, A.; Do, K.T.; Kagey, M.H.; Sirard, C.; Bradner, J.E.; Landau, S.B. Abstract A49: Clinically efficacy of the BET bromodomain inhibitor TEN-010 in an open-label substudy with patients with documented NUT-midline carcinoma (NMC). Mol. Cancer Ther., 2015, 14(12), A49-A49.
[17]
Filippakopoulos, P.; Qi, J.; Picaud, S.; Shen, Y.; Smith, W.B.; Fedorov, O.; Morse, E.M.; Keates, T.; Hickman, T.T.; Felletar, I.; Phil-pott, M.; Munro, S.; McKeown, M.R.; Wang, Y.; Christie, A.L.; West, N.; Cameron, M.J.; Schwartz, B.; Heightman, T.D.; La Thangue, N.; French, C.A.; Wiest, O.; Kung, A.L.; Knapp, S.; Bradner, J.E. Selective inhibition of BET bromodomains. Nature, 2010, 468(7327), 1067-1073.
[http://dx.doi.org/10.1038/nature09504] [PMID: 20871596]
[18]
da Motta, L.L.; Ledaki, I.; Purshouse, K.; Haider, S.; De Bastiani, M.A.; Baban, D.; Morotti, M.; Steers, G.; Wigfield, S.; Bridges, E.; Li, J.L.; Knapp, S.; Ebner, D.; Klamt, F.; Harris, A.L.; McIntyre, A. The BET inhibitor JQ1 selectively impairs tumour response to hy-poxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene, 2017, 36(1), 122-132.
[http://dx.doi.org/10.1038/onc.2016.184] [PMID: 27292261]
[19]
Jang, J.E.; Eom, J.I.; Jeung, H.K.; Cheong, J.W.; Lee, J.Y.; Kim, J.S.; Min, Y.H. AMPK-ULK1-mediated autophagy confers resistance to BET inhibitor JQ1 in acute myeloid leukemia stem cells. Clin. Cancer Res., 2017, 23(11), 2781-2794.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1903] [PMID: 27864418]
[20]
Yokoyama, Y.; Zhu, H.; Lee, J.H.; Kossenkov, A.V.; Wu, S.Y.; Wickramasinghe, J.M.; Yin, X.; Palozola, K.C.; Gardini, A.; Showe, L.C.; Zaret, K.S.; Liu, Q.; Speicher, D.; Conejo-Garcia, J.R.; Bradner, J.E.; Zhang, Z.; Sood, A.K.; Ordog, T.; Bitler, B.G.; Zhang, R. BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res., 2016, 76(21), 6320-6330.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0854] [PMID: 27803105]
[21]
Nicodeme, E.; Jeffrey, K.L.; Schaefer, U.; Beinke, S.; Dewell, S.; Chung, C.W.; Chandwani, R.; Marazzi, I.; Wilson, P.; Coste, H.; White, J.; Kirilovsky, J.; Rice, C.M.; Lora, J.M.; Prinjha, R.K.; Lee, K.; Tarakhovsky, A. Suppression of inflammation by a synthetic histone mimic. Nature, 2010, 468(7327), 1119-1123.
[http://dx.doi.org/10.1038/nature09589] [PMID: 21068722]
[22]
Conway, S.J.; Gardiner, J.; Grove, S.J.A.; Johns, M.K.; Lim, Z.Y.; Painter, G.F.; Robinson, D.E.J.E.; Schieber, C.; Thuring, J.W.; Wong, L.S.M.; Yin, M.X.; Burgess, A.W.; Catimel, B.; Hawkins, P.T.; Ktistakis, N.T.; Stephens, L.R.; Holmes, A.B. Synthesis and bi-ological evaluation of phosphatidylinositol phosphate affinity probes. Org. Biomol. Chem., 2010, 8(1), 66-76.
[http://dx.doi.org/10.1039/B913399B] [PMID: 20024134]
[23]
Krugmann, S.; Anderson, K.E.; Ridley, S.H.; Risso, N.; McGregor, A.; Coadwell, J.; Davidson, K.; Eguinoa, A.; Ellson, C.D.; Lipp, P.; Manifava, M.; Ktistakis, N.; Painter, G.; Thuring, J.W.; Cooper, M.A.; Lim, Z.Y.; Holmes, A.B.; Dove, S.K.; Michell, R.H.; Grewal, A.; Nazarian, A.; Erdjument-Bromage, H.; Tempst, P.; Stephens, L.R.; Hawkins, P.T. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell, 2002, 9(1), 95-108.
[http://dx.doi.org/10.1016/S1097-2765(02)00434-3] [PMID: 11804589]
[24]
Chung, C.W.; Coste, H.; White, J.H.; Mirguet, O.; Wilde, J.; Gosmini, R.L.; Delves, C.; Magny, S.M.; Woodward, R.; Hughes, S.A.; Boursier, E.V.; Flynn, H.; Bouillot, A.M.; Bamborough, P.; Brusq, J.M.G.; Gellibert, F.J.; Jones, E.J.; Riou, A.M.; Homes, P.; Martin, S.L.; Uings, I.J.; Toum, J.; Clément, C.A.; Boullay, A.B.; Grimley, R.L.; Blandel, F.M.; Prinjha, R.K.; Lee, K.; Kirilovsky, J.; Nic-odeme, E. Discovery and characterization of small molecule inhibitors of the BET family bromodomains. J. Med. Chem., 2011, 54(11), 3827-3838.
[http://dx.doi.org/10.1021/jm200108t] [PMID: 21568322]
[25]
Delmore, J.E.; Issa, G.C.; Lemieux, M.E.; Rahl, P.B.; Shi, J.; Jacobs, H.M.; Kastritis, E.; Gilpatrick, T.; Paranal, R.M.; Qi, J.; Chesi, M.; Schinzel, A.C.; McKeown, M.R.; Heffernan, T.P.; Vakoc, C.R.; Bergsagel, P.L.; Ghobrial, I.M.; Richardson, P.G.; Young, R.A.; Hahn, W.C.; Anderson, K.C.; Kung, A.L.; Bradner, J.E.; Mitsiades, C.S. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell, 2011, 146(6), 904-917.
[http://dx.doi.org/10.1016/j.cell.2011.08.017] [PMID: 21889194]
[26]
Mertz, J.A.; Conery, A.R.; Bryant, B.M.; Sandy, P.; Balasubramanian, S.; Mele, D.A.; Bergeron, L.; Sims, R.J. III Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA, 2011, 108(40), 16669-16674.
[http://dx.doi.org/10.1073/pnas.1108190108] [PMID: 21949397]
[27]
Gehling, V.S.; Hewitt, M.C.; Vaswani, R.G.; Leblanc, Y.; Côté, A.; Nasveschuk, C.G.; Taylor, A.M.; Harmange, J.C.; Audia, J.E.; Pardo, E.; Joshi, S.; Sandy, P.; Mertz, J.A.; Sims, R.J., III; Bergeron, L.; Bryant, B.M.; Bellon, S.; Poy, F.; Jayaram, H.; Sankarana-rayanan, R.; Yellapantula, S.; Bangalore Srinivasamurthy, N.; Birudukota, S.; Albrecht, B.K. Discovery, design, and optimization of isoxazole azepine BET inhibitors. ACS Med. Chem. Lett., 2013, 4(9), 835-840.
[http://dx.doi.org/10.1021/ml4001485] [PMID: 24900758]
[28]
Albrecht, B.K.; Gehling, V.S.; Hewitt, M.C.; Vaswani, R.G.; Côté, A.; Leblanc, Y.; Nasveschuk, C.G.; Bellon, S.; Bergeron, L.; Camp-bell, R.; Cantone, N.; Cooper, M.R.; Cummings, R.T.; Jayaram, H.; Joshi, S.; Mertz, J.A.; Neiss, A.; Normant, E.; O’Meara, M.; Pardo, E.; Poy, F.; Sandy, P.; Supko, J.; Sims, R.J., III; Harmange, J.C.; Taylor, A.M.; Audia, J.E. Identification of a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain and Extra-Terminal (BET) Family as a Candidate for Human Clinical Trials. J. Med. Chem., 2016, 59(4), 1330-1339.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01882] [PMID: 26815195]
[29]
Hewitt, M.C.; Leblanc, Y.; Gehling, V.S.; Vaswani, R.G.; Côté, A.; Nasveschuk, C.G.; Taylor, A.M.; Harmange, J.C.; Audia, J.E.; Pardo, E.; Cummings, R.; Joshi, S.; Sandy, P.; Mertz, J.A.; Sims, R.J., III; Bergeron, L.; Bryant, B.M.; Bellon, S.; Poy, F.; Jayaram, H.; Tang, Y.; Albrecht, B.K. Development of methyl isoxazoleazepines as inhibitors of BET. Bioorg. Med. Chem. Lett., 2015, 25(9), 1842-1848.
[http://dx.doi.org/10.1016/j.bmcl.2015.03.045] [PMID: 25851940]
[30]
Filippakopoulos, P.; Picaud, S.; Fedorov, O.; Keller, M.; Wrobel, M.; Morgenstern, O.; Bracher, F.; Knapp, S. Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting bromodomains of the BET family. Bioorg. Med. Chem., 2012, 20(6), 1878-1886.
[http://dx.doi.org/10.1016/j.bmc.2011.10.080] [PMID: 22137933]
[31]
Endo, J.; Hikawa, H.; Hamada, M.; Ishibuchi, S.; Fujie, N.; Sugiyama, N.; Tanaka, M.; Kobayashi, H.; Sugahara, K.; Oshita, K.; Iwata, K.; Ooike, S.; Murata, M.; Sumichika, H.; Chiba, K.; Adachi, K. A phenotypic drug discovery study on thienodiazepine derivatives as inhibitors of T cell proliferation induced by CD28 co-stimulation leads to the discovery of a first bromodomain inhibitor. Bioorg. Med. Chem. Lett., 2016, 26(5), 1365-1370.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.084] [PMID: 26869194]
[32]
Schmees, N.; Buchmann, B.; Haendler, B.; Neuhaus, R.; Lejeune, P.; Kruger, M.; Ernesto, F.A.; Künzer, H.; Rehwinkel, H. 4- substituted pyrrolo- and pyrazolo-diazepines. Patent WO2014128111 2014.
[33]
Vadivelu, S.; Rajagopal, S.; Chinnapattu, M.; Gondrala, P.K.; Sivanandhan, D.; Mulakala, C. Tricyclic fused derivatives of 1- (Cyclo)alkyl pyridin-2-one useful for the treatment of cancer. Patent WO2016157221 2016.
[34]
Liu, D.; Pratt, J.; Wang, L.; Hasvoid, L.A.; Bogdan, A. Bromodomain inhibitors. Patent US20140256710, 2014.
[35]
Li, J.; Wang, P.; Zhou, B.; Shi, J.; Liu, J.; Li, X.; Fan, L.; Zheng, Y.; Ouyang, L. Development of 4,5-dihydro-benzodiazepinone deriva-tives as a new chemical series of BRD4 inhibitors. Eur. J. Med. Chem., 2016, 121, 294-299.
[http://dx.doi.org/10.1016/j.ejmech.2016.05.057] [PMID: 27266999]
[36]
Siegel, S.; Baurle, S.; Cleve, A.; Haendler, B.; Fernández-montalván, A.E.; Mönning, U.; Krause, S.; Lejeune, P.; Busemann, M.; Kuhnke, J. Bicyclo 2,3-benzodiazepines and spirocyclically substituted 2,3-benzodiazepines. Patent WO2012418067 2014.
[37]
Cipolla, L.; Araújo, A.C.; Airoldi, C.; Bini, D. Pyrrolo[2,1-c][1,4]benzodiazepine as a scaffold for the design and synthesis of anti-tumour drugs. Anticancer. Agents Med. Chem., 2009, 9(1), 1-31.
[http://dx.doi.org/10.2174/187152009787047743] [PMID: 19149479]
[38]
Hiller, B.M.; Marmion, D.J.; Gross, R.M.; Thompson, C.A.; Chavez, C.A.; Brundin, P.; Wakeman, D.R.; McMahon, C.W.; Kordower, J.H. Mitomycin-C treatment during differentiation of induced pluripotent stem cell-derived dopamine neurons reduces proliferation with-out compromising survival or function in;vivo. Stem Cells Transl. Med., 2021, 10(2), 278-290.
[http://dx.doi.org/10.1002/sctm.20-0014] [PMID: 32997443]
[39]
Liu, L.F.; Liu, L.F. DNA topoisomerase poisons as antitumor drugs. Annu. Rev. Biochem., 1989, 58(1), 351-375.
[http://dx.doi.org/10.1146/annurev.bi.58.070189.002031] [PMID: 2549853]
[40]
Korman, S.; Tendler, M.D. Clinical investigation of cancer chemotherapeutic agents for neoplastic disease. J. New Drugs, 1965, 5(5), 275-285.
[http://dx.doi.org/10.1002/j.1552-4604.1965.tb00247.x] [PMID: 5887953]
[41]
Annor-Gyamfi, J.K.; Jarrett, J.M.; Osazee, J.O.; Bialonska, D.; Whitted, C.; Palau, V.E.; Shilabin, A.G. Synthesis and biological activity of fused tetracyclic Pyrrolo[2,1-c][1,4]benzodiazepines. Heliyon, 2018, 4(2), e00539.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00539] [PMID: 29560454]
[42]
Hartley, J.A.; Spanswick, V.J.; Brooks, N.; Clingen, P.H.; McHugh, P.J.; Hochhauser, D.; Pedley, R.B.; Kelland, L.R.; Alley, M.C.; Schultz, R.; Hollingshead, M.G.; Schweikart, K.M.; Tomaszewski, J.E.; Sausville, E.A.; Gregson, S.J.; Howard, P.W.; Thurston, D.E. SJG-136 (NSC 694501), a novel rationally designed DNA minor groove interstrand cross-linking agent with potent and broad spectrum antitumor activity: Part 1: Cellular pharmacology, in vitro and initial in vivo antitumor activity. Cancer Res., 2004, 64(18), 6693-6699.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2941] [PMID: 15374986]
[43]
Mieczkowski, A.; Psurski, M. Bagiski, M.; Bieszczad, B.; Mroczkowska, M.; Wilczek, M.; Czajkowska, J.; Trzybiski, D.; Woniak, K.; Wietrzyk, J. Novel (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6, 12(2H,11H)-dione derivatives: Selective inhibi-tion of MV-4-11 biphenotypic B myelomonocytic leukemia cells’ growth is accompanied by reactive oxygen species overproduction and apoptosis. Bioorg. Med. Chem. Lett., 2018, 28(4), 618-625.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.034] [PMID: 29395971]
[44]
Xie, M.; Ujjinamatada, R.K.; Sadowska, M.; Lapidus, R.G.; Edelman, M.J.; Hosmane, R.S.A. A novel, broad-spectrum anticancer com-pound containing the imidazo[4,5-e][1,3]diazepine ring system. Bioorg. Med. Chem. Lett., 2010, 20(15), 4386-4389.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.061] [PMID: 20594843]
[45]
Kondaskar, A.; Kondaskar, S.; Kumar, R.; Fishbein, J.C.; Muvarak, N.; Lapidus, R.G.; Sadowska, M.; Edelman, M.J.; Bol, G.M.; Vesuna, F.; Raman, V.; Hosmane, R.S. Novel, broad spectrum anti-cancer agents containing the tricyclic 5:7:5-fused diimidazodiazepine ring system. ACS Med. Chem. Lett., 2010, 2(3), 252-256.
[http://dx.doi.org/10.1021/ml100281b] [PMID: 21572541]
[46]
Mayer, T.U.; Kapoor, T.M.; Haggarty, S.J.; King, R.W.; Schreiber, S.L.; Mitchison, T.J. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science, 1999, 286(5441), 971-974.
[http://dx.doi.org/10.1126/science.286.5441.971]
[47]
Blangy, A.; Lane, H.A.; d’Hérin, P.; Harper, M.; Kress, M.; Nigg, E.A. Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo. Cell, 1995, 83(7), 1159-1169.
[http://dx.doi.org/10.1016/0092-8674(95)90142-6] [PMID: 8548803]
[48]
May, R. Gene fishing: Novel actin regulators netted. Trends Cell Biol., 1998, 8(11), 435-435.
[http://dx.doi.org/10.1016/S0962-8924(98)01399-3]
[49]
Weaver, B.A.A.; Cleveland, D.W. Decoding the links between mitosis, cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death. Cancer Cell, 2005, 8(1), 7-12.
[http://dx.doi.org/10.1016/j.ccr.2005.06.011] [PMID: 16023594]
[50]
Wood, K.W.; Chua, P.; Sutton, D.; Jackson, J.R. Centromere-associated protein E: A motor that puts the brakes on the mitotic check-point. Clin. Cancer Res., 2008, 14(23), 7588-7592.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4443] [PMID: 19047083]
[51]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Ohno, H.; Nakamura, S.; Nakanishi, I.; Yamane, M.; Sawada, J.; Asai, A.; Fujii, N. Kinesin spin-dle protein inhibitors with diaryl amine scaffolds: Crystal packing analysis for improved aqueous solubility. ACS Med. Chem. Lett., 2014, 5(5), 566-571.
[http://dx.doi.org/10.1021/ml500016j] [PMID: 24900881]
[52]
Takeuchi, T.; Oishi, S.; Kaneda, M.; Misu, R.; Ohno, H.; Sawada, J.; Asai, A.; Nakamura, S.; Nakanishi, I.; Fujii, N. Optimization of diaryl amine derivatives as kinesin spindle protein inhibitors. Bioorg. Med. Chem., 2014, 22(12), 3171-3179.
[http://dx.doi.org/10.1016/j.bmc.2014.04.008] [PMID: 24794744]
[53]
Budriesi, R.; Cosimelli, B.; Ioan, P.; Ugenti, M.P.; Carosati, E.; Frosini, M.; Fusi, F.; Spisani, R.; Saponara, S.; Cruciani, G.; Novellino, E.; Spinelli, D.; Chiarini, A. L-Type calcium channel blockers: From diltiazem to 1,2,4-oxadiazol-5-ones via thiazinooxadiazol-3-one de-rivatives. J. Med. Chem., 2009, 52(8), 2352-2362.
[http://dx.doi.org/10.1021/jm801351u] [PMID: 19323482]
[54]
López-Cara, L.C.; Conejo-García, A.; Marchal, J.A.; Macchione, G.; Cruz-López, O.; Boulaiz, H.; García, M.A.; Rodríguez-Serrano, F.; Ramírez, A.; Cativiela, C.; Jiménez, A.I.; García-Ruiz, J.M.; Choquesillo-Lazarte, D.; Aránega, A.; Campos, J.M. New (RS)-benzoxazepin-purines with antitumour activity: The chiral switch from (RS)-2,6-dichloro-9-[1-(p-nitrobenzenesulfonyl)-1,2,3,5-tetrahydro-4,1-benzo-xazepin-3-yl]-9H-purine. Eur. J. Med. Chem., 2011, 46(1), 249-258.
[http://dx.doi.org/10.1016/j.ejmech.2010.11.011] [PMID: 21126804]
[55]
Cruz-López, O.; Ramírez, A.; Navarro, S.A.; García, M.A.; Marchal, J.A.; Campos, J.M.; Conejo-García, A. 1-(Benzenesulfonyl)-1,5-dihydro-4,1-benzoxazepine as a new scaffold for the design of antitumor compounds. Future Med. Chem., 2017, 9(11), 1129-1140.
[http://dx.doi.org/10.4155/fmc-2017-0006] [PMID: 28722472]
[56]
Hassan, A.Y.; Sarg, M.T.; Bayoumi, A.H.; Kalaf, F.G.A. Design, synthesis, and anticancer activity of novel fused purine analogues. J. Heterocycl. Chem., 2017, 54(6), 3458-3470.
[http://dx.doi.org/10.1002/jhet.2969]
[57]
Ameta, K.L.; Rathore, N.S.; Kumar, B. Synthesis and in vitro anti-breast cancer activity of some novel 1,5-benzothiazepine derivatives. J. Serb. Chem. Soc., 2012, 77(6), 725-731.
[http://dx.doi.org/10.2298/JSC110715219A]
[58]
Mohanty, C.; Das, M.; Sahoo, S.K. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin. Drug Deliv., 2012, 9(11), 1347-1364.
[http://dx.doi.org/10.1517/17425247.2012.724676] [PMID: 22971222]
[59]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[60]
Wang, Y.J.; Pan, M.H.; Cheng, A.L.; Lin, L.I.; Ho, Y.S.; Hsieh, C.Y.; Lin, J.K. Stability of curcumin in buffer solutions and characteri-zation of its degradation products. J. Pharm. Biomed. Anal., 1997, 15(12), 1867-1876.
[http://dx.doi.org/10.1016/S0731-7085(96)02024-9] [PMID: 9278892]
[61]
Theppawong, A.; Van de Walle, T.; Van Hecke, K.; Grootaert, C.; Van Camp, J.; D’hooghe, M. Synthesis of 1,4;thiazepane;based cur-cuminoids with promising anticancer activity. Chem. A Eur. J.i, 2019, 25, 12583-12600.
[http://dx.doi.org/10.1002/chem.201902549]
[62]
Wang, R. Two’s company, three’s a crowd: Can H2S be the third endogenous gaseous transmitter? FASEB J., 2002, 16(13), 1792-1798.
[http://dx.doi.org/10.1096/fj.02-0211hyp] [PMID: 12409322]
[63]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[64]
Zhong, G.; Chen, F.; Cheng, Y.; Tang, C.; Du, J. The role of hydrogen sulfide generation in the pathogenesis of hypertension in rats induced by inhibition of nitric oxide synthase. J. Hypertens., 2003, 21(10), 1879-1885.
[http://dx.doi.org/10.1097/00004872-200310000-00015] [PMID: 14508194]
[65]
Li, L.; Moore, P.K. Could hydrogen sulfide be the next blockbuster treatment for inflammatory disease? Expert Rev. Clin. Pharmacol., 2013, 6(6), 593-595.
[http://dx.doi.org/10.1586/17512433.2013.842126] [PMID: 24164607]
[66]
Li, L.; Bhatia, M.; Zhu, Y.Z.; Zhu, Y.C.; Ramnath, R.D.; Wang, Z.J.; Anuar, F.B.M.; Whiteman, M.; Salto-Tellez, M.; Moore, P.K. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J., 2005, 19(9), 1196-1198.
[http://dx.doi.org/10.1096/fj.04-3583fje] [PMID: 15863703]
[67]
Chattopadhyay, M.; Kodela, R.; Nath, N.; Dastagirzada, Y.M.; Velázquez-Martínez, C.A.; Boring, D.; Kashfi, K. Hydrogen sulfide-releasing NSAIDs inhibit the growth of human cancer cells: A general property and evidence of a tissue type-independent effect. Biochem. Pharmacol., 2012, 83(6), 715-722.
[http://dx.doi.org/10.1016/j.bcp.2011.12.018] [PMID: 22222427]
[68]
Lee, Z.W.; Zhou, J.; Chen, C.S.; Zhao, Y.; Tan, C.H.; Li, L.; Moore, P.K.; Deng, L.W. The slow-releasing hydrogen sulfide donor, GYY4137, exhibits novel anti-cancer effects in vitro and in vivo. PLoS One, 2011, 6(6), e21077.
[http://dx.doi.org/10.1371/journal.pone.0021077] [PMID: 21701688]
[69]
Feng, W.; Novera, W.; Peh, K.; Neo, D.; Ramanujulu, P.M.; Moore, P.K.; Deng, L.W.; Dymock, B.W. Discovery of medium ring thio-phosphorus based heterocycles as antiproliferative agents. Bioorg. Med. Chem. Lett., 2017, 27(4), 967-972.
[http://dx.doi.org/10.1016/j.bmcl.2016.12.079] [PMID: 28082040]
[70]
Laufer, S.A.; Margutti, S. Isoxazolone based inhibitors of p38 MAP kinases. J. Med. Chem., 2008, 51(8), 2580-2584.
[http://dx.doi.org/10.1021/jm701343f] [PMID: 18373337]
[71]
Saidachary, G.; Veera Prasad, K.; Divya, D.; Singh, A.; Ramesh, U.; Sridhar, B.; China Raju, B. Convenient one-pot synthesis, anti-mycobacterial and anticancer activities of novel benzoxepinoisoxazolones and pyrazolones. Eur. J. Med. Chem., 2014, 76, 460-469.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.042] [PMID: 24607876]
[72]
Oliveira, M.; de Santana, L.L.B.; Serafim, J.C.; Santos, A.O.; Quintino, M.P.; Correia, J.T.M.; Damasceno, F.; Sabino, J.R.; Pires, T.R.C.; Coelho, P.L.C.; de Faria Lopes, G.P.; Ulrich, H.; Costa, S.L.; Cunha, S. Design, synthesis and cytotoxicity of the antitumor agent 1-azabicycles for chemoresistant glioblastoma cells. Invest. New Drugs, 2020, 38(5), 1257-1271.
[http://dx.doi.org/10.1007/s10637-019-00877-2] [PMID: 31838735]
[73]
Rowinsky, E.K. The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents. Annu. Rev. Med., 1997, 48, 353-374.
[http://dx.doi.org/10.1146/annurev.med.48.1.353] [PMID: 9046968]
[74]
Schiff, P.B.; Fant, J.; Horwitz, S.B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698), 665-667.
[http://dx.doi.org/10.1038/277665a0] [PMID: 423966]
[75]
Sun, L.; Veith, J.M.; Pera, P.; Bernacki, R.J.; Ojima, I. Design and synthesis of de novo cytotoxic alkaloids by mimicking the bioactive conformation of paclitaxel. Bioorg. Med. Chem., 2010, 18(19), 7101-7112.
[http://dx.doi.org/10.1016/j.bmc.2010.07.069] [PMID: 20800500]
[76]
Wetwitayaklung, P.; Phaechamud, T.; Keokitichai, S. The antioxidant activity of caesalpinia sappan l. heartwood in various ages. Naresuan Univ. J. 2005, 13(2), 43-52.
[77]
Wang, Z.; Sun, J.B.; Qu, W.; Guan, F.Q.; Li, L.Z.; Liang, J.Y. Caesappin A and B, two novel protosappanins from Caesalpinia sappan L. Fitoterapia, 2014, 92, 280-284.
[http://dx.doi.org/10.1016/j.fitote.2013.12.004] [PMID: 24334102]
[78]
Xie, J.; Tian, J.; Su, L.; Huang, M.; Zhu, X.; Ye, F.; Wan, Y. Pyrrolo[2,3-c]azepine derivatives: A new class of potent protein tyrosine phosphatase 1B inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(14), 4306-4309.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.052] [PMID: 21696953]
[79]
Pettit, G.R.; Numata, A.; Iwamoto, C.; Usami, Y.; Yamada, T.; Ohishi, H.; Cragg, G.M. Antineoplastic agents. 551. Isolation and struc-tures of bauhiniastatins 1-4 from Bauhinia purpurea. J. Nat. Prod., 2006, 69(3), 323-327.
[http://dx.doi.org/10.1021/np058075+] [PMID: 16562827]
[80]
Gao, H.; Yamasaki, E.F.; Chan, K.K.; Shen, L.L.; Snapka, R.M. DNA sequence specificity for topoisomerase II poisoning by the quinoxaline anticancer drugs XK469 and CQS. Mol. Pharmacol., 2003, 63(6), 1382-1388.
[http://dx.doi.org/10.1124/mol.63.6.1382] [PMID: 12761349]
[81]
Lessard, L.; Stuible, M.; Tremblay, M.L. The two faces of PTP1B in cancer. Biochim. Biophys. Acta, 2010, 1804(3), 613-619.
[http://dx.doi.org/10.1016/j.bbapap.2009.09.018] [PMID: 19782770]
[82]
Shiva Kumar, K.; Siddi Ramulu, M.; Rajesham, B.; Kumar, N.P.; Voora, V.; Kancha, R.K. FeCl3 catalysed 7-membered ring formation in a single pot: A new route to indole-fused oxepines/azepines and their cytotoxic activity. Org. Biomol. Chem., 2017, 15(20), 4468-4476.
[http://dx.doi.org/10.1039/C7OB00715A] [PMID: 28497830]
[83]
Sharma, A.; Kishore, D.; Singh, B. An expedient method for the synthesis of 1,2,4-triazolo-fused 1,5-benzodiazepine, 1,5-benzoxazepine, and 1,5-benzothiazepine scaffolds: A novel seven-membered ring system of biological interest. J. Heterocycl. Chem., 2018, 55(3), 586-592.
[http://dx.doi.org/10.1002/jhet.3060]
[84]
An, Y.S.; Hao, Z.F.; Zhang, X.J.; Wang, L.Z. Efficient synthesis and biological evaluation of a novel series of 1,5-benzodiazepine deriv-atives as potential antimicrobial agents. Chem. Biol. Drug Des., 2016, 88(1), 110-121.
[http://dx.doi.org/10.1111/cbdd.12739] [PMID: 26850700]
[85]
Khan, A.J.; Baseer, M.A.; Dhole, J.M.; Shah, S.N. Synthesis, experimental studies of the antimicrobial potential of some novel 1,5-benzothiazepine derivatives. Int. J. Pharm. Sci. Res., 2011, 2(10), 2619-2622.
[86]
Garg, N.; Chandra, T. Archana; Jain, A.B.; Kumar, A. Synthesis and evaluation of some new substituted benzothiazepine and benzox-azepine derivatives as anticonvulsant agents. Eur. J. Med. Chem., 2010, 45(4), 1529-1535.
[http://dx.doi.org/10.1016/j.ejmech.2010.01.001] [PMID: 20163892]
[87]
Grunewald, G.L.; Dahanukar, V.H.; Ching, P.; Criscione, K.R. Effect of ring size or an additional heteroatom on the potency and selec-tivity of bicyclic benzylamine-type inhibitors of phenylethanolamine N-methyltransferase. J. Med. Chem., 1996, 39(18), 3539-3546.
[http://dx.doi.org/10.1021/jm9508292] [PMID: 8784452]
[88]
Neamati, N.; Turpin, J.A.; Winslow, H.E.; Christensen, J.L.; Williamson, K.; Orr, A.; Rice, W.G.; Pommier, Y.; Garofalo, A.; Brizzi, A.; Campiani, G.; Fiorini, I.; Nacci, V. Thiazolothiazepine inhibitors of HIV-1 integrase. J. Med. Chem., 1999, 42(17), 3334-3341.
[http://dx.doi.org/10.1021/jm990047z] [PMID: 10464020]
[89]
Ceylan, M.; Kocyigit, U.M.; Usta, N.C.; Gürbüzlü, B.; Temel, Y.; Alwasel, S.H. Gülçin,İ Synthesis, carbonic anhydrase I and II iso-enzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives. J. Biochem. Mol. Toxicol., 2017, 31(4), e21872.
[http://dx.doi.org/10.1002/jbt.21872] [PMID: 27780313]
[90]
Kang, W.; Du, X.; Wang, L.; Hu, L.; Dong, Y.; Bian, Y.; Li, Y. Structure-activity relationship, cytotoxicity and mode of action of 2-ester-substituted 1,5-benzothiazepines as potent antifungal agents. Chin. J. Chem., 2013, 31(10), 1305-1314.
[http://dx.doi.org/10.1002/cjoc.201300316]
[91]
Spellberg, B.; Bartlett, J.; Wunderink, R.; Gilbert, D.N. Novel approaches are needed to develop tomorrow’s antibacterial therapies. Am. J. Respir. Crit. Care Med., 2015, 191(2), 135-140.
[http://dx.doi.org/10.1164/rccm.201410-1894OE] [PMID: 25590154]
[92]
Wagman, A.S.; Cirz, R.; McEnroe, G.; Aggen, J.; Linsell, M.S.; Goldblum, A.A.; Lopez, S.; Gomez, M.; Miller, G.; Simons, L.J.; Bel-liotti, T.R.; Harris, C.R.; Poel, T.J.; Melnick, M.J.; Gaston, R.D.; Moser, H.E. Synthesis and microbiological evaluation of novel tetra-cyclic fluoroquinolones. ChemMedChem, 2017, 12(20), 1687-1692.
[http://dx.doi.org/10.1002/cmdc.201700426] [PMID: 28881459]
[93]
Laponogov, I.; Pan, X.S.; Veselkov, D.A.; Cirz, R.T.; Wagman, A.; Moser, H.E.; Fisher, L.M.; Sanderson, M.R.; Sanderson, M.R. Exploring the active site of the Streptococcus pneumoniae topoisomerase IV-DNA cleavage complex with novel 7,8-bridged fluoroquin-olones. Open Biol., 2016, 6(9), 160157.
[http://dx.doi.org/10.1098/rsob.160157] [PMID: 27655731]
[94]
Nie, Z.; Perretta, C.; Lu, J.; Su, Y.; Margosiak, S.; Gajiwala, K.S.; Cortez, J.; Nikulin, V.; Yager, K.M.; Appelt, K.; Chu, S. Structure-based design, synthesis, and study of potent inhibitors of -ketoacyl-acyl carrier protein synthase III as potential antimicrobial agents. J. Med. Chem., 2005, 48(5), 1596-1609.
[http://dx.doi.org/10.1021/jm049141s] [PMID: 15743201]
[95]
Beld, J.; Blatti, J.L.; Behnke, C.; Mendez, M.; Burkart, M.D. Evolution of acyl-ACP-thioesterases and -ketoacyl-ACP-synthases re-vealed by protein-protein interactions. J. Appl. Phycol., 2014, 26(4), 1619-1629.
[http://dx.doi.org/10.1007/s10811-013-0203-4] [PMID: 25110394]
[96]
Zhou, Y.; Luo, Y.; Yang, Y.S.; Lu, L.; Zhu, H.L. Study of acylhydrazone derivatives with deoxygenated seven-membered rings as po-tential -ketoacyl-acyl carrier protein synthase III (FabH) inhibitors. MedChemComm, 2016, 7(10), 1980-1987.
[http://dx.doi.org/10.1039/C6MD00263C]
[97]
Zubenko, A.A.; Divaeva, L.N.; Morkovnik, A.S.; Kartsev, V.G.; Drobin, Y.D.; Serbinovskaya, N.M.; Fetisov, L.N.; Bodryakov, A.N.; Bodryakova, M.A.; Lyashenko, L.A.; Klimenko, A.I. Recyclization of 9-bromocotarnine under the action of haloacylhetarenes. synthesis and biological activity of the 4-heteroaroyl-9-bromo-1,2-dihydro-6-methoxy-7,8-methylenedioxy-3-benzazepines. Russ. J. Bioorganic Chem., 2017, 43(5), 583-588.
[http://dx.doi.org/10.1134/S1068162017040173]
[98]
Alrammahi, F.A. Preparation and biological activities of some heterocyclic compounds derivatives from 2-aminothiazoles. Nano Biomed. Eng., 2018, 10(2), 129-140.
[http://dx.doi.org/10.5101/nbe.v10i2.p129-140]
[99]
Dasari, S.R.; Tondepu, S.; Vadali, L.R.; Seelam, N. Design, synthesis and molecular modeling of nonsteroidal anti-inflammatory drugs tagged substituted 1,2,3-triazole derivatives and evaluation of their biological activities. J. Heterocycl. Chem., 2019, 56(4), 1318-1329.
[http://dx.doi.org/10.1002/jhet.3503]
[100]
Jassem, A.M.; Dhumad, A.M. Synthesis, antimicrobial activity, anti-HIV activity, and molecular docking of novel 5-, 6- and 7-membered ring (1H-Pyrrol-2-Yl)aminolactams. ChemistrySelect, 2021, 6(10), 2641-2647.
[http://dx.doi.org/10.1002/slct.202004755]
[101]
Fadok, V.A.; Bratton, D.L.; Konowal, A.; Freed, P.W.; Westcott, J.Y.; Henson, P.M. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-β PGE2, and PAF. J. Clin. Invest., 1998, 101(4), 890-898.
[http://dx.doi.org/10.1172/JCI1112] [PMID: 9466984]
[102]
McManus, L.M.; Pinckard, R.N. PAF, a putative mediator of oral inflammation. Crit. Rev. Oral Biol. Med., 2000, 11(2), 240-258.
[http://dx.doi.org/10.1177/10454411000110020701] [PMID: 12002818]
[103]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod., 2012, 75(3), 311-335.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[104]
Guan, Y.Z.; Shan, S.M.; Zhang, W.; Luo, J.G.; Kong, L.Y. Withanolides from Physalis minima and their inhibitory effects on nitric oxide production. Steroids, 2014, 82(201203), 38-43.
[http://dx.doi.org/10.1016/j.steroids.2014.01.004] [PMID: 24480102]
[105]
Chen, I.H.; Du, Y.C.; Hwang, T.L.; Chen, I.F.; Lan, Y.H.; Yen, H.F.; Chang, F.R.; Wu, Y.C. Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis. Molecules, 2014, 19(4), 4608-4623.
[http://dx.doi.org/10.3390/molecules19044608] [PMID: 24736870]
[106]
Cao, F.; Shao, H.; Li, Q.; Li, J.; Li, W.; Li, C. Anti-inflammatory activity of Gentiana striata Maxim. Nat. Prod. Res., 2012, 26(11), 1038-1044.
[http://dx.doi.org/10.1080/14786419.2010.551643] [PMID: 21985356]
[107]
Lim, H.; Son, K.H.; Chang, H.W.; Kang, S.S.; Kim, H.P. Inhibition of chronic skin inflammation by topical anti-inflammatory flavonoid preparation, Ato formula. Arch. Pharm. Res., 2006, 29(6), 503-507.
[http://dx.doi.org/10.1007/BF02969424] [PMID: 16833019]
[108]
Kwak, W.J.; Kim, J.H.; Ryu, K.H.; Cho, Y.B.; Jeon, S.D.; Moon, C.K. Effects of gentianine on the production of pro-inflammatory cytokines in male Sprague-Dawley rats treated with lipopolysaccharide (LPS). Biol. Pharm. Bull., 2005, 28(4), 750-753.
[http://dx.doi.org/10.1248/bpb.28.750] [PMID: 15802824]
[109]
Yu, F.; Yu, F.; Li, R.; Wang, R. Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats. J. Ethnopharmacol., 2004, 95(1), 77-81.
[http://dx.doi.org/10.1016/j.jep.2004.06.025] [PMID: 15374610]
[110]
Mathew, A.; Taranalli, A.D.; Torgal, S.S. Evaluation of anti-inflammatory and wound healing activity of Gentiana lutea rhizome extracts in animals. Pharm. Biol., 2004, 42(1), 8-12.
[http://dx.doi.org/10.1080/13880200390502883]
[111]
Wang, S.; Xu, Y.; Jiang, W.; Zhang, Y. Isolation and identification of constituents with activity of inhibiting nitric oxide production in RAW 264.7 macrophages from Gentiana triflora. Planta Med., 2013, 79(8), 680-686.
[http://dx.doi.org/10.1055/s-0032-1328460] [PMID: 23599008]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy