Abstract
Background: Atherosclerosis (AS) remains prevalent despite hyperlipidemia-lowering therapies. Although multiple functions of miR-199b-5p have been implicated in cancers, its role in endothelial apoptosis and AS remains unclear. This study aimed to examine the role of miR-199b-5p in mitochondrial dynamics and endothelial apoptosis.
Methods: Human umbilical vein endothelial cells (HUVECs) treated with oxidized low-density lipoprotein (ox-LDL) were subjected to other treatments, followed by a series analysis. We found that ox-LDL-treated HUVECs were associated with miR-199b-5p downregulation, increased reactive oxygen species level, reduced adenosine triphosphate (ATP) production, mitochondrial fission, and apoptosis, whereas enhanced miR-199b-5p expression or applied mitochondrial division inhibitor 1 (Mdivi-1) markedly reversed these changes.
Results: Mechanistically, A-kinase anchoring protein 1 (AKAP1) was confirmed as a downstream target of miR-199b-5p by dual-luciferase activity reporter assay. AKAP1 overexpression reversed the anti-apoptotic effects of miR-199b-5p through the enhanced interaction of AKAP1 and dynamin protein 1 (DRP1) in ox-LDL–treated HUVECs. Moreover, miR-199b-5p downregulation, AKAP1 upregulation, and excessive mitochondrial fission were verified in human coronary AS endothelial tissues.
Conclusion: The miR-199b-5p-dependent regulation of AKAP1/DRP1 is required to inhibit hyperlipidemia- induced mitochondrial fission and endothelial injury and may be a promising therapeutic target for AS.
Keywords: miR-199b-5p, AKAP1, mitochondrial fission, DRP1, apoptosis, endothelial cell.
Graphical Abstract
[http://dx.doi.org/10.1016/j.jacc.2019.04.036] [PMID: 31221263]
[http://dx.doi.org/10.1113/EP087751] [PMID: 31124216]
[PMID: 31599450]
[http://dx.doi.org/10.1093/cvr/cvw052] [PMID: 26976621]
[http://dx.doi.org/10.1097/MAJ.0b013e318224a147] [PMID: 21747278]
[http://dx.doi.org/10.1006/jmcc.2001.1419] [PMID: 11549346]
[http://dx.doi.org/10.1155/2021/5450685] [PMID: 34925646]
[http://dx.doi.org/10.3892/ijmm.2021.4993] [PMID: 34212983]
[http://dx.doi.org/10.1016/j.bbrc.2018.09.194] [PMID: 30309653]
[PMID: 33313638]
[http://dx.doi.org/10.1007/s11010-021-04061-0] [PMID: 33492610]
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[http://dx.doi.org/10.1161/CIRCRESAHA.119.315252] [PMID: 31896304]
[http://dx.doi.org/10.1038/emboj.2011.198] [PMID: 21701560]
[http://dx.doi.org/10.1016/j.cmet.2012.01.009] [PMID: 22326220]
[http://dx.doi.org/10.1080/15384047.2020.1831373] [PMID: 33131397]
[http://dx.doi.org/10.1002/jcp.29646] [PMID: 32108342]
[http://dx.doi.org/10.3892/ol.2020.12251] [PMID: 33193848]
[http://dx.doi.org/10.3389/fcvm.2020.592550] [PMID: 33330653]
[http://dx.doi.org/10.1111/jcmm.14747] [PMID: 31660694]
[http://dx.doi.org/10.1021/jf800175a] [PMID: 18522405]
[http://dx.doi.org/10.1590/1414-431x20209386] [PMID: 33470395]
[http://dx.doi.org/10.1007/s11010-014-2166-4] [PMID: 25060910]
[http://dx.doi.org/10.1523/JNEUROSCI.0649-18.2018] [PMID: 30093535]
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10185] [PMID: 29335250]
[http://dx.doi.org/10.1089/ars.2011.4105] [PMID: 21668405]
[http://dx.doi.org/10.1089/ars.2010.3286] [PMID: 20518704]
[http://dx.doi.org/10.1371/journal.pbio.3000808] [PMID: 32817651]
[http://dx.doi.org/10.1007/s00592-019-01366-x] [PMID: 31115753]
[http://dx.doi.org/10.1016/j.bbrc.2018.05.165] [PMID: 29807015]
[PMID: 30610808]
[http://dx.doi.org/10.1038/cddis.2013.134] [PMID: 23598416]
[http://dx.doi.org/10.15252/embj.2021108587]
[http://dx.doi.org/10.1038/s41467-018-07543-w] [PMID: 30531964]
[http://dx.doi.org/10.1016/j.devcel.2017.02.020] [PMID: 28350990]
[http://dx.doi.org/10.1016/S0300-9084(02)00027-5] [PMID: 12628297]
[http://dx.doi.org/10.1007/s11481-016-9704-7] [PMID: 27562848]
[http://dx.doi.org/10.3389/fimmu.2021.628168] [PMID: 33717152]
[http://dx.doi.org/10.3390/molecules26041071] [PMID: 33670601]
[http://dx.doi.org/10.1097/TA.0000000000001593] [PMID: 28930961]