Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

An Updated Review on the Role of Single Nucleotide Polymorphisms in COVID-19 Disease Severity: A Global Aspect

Author(s): Jun Wei Ng, Eric Tzyy Jiann Chong and Ping-Chin Lee*

Volume 23, Issue 13, 2022

Published on: 12 April, 2022

Page: [1596 - 1611] Pages: 16

DOI: 10.2174/1389201023666220114162347

Price: $65

Abstract

Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and recently has become a serious global pandemic. Age, gender, and comorbidities are known to be common risk factors for severe COVID-19 but are not enough to fully explain the magnitude of their effect on the risk of severity of the disease. Single nucleotide polymorphisms (SNPs) in several genes have been reported as a genetic factor contributing to COVID-19 severity. This comprehensive review focuses on the association between SNPs in four important genes and COVID-19 severity in a global aspect. We discuss a total of 39 SNPs in this review: five SNPs in the ABO gene, nine SNPs in the angiotensin-converting enzyme 2 (ACE2) gene, 19 SNPs in the transmembrane protease serine 2 (TMPRSS2) gene, and six SNPs in the toll-like receptor 7 (TLR7) gene. These SNPs data could assist in monitoring an individual’s risk of severe COVID-19 disease, and therefore personalized management and pharmaceutical treatment could be planned in COVID-19 patients.

Keywords: COVID-19 single nucleotide polymorphism, ABO, angiotensin-converting enzyme 2, transmembrane protease, serine 2, toll-like receptor 7.

Graphical Abstract

[1]
World Health Organization. Transmission of SARS-CoV-2: Implications for Infection Prevention Precautions. Available from: https://www.who.int/news-room/commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions (Accessed April 13, 2021).
[2]
World Health Organization. WHO-convened Global Study of Origins of SARS-CoV-2: China Part. Available from: https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part (Accessed April 13, 2021).
[3]
Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; Cookingham, J.; Coppa, K.; Diefenbach, M.A.; Dominello, A.J.; Duer-Hefele, J.; Falzon, L.; Gitlin, J.; Hajizadeh, N.; Harvin, T.G.; Hirschwerk, D.A.; Kim, E.J.; Kozel, Z.M.; Marrast, L.M.; Mogavero, J.N.; Osorio, G.A.; Qiu, M.; Zanos, T.P. Presenting Characteris-tics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA, 2020, 323(20), 2052-2059.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[4]
Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; Iotti, G.; Latronico, N.; Lorini, L.; Merler, S.; Natalini, G.; Piatti, A.; Ranieri, M.V.; Scandroglio, A.M.; Storti, E.; Cecconi, M.; Pesenti, A. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA, 2020, 323(16), 1574-1581.
[http://dx.doi.org/10.1001/jama.2020.5394] [PMID: 32250385]
[5]
van der Made, C.I.; Simons, A.; Schuurs-Hoeijmakers, J.; van den Heuvel, G.; Mantere, T.; Kersten, S.; van Deuren, R.C.; Steehouwer, M.; van Reijmersdal, S.V.; Jaeger, M.; Hofste, T.; Astuti, G.; Corominas Galbany, J.; van der Schoot, V.; van der Hoeven, H.; Hagmolen Of Ten Have, W.; Klijn, E.; van den Meer, C.; Fiddelaers, J.; de Mast, Q.; Bleeker-Rovers, C.P.; Joosten, L.A.B.; Yntema, H.G.; Gilissen, C.; Nelen, M.; van der Meer, J.W.M.; Brunner, H.G.; Netea, M.G.; van de Veerdonk, F.L.; Hoischen, A. Presence of genetic variants among young men with severe COVID-19. JAMA, 2020, 324(7), 663-673.
[http://dx.doi.org/10.1001/jama.2020.13719] [PMID: 32706371]
[6]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retro-spective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[7]
Ackermann, M.; Verleden, S.E.; Kuehnel, M.; Haverich, A.; Welte, T.; Laenger, F.; Vanstapel, A.; Werlein, C.; Stark, H.; Tzankov, A.; Li, W.W.; Li, V.W.; Mentzer, S.J.; Jonigk, D. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N. Engl. J. Med., 2020, 383(2), 120-128.
[http://dx.doi.org/10.1056/NEJMoa2015432] [PMID: 32437596]
[8]
Bilaloglu, S.; Aphinyanaphongs, Y.; Jones, S.; Iturrate, E.; Hochman, J.; Berger, J.S. Thrombosis in hospitalized patients with COVID-19 in a New York City health system. JAMA, 2020, 324(8), 799-801.
[http://dx.doi.org/10.1001/jama.2020.13372] [PMID: 32702090]
[9]
Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; Merson, L.; Lee, J.; Plotkin, D.; Sigfrid, L.; Halpin, S.; Jackson, C.; Gamble, C.; Horby, P.W.; Nguyen-Van-Tam, J.S.; Ho, A.; Russell, C.D.; Dunning, J.; Openshaw, P.J.; Baillie, J.K.; Semple, M.G. Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. BMJ, 2020, 369, m1985.
[http://dx.doi.org/10.1136/bmj.m1985] [PMID: 32444460]
[10]
Salian, V.S.; Wright, J.A.; Vedell, P.T.; Nair, S.; Li, C.; Kandimalla, M.; Tang, X.; Carmona Porquera, E.M.; Kalari, K.R.; Kandimalla, K.K. COVID-19 transmission, current treatment, and future therapeutic strategies. Mol. Pharm., 2021, 18(3), 754-771.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00608] [PMID: 33464914]
[11]
Skevaki, C.; Pararas, M.; Kostelidou, K.; Tsakris, A.; Routsias, J.G. Single nucleotide polymorphisms of Toll-like receptors and suscepti-bility to infectious diseases. Clin. Exp. Immunol., 2015, 180(2), 165-177.
[http://dx.doi.org/10.1111/cei.12578] [PMID: 25560985]
[12]
Trejo-de la O. A.; Hernández-Sancén, P.; Maldonado-Bernal, C. Relevance of single-nucleotide polymorphisms in human TLR genes to infectious and inflammatory diseases and cancer. Genes Immun., 2014, 15(4), 199-209.
[http://dx.doi.org/10.1038/gene.2014.10] [PMID: 24622688]
[13]
Nogales, A.L.; DeDiego, M. Host single nucleotide polymorphisms modulating influenza A virus disease in humans. Pathogens, 2019, 8(4), 168.
[http://dx.doi.org/10.3390/pathogens8040168] [PMID: 31574965]
[14]
Kominato, Y.; Sano, R.; Takahashi, Y.; Hayakawa, A.; Ogasawara, K. Human ABO gene transcriptional regulation. Transfusion, 2020, 60(4), 860-869.
[http://dx.doi.org/10.1111/trf.15760] [PMID: 32216153]
[15]
Kumar, N.; Kapoor, A.; Kalwar, A.; Narayan, S.; Singhal, M.K.; Kumar, A.; Mewara, A.; Bardia, M.R. Allele frequency of ABO blood group antigen and the risk of esophageal cancer. BioMed Res. Int., 2014, 2014286810
[http://dx.doi.org/10.1155/2014/286810] [PMID: 25054136]
[16]
Ah-Moye, D.; Davies, C.; Goody, J.; Hayward, P.; Frewin, R. Introduction to Haematology and Transfusion Science. In: Clinical Biochem-istry: Metabolic and Clinical Aspects; Marshall, W.; Lapsley, M.; Day, A.; Ayling, R., Eds.; Elsevier: Amsterdam, Netherlands, 2014, pp. 497-514.
[http://dx.doi.org/10.1016/B978-0-7020-5140-1.00026-2]
[17]
Alpoim, P.N.; de Barros Pinheiro, M.; Junqueira, D.R.G.; Freitas, L.G. das Graças Carvalho, M.; Fernandes, A.P.; Komatsuzaki, F.; Gomes, K.B.; Sant’Ana Dusse, L.M. Preeclampsia and ABO blood groups: A systematic review and meta-analysis. Mol. Biol. Rep., 2013, 40(3), 2253-2261.
[http://dx.doi.org/10.1007/s11033-012-2288-2] [PMID: 23184045]
[18]
He, M.; Wolpin, B.; Rexrode, K.; Manson, J.E.; Rimm, E.; Hu, F.B.; Qi, L. ABO blood group and risk of coronary heart disease in two pro-spective cohort studies. Arterioscler. Thromb. Vasc. Biol., 2012, 32(9), 2314-2320.
[http://dx.doi.org/10.1161/ATVBAHA.112.248757] [PMID: 22895671]
[19]
Miao, S-Y.; Zhou, W.; Chen, L.; Wang, S.; Liu, X-A. Influence of ABO blood group and Rhesus factor on breast cancer risk: A meta-analysis of 9665 breast cancer patients and 244,768 controls. Asia Pac. J. Clin. Oncol., 2014, 10(2), 101-108.
[http://dx.doi.org/10.1111/ajco.12083] [PMID: 23714093]
[20]
Li, B.; Tan, B.; Chen, C.; Zhao, L.; Qin, L. Association between the ABO blood group and risk of common cancers. J. Evid. Based Med., 2014, 7(2), 79-83.
[http://dx.doi.org/10.1111/jebm.12098] [PMID: 25155765]
[21]
Wang, W.; Liu, L.; Wang, Z.; Lu, X.; Wei, M.; Lin, T.; Zhang, Y.; Jiang, S.; Wang, Q.; Cao, Z.; Shi, M. ABO blood group and esophageal carcinoma risk: from a case-control study in Chinese population to meta-analysis. Cancer Causes Control, 2014, 25(10), 1369-1377.
[http://dx.doi.org/10.1007/s10552-014-0442-y] [PMID: 25064033]
[22]
Lindesmith, L.; Moe, C.; Marionneau, S.; Ruvoen, N.; Jiang, X.; Lindblad, L.; Stewart, P.; LePendu, J.; Baric, R. Human susceptibility and resistance to Norwalk virus infection. Nat. Med., 2003, 9(5), 548-553.
[http://dx.doi.org/10.1038/nm860] [PMID: 12692541]
[23]
Hutson, A.M.; Atmar, R.L.; Graham, D.Y.; Estes, M.K. Norwalk virus infection and disease is associated with ABO histo-blood group type. J. Infect. Dis., 2002, 185(9), 1335-1337.
[http://dx.doi.org/10.1086/339883] [PMID: 12001052]
[24]
Cheng, Y.; Cheng, G.; Chui, C.H.; Lau, F.Y.; Chan, P.K.S.; Ng, M.H.L.; Sung, J.J.Y.; Wong, R.S.M. ABO blood group and susceptibility to severe acute respiratory syndrome. JAMA, 2005, 293(12), 1450-1451.
[PMID: 15784866]
[25]
Li, Y.; Liu, L.; Huang, Y.; Zheng, H.; Li, L. Association of ABO polymorphisms and pancreatic Cancer/Cardiocerebrovascular disease: A meta-analysis. BMC Med. Genet., 2020, 21(1), 41.
[http://dx.doi.org/10.1186/s12881-020-0975-8] [PMID: 32093636]
[26]
Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; Grimsrud, M.M.; Milani, C.; Aziz, F.; Kässens, J.; May, S.; Wendorff, M.; Wienbrandt, L.; Uellendahl-Werth, F.; Zheng, T.; Yi, X.; de Pablo, R.; Cher-coles, A.G.; Palom, A.; Garcia-Fernandez, A.E.; Rodriguez-Frias, F.; Zanella, A.; Bandera, A.; Protti, A.; Aghemo, A.; Lleo, A.; Biondi, A.; Caballero-Garralda, A.; Gori, A.; Tanck, A.; Carreras Nolla, A.; Latiano, A.; Fracanzani, A.L.; Peschuck, A.; Julià, A.; Pesenti, A.; Voza, A.; Jiménez, D.; Mateos, B.; Nafria Jimenez, B.; Quereda, C.; Paccapelo, C.; Gassner, C.; Angelini, C.; Cea, C.; Solier, A.; Pestaña, D.; Muñiz-Diaz, E.; Sandoval, E.; Paraboschi, E.M.; Navas, E.; García Sánchez, F.; Ceriotti, F.; Martinelli-Boneschi, F.; Peyvandi, F.; Blasi, F.; Téllez, L.; Blanco-Grau, A.; Hemmrich-Stanisak, G.; Grasselli, G.; Costantino, G.; Cardamone, G.; Foti, G.; Aneli, S.; Kurihara, H.; ElAbd, H.; My, I.; Galván-Femenia, I.; Martín, J.; Erdmann, J.; Ferrusquía-Acosta, J.; Garcia-Etxebarria, K.; Izquierdo-Sanchez, L.; Bettini, L.R.; Sumoy, L.; Terranova, L.; Moreira, L.; Santoro, L.; Scudeller, L.; Mesonero, F.; Roade, L.; Rühlemann, M.C.; Schaefer, M.; Carrabba, M.; Riveiro-Barciela, M.; Figuera Basso, M.E.; Valsecchi, M.G.; Hernandez-Tejero, M.; Acosta-Herrera, M.; D’Angiò, M.; Baldini, M.; Cazzaniga, M.; Schulzky, M.; Cecconi, M.; Wittig, M.; Ciccarelli, M.; Rodríguez-Gandía, M.; Bocciolone, M.; Miozzo, M.; Montano, N.; Braun, N.; Sacchi, N.; Martínez, N.; Özer, O.; Palmieri, O.; Faverio, P.; Preatoni, P.; Bonfanti, P.; Omodei, P.; Tentorio, P.; Castro, P.; Rodrigues, P.M. Blan-dino Ortiz, A.; de Cid, R.; Ferrer, R.; Gualtierotti, R.; Nieto, R.; Goerg, S.; Badalamenti, S.; Marsal, S.; Matullo, G.; Pelusi, S.; Juzenas, S.; Aliberti, S.; Monzani, V.; Moreno, V.; Wesse, T.; Lenz, T.L.; Pumarola, T.; Rimoldi, V.; Bosari, S.; Albrecht, W.; Peter, W.; Romero-Gómez, M.; D’Amato, M.; Duga, S.; Banales, J.M.; Hov, J.R.; Folseraas, T.; Valenti, L.; Franke, A.; Karlsen, T.H. The Severe Covid-19 GWAS Group. Genomewide association study of severe Covid-19 with respiratory failure. N. Engl. J. Med., 2020, 383(16), 1522-1534.
[http://dx.doi.org/10.1056/NEJMoa2020283] [PMID: 32558485]
[27]
Hoiland, R.L.; Fergusson, N.A.; Mitra, A.R.; Griesdale, D.E.G.; Devine, D.V.; Stukas, S.; Cooper, J.; Thiara, S.; Foster, D.; Chen, L.Y.C.; Lee, A.Y.Y.; Conway, E.M.; Wellington, C.L.; Sekhon, M.S. The association of ABO blood group with indices of disease severity and mul-tiorgan dysfunction in COVID-19. Blood Adv., 2020, 4(20), 4981-4989.
[http://dx.doi.org/10.1182/bloodadvances.2020002623] [PMID: 33057633]
[28]
Balanovsky, O.; Petrushenko, V.; Mirzaev, K.; Abdullaev, S.; Gorin, I.; Chernevskiy, D.; Agdzhoyan, A.; Balanovska, E.; Alexander, K.; Sychev, D. The variation of genome sites associated with severe COVID-19 across populations: the worldwide and national patterns. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.11.22.20236414]
[29]
Teupser, D.; Baber, R.; Ceglarek, U.; Scholz, M.; Illig, T.; Gieger, C.; Holdt, L.M.; Leichtle, A.; Greiser, K.H.; Huster, D.; Linsel-Nitschke, P.; Schäfer, A.; Braund, P.S.; Tiret, L.; Stark, K.; Raaz-Schrauder, D.; Fiedler, G.M.; Wilfert, W.; Beutner, F.; Gielen, S.; Grosshennig, A.; König, I.R.; Lichtner, P.; Heid, I.M.; Kluttig, A.; El Mokhtari, N.E.; Rubin, D.; Ekici, A.B.; Reis, A.; Garlichs, C.D.; Hall, A.S.; Matthes, G.; Wittekind, C.; Hengstenberg, C.; Cambien, F.; Schreiber, S.; Werdan, K.; Meitinger, T.; Loeffler, M.; Samani, N.J.; Erdmann, J.; Wichmann, H-E.; Schunkert, H.; Thiery, J. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ. Cardiovasc. Genet., 2010, 3(4), 331-339.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.907873] [PMID: 20529992]
[30]
Xu, H-L.; Cheng, J-R.; Zhang, W.; Wang, J.; Yu, H.; Ni, Q-X.; Risch, H.A.; Gao, Y-T. Re-evaluation of ABO gene polymorphisms detected in a genome-wide association study and risk of pancreatic ductal adenocarcinoma in a Chinese population. Chin. J. Cancer, 2014, 33(2), 68-73.
[http://dx.doi.org/10.5732/cjc.013.10060] [PMID: 23816557]
[31]
Olson, N.C.; Butenas, S.; Lange, L.A.; Lange, E.M.; Cushman, M.; Jenny, N.S.; Walston, J.; Souto, J.C.; Soria, J.M.; Chauhan, G.; Debette, S.; Longstreth, W.T.; Seshadri, S.; Reiner, A.P.; Tracy, R.P. Coagulation factor XII genetic variation, ex vivo thrombin generation, and stroke risk in the elderly: results from the Cardiovascular Health Study. J. Thromb. Haemost., 2015, 13(10), 1867-1877.
[http://dx.doi.org/10.1111/jth.13111] [PMID: 26286125]
[32]
Kerbikov, O.; Orekhov, P.; Borskaya, E.; Nosenko, N. High incidence of venous thrombosis in patients with moderate-to-severe COVID-19. Int. J. Hematol., 2021, 113(3), 344-347.
[http://dx.doi.org/10.1007/s12185-020-03061-y] [PMID: 33389655]
[33]
Zabaneh, D.; Gaunt, T.R.; Kumari, M.; Drenos, F.; Shah, S.; Berry, D.; Power, C.; Hypponen, E.; Shah, T.; Palmen, J.; Pallas, J.; Talmud, P.J.; Casas, J.P.; Sofat, R.; Lowe, G.; Rumley, A.; Morris, R.W.; Whincup, P.H.; Rodriguez, S.; Ebrahim, S.; Marmot, M.G.; Smith, G.D.; Lawlor, D.A.; Kivimaki, M.; Whittaker, J.; Hingorani, A.D.; Day, I.N.; Humphries, S.E. Genetic variants associated with Von Willebrand factor levels in healthy men and women identified using the HumanCVD BeadChip. Ann. Hum. Genet., 2011, 75(4), 456-467.
[http://dx.doi.org/10.1111/j.1469-1809.2011.00654.x] [PMID: 21534939]
[34]
Helms, J.; Tacquard, C.; Severac, F.; Leonard-Lorant, I.; Ohana, M.; Delabranche, X.; Merdji, H.; Clere-Jehl, R.; Schenck, M. Fagot Gan-det, F.; Fafi-Kremer, S.; Castelain, V.; Schneider, F.; Grunebaum, L.; Anglés-Cano, E.; Sattler, L.; Mertes, P.M.; Meziani, F. High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med., 2020, 46(6), 1089-1098.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[35]
Goel, R.; Bloch, E.M.; Pirenne, F.; Al-Riyami, A.Z.; Crowe, E.; Dau, L.; Land, K.; Townsend, M.; Jecko, T.; Rahimi-Levene, N.; Patidar, G.; Josephson, C.D.; Arora, S.; Vermeulen, M.; Vrielink, H.; Montemayor, C.; Oreh, A.; Hindawi, S.; van den Berg, K.; Serrano, K.; So-Osman, C.; Wood, E.; Devine, D.V.; Spitalnik, S.L. ABO blood group and COVID-19: A review on behalf of the ISBT COVID-19 Working Group. Vox Sang., 2021, 116(8), 849-861.
[http://dx.doi.org/10.1111/vox.13076] [PMID: 33578447]
[36]
Streetley, J.; Fonseca, A-V.; Turner, J.; Kiskin, N.I.; Knipe, L.; Rosenthal, P.B.; Carter, T. Stimulated release of intraluminal vesicles from Weibel-Palade bodies. Blood, 2019, 133(25), 2707-2717.
[http://dx.doi.org/10.1182/blood-2018-09-874552] [PMID: 30760452]
[37]
Delbrück, C.; Miesbach, W. The course of von Willebrand factor and factor VIII activity in patients with von Willebrand disease during pregnancy. Acta Haematol., 2019, 142(2), 71-78.
[http://dx.doi.org/10.1159/000496820] [PMID: 31085919]
[38]
Aksenova, A.Y. Von Willebrand factor and endothelial damage: A possible association with COVID-19. Ekol. Genet., 2020, 18(2), 135-138.
[http://dx.doi.org/10.17816/ecogen33973]
[39]
Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res., 2020, 69(12), 1181-1189.
[http://dx.doi.org/10.1007/s00011-020-01401-6] [PMID: 32918567]
[40]
Sweeney, J.M.; Barouqa, M.; Krause, G.J.; Gonzalez-Lugo, J.D.; Rahman, S.; Gil, M.R. Evidence for secondary thrombotic microangiopa-thy in COVID-19. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.10.20.20215608]
[41]
Lopez-Castaneda, S.; García-Larragoiti, N.; Cano-Mendez, A.; Blancas-Ayala, K.; Damian-Vázquez, G.; Perez-Medina, A.I.; Chora-Hernández, L.D.; Arean-Martínez, C.; Viveros-Sandoval, M.E. Inflammatory and prothrombotic biomarkers associated with the severity of COVID-19 infection. Clin. Appl. Thromb. Hemost., 2021, 271076029621999099
[http://dx.doi.org/10.1177/1076029621999099] [PMID: 33835872]
[42]
Mei, Z.W.; van Wijk, X.M.R.; Pham, H.P.; Marin, M.J. Role of von Willebrand factor in COVID-19 associated coagulopathy. J. Appl. Lab. Med., 2021, 6(5), 1305-1315.
[http://dx.doi.org/10.1093/jalm/jfab042] [PMID: 33930144]
[43]
Rauch, A.; Labreuche, J.; Lassalle, F.; Goutay, J.; Caplan, M.; Charbonnier, L.; Rohn, A.; Jeanpierre, E.; Dupont, A.; Duhamel, A.; Faure, K.; Lambert, M.; Kipnis, E.; Garrigue, D.; Lenting, P.J.; Poissy, J.; Susen, S. Coagulation biomarkers are independent predictors of in-creased oxygen requirements in COVID-19. J. Thromb. Haemost., 2020, 18(11), 2942-2953.
[http://dx.doi.org/10.1111/jth.15067] [PMID: 32881304]
[44]
Ladikou, E.E.; Sivaloganathan, H.; Milne, K.M.; Arter, W.E.; Ramasamy, R.; Saad, R.; Stoneham, S.M.; Philips, B.; Eziefula, A.C.; Che-vassut, T. Von Willebrand factor (vWF): marker of endothelial damage and thrombotic risk in COVID-19? Clin. Med. (Lond.), 2020, 20(5), e178-e182.
[http://dx.doi.org/10.7861/clinmed.2020-0346] [PMID: 32694169]
[45]
Pottinger, B.E.; Read, R.C.; Paleolog, E.M.; Higgins, P.G.; Pearson, J.D. von Willebrand factor is an acute phase reactant in man. Thromb. Res., 1989, 53(4), 387-394.
[http://dx.doi.org/10.1016/0049-3848(89)90317-4] [PMID: 2467404]
[46]
Jiang, S.; Sun, L. Tongue Sole CD209: A pattern-recognition receptor that binds a broad range of microbes and promotes phagocytosis. Int. J. Mol. Sci., 2017, 18(9), 1848.
[http://dx.doi.org/10.3390/ijms18091848] [PMID: 28869534]
[47]
Wang, L.; Balmat, T.J.; Antonia, A.L.; Constantine, F.J.; Henao, R.; Burke, T.W.; Ingham, A.; McClain, M.T.; Tsalik, E.L.; Ko, E.R.; Gins-burg, G.S.; DeLong, M.R.; Shen, X.; Woods, C.W.; Hauser, E.R.; Ko, D.C. An atlas connecting shared genetic architecture of human diseas-es and molecular phenotypes provides insight into COVID-19 susceptibility. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.12.20.20248572]
[48]
Jeffers, S.A.; Tusell, S.M.; Gillim-Ross, L.; Hemmila, E.M.; Achenbach, J.E.; Babcock, G.J.; Thomas, W.D., Jr; Thackray, L.B.; Young, M.D.; Mason, R.J.; Ambrosino, D.M.; Wentworth, D.E.; Demartini, J.C.; Holmes, K.V. CD209L (L-SIGN) is a receptor for severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(44), 15748-15753.
[http://dx.doi.org/10.1073/pnas.0403812101] [PMID: 15496474]
[49]
Rahimi, N. C-type lectin CD209L/L-SIGN and CD209/DC-SIGN: cell adhesion molecules turned to pathogen recognition receptors. Biology (Basel), 2020, 10(1), 1.
[http://dx.doi.org/10.3390/biology10010001] [PMID: 33375175]
[50]
Amraie, R.; Napoleon, M.A.; Yin, W.; Berrigan, J.; Suder, E.; Zhao, G.; Olejnik, J.; Gummuluru, S.; Muhlberger, E.; Chitalia, V.; Rahimi, N. CD209L/L-SIGN and CD209/DC-SIGN act as receptors for SARS-CoV-2 and are differentially expressed in lung and kidney epithelial and endothelial cells. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.22.165803]
[51]
Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional recep-tor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[52]
Li, M-Y.; Li, L.; Zhang, Y.; Wang, X-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty, 2020, 9(1), 45.
[http://dx.doi.org/10.1186/s40249-020-00662-x] [PMID: 32345362]
[53]
Ganier, C.; Du-Harpur, X.; Harun, N.; Wan, B.; Arthurs, C.; Luscombe, N.M.; Watt, F.M.; Lynch, M.D. CD147 (BSG) but not ACE2 ex-pression is detectable in vascular endothelial cells within single cell RNA sequencing datasets derived from multiple tissues in healthy indi-viduals. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.05.29.123513]
[54]
Hikmet, F.; Méar, L.; Edvinsson, Å.; Micke, P.; Uhlén, M.; Lindskog, C. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol., 2020, 16(7)e9610
[http://dx.doi.org/10.15252/msb.20209610] [PMID: 32715618]
[55]
Kim, Y-C.; Jeong, B-H. Strong correlation between the case fatality rate of COVID-19 and the rs6598045 single nucleotide polymorphism (SNP) of the interferon-induced transmembrane protein 3 (IFITM3) gene at the population-level. Genes (Basel), 2020, 12(1), 42.
[http://dx.doi.org/10.3390/genes12010042] [PMID: 33396837]
[56]
Lehrer, S.; Rheinstein, P.H. ABO blood groups, COVID-19 infection and mortality. Blood Cells Mol. Dis., 2021, 89102571
[http://dx.doi.org/10.1016/j.bcmd.2021.102571] [PMID: 33894687]
[57]
Groot, H.E.; Villegas Sierra, L.E.; Said, M.A.; Lipsic, E.; Karper, J.C.; van der Harst, P. Genetically determined ABO blood group and its associations with health and disease. Arterioscler. Thromb. Vasc. Biol., 2020, 40(3), 830-838.
[http://dx.doi.org/10.1161/ATVBAHA.119.313658] [PMID: 31969017]
[58]
Gómez, J.; Albaiceta, G.M.; García-Clemente, M.; García-Gala, J.M.; Coto, E. DNA genotyping of the ABO gene showed a significant asso-ciation of the A-group (A1/A2 variants) with severe COVID-19. Eur. J. Intern. Med., 2021, 88, 129-132.
[http://dx.doi.org/10.1016/j.ejim.2021.02.016] [PMID: 33750629]
[59]
Shelton, J.F.; Shastri, A.J.; Ye, C.; Weldon, C.H.; Filshtein-Sonmez, T.; Coker, D.; Symons, A.; Esparza-Gordillo, J.; Aslibekyan, S.; Auton, A. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. Nat. Genet., 2021, 53(6), 801-808.
[http://dx.doi.org/10.1038/s41588-021-00854-7] [PMID: 33888907]
[60]
Nakao, M.; Matsuo, K.; Ito, H.; Shitara, K.; Hosono, S.; Watanabe, M.; Ito, S.; Sawaki, A.; Iida, S.; Sato, S.; Yatabe, Y.; Yamao, K.; Ueda, R.; Tajima, K.; Hamajima, N.; Tanaka, H. ABO genotype and the risk of gastric cancer, atrophic gastritis, and Helicobacter pylori infection. Cancer Epidemiol. Biomarkers Prev., 2011, 20(8), 1665-1672.
[http://dx.doi.org/10.1158/1055-9965.EPI-11-0213] [PMID: 21680535]
[61]
Greer, J.B.; LaRusch, J.; Brand, R.E.; O’Connell, M.R.; Yadav, D.; Whitcomb, D.C. ABO blood group and chronic pancreatitis risk in the NAPS2 cohort. Pancreas, 2011, 40(8), 1188-1194.
[http://dx.doi.org/10.1097/MPA.0b013e3182232975] [PMID: 21792085]
[63]
Chung, C-M.; Wang, R-Y.; Chen, J-W.; Fann, C.S.J.; Leu, H-B.; Ho, H-Y.; Ting, C-T.; Lin, T-H.; Sheu, S-H.; Tsai, W-C.; Chen, J-H.; Jong, Y-S.; Lin, S-J.; Chen, Y-T.; Pan, W-H. A genome-wide association study identifies new loci for ACE activity: potential implications for re-sponse to ACE inhibitor. Pharmacogenomics J., 2010, 10(6), 537-544.
[http://dx.doi.org/10.1038/tpj.2009.70] [PMID: 20066004]
[64]
Keidar, S.; Kaplan, M.; Gamliel-Lazarovich, A. ACE2 of the heart: From angiotensin I to angiotensin (1-7). Cardiovasc. Res., 2007, 73(3), 463-469.
[http://dx.doi.org/10.1016/j.cardiores.2006.09.006] [PMID: 17049503]
[65]
Dai, X. ABO blood group predisposes to COVID-19 severity and cardiovascular diseases. Eur. J. Prev. Cardiol., 2020, 27(13), 1436-1437.
[http://dx.doi.org/10.1177/2047487320922370] [PMID: 32343152]
[66]
Tukiainen, T.; Villani, A.C.; Yen, A.; Rivas, M.A.; Marshall, J.L.; Satija, R.; Aguirre, M.; Gauthier, L.; Fleharty, M.; Kirby, A.; Cummings, B.B.; Castel, S.E.; Karczewski, K.J.; Aguet, F.; Byrnes, A.; Lappalainen, T.; Regev, A.; Ardlie, K.G.; Hacohen, N.; MacArthur, D.G. Land-scape of X chromosome inactivation across human tissues. Nature, 2017, 550(7675), 244-248.
[http://dx.doi.org/10.1038/nature24265] [PMID: 29022598]
[67]
Gagliardi, M.C.; Tieri, P.; Ortona, E.; Ruggieri, A. ACE2 expression and sex disparity in COVID-19. Cell Death Discov., 2020, 6(1), 37.
[http://dx.doi.org/10.1038/s41420-020-0276-1] [PMID: 32499922]
[68]
Foresta, C.; Rocca, M.S.; Di Nisio, A. Gender susceptibility to COVID-19: A review of the putative role of sex hormones and X chromo-some. J. Endocrinol. Invest., 2021, 44(5), 951-956.
[http://dx.doi.org/10.1007/s40618-020-01383-6] [PMID: 32936429]
[69]
Bukowska, A.; Spiller, L.; Wolke, C.; Lendeckel, U.; Weinert, S.; Hoffmann, J.; Bornfleth, P.; Kutschka, I.; Gardemann, A.; Isermann, B.; Goette, A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp. Biol. Med. (Maywood), 2017, 242(14), 1412-1423.
[http://dx.doi.org/10.1177/1535370217718808] [PMID: 28661206]
[70]
Acheampong, D.O.; Barffour, I.K.; Boye, A.; Aninagyei, E.; Ocansey, S.; Morna, M.T. Male predisposition to severe COVID-19: Review of evidence and potential therapeutic prospects. Biomed. Pharmacother., 2020, 131110748
[http://dx.doi.org/10.1016/j.biopha.2020.110748] [PMID: 33152916]
[71]
Tavares, C.A.M.; Avelino-Silva, T.J.; Benard, G.; Cardozo, F.A.M.; Fernandes, J.R.; Girardi, A.C.C.; Jacob Filho, W. ACE2 expression and risk factors for COVID-19 severity in patients with advanced age. Arq. Bras. Cardiol., 2020, 115(4), 701-707.
[http://dx.doi.org/10.36660/abc.20200487] [PMID: 33111872]
[72]
Chen, J.; Jiang, Q.; Xia, X.; Liu, K.; Yu, Z.; Tao, W.; Gong, W.; Han, J.J. Individual variation of the SARS-CoV-2 receptor ACE2 gene ex-pression and regulation. Aging Cell, 2020, 19(7)e13168
[http://dx.doi.org/10.1111/acel.13168] [PMID: 32558150]
[73]
Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol. Rev., 2018, 98(1), 505-553.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[74]
Kuba, K.; Imai, Y.; Penninger, J.M. Angiotensin-converting enzyme 2 in lung diseases. Curr. Opin. Pharmacol., 2006, 6(3), 271-276.
[http://dx.doi.org/10.1016/j.coph.2006.03.001] [PMID: 16581295]
[75]
Imai, Y.; Kuba, K.; Ohto-Nakanishi, T.; Penninger, J.M. Angiotensin-converting enzyme 2 (ACE2) in disease pathogenesis. Circ. J., 2010, 74(3), 405-410.
[http://dx.doi.org/10.1253/circj.CJ-10-0045] [PMID: 20134095]
[76]
Ni, W.; Yang, X.; Yang, D.; Bao, J.; Li, R.; Xiao, Y.; Hou, C.; Wang, H.; Liu, J.; Yang, D.; Xu, Y.; Cao, Z.; Gao, Z. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit. Care, 2020, 24(1), 422.
[http://dx.doi.org/10.1186/s13054-020-03120-0] [PMID: 32660650]
[77]
Gkogkou, E.; Barnasas, G.; Vougas, K.; Trougakos, I.P. Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators. Redox Biol., 2020, 36101615
[http://dx.doi.org/10.1016/j.redox.2020.101615] [PMID: 32863223]
[78]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[79]
Wooster, L.; Nicholson, C.J.; Sigurslid, H.H.; Lino Cardenas, C.L.; Malhotra, R. Polymorphisms in the ACE2 locus associate with severity of COVID-19 infection. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.18.20135152]
[80]
Srivastava, A.; Bandopadhyay, A.; Das, D.; Pandey, R.K.; Singh, V.; Khanam, N.; Srivastava, N.; Singh, P.P.; Dubey, P.K.; Pathak, A.; Gupta, P.; Rai, N.; Sultana, G.N.N.; Chaubey, G. Genetic association of ACE2 rs2285666 polymorphism with COVID-19 spatial distribu-tion in India. Front. Genet., 2020, 11564741
[http://dx.doi.org/10.3389/fgene.2020.564741] [PMID: 33101387]
[81]
Patnaik, M.; Pati, P.; Swain, S.N.; Mohapatra, M.K.; Dwibedi, B.; Kar, S.K.; Ranjit, M. Association of angiotensin-converting enzyme and angiotensin-converting enzyme-2 gene polymorphisms with essential hypertension in the population of Odisha, India. Ann. Hum. Biol., 2014, 41(2), 145-152.
[http://dx.doi.org/10.3109/03014460.2013.837195] [PMID: 24112034]
[82]
Pan, Y.; Wang, T.; Li, Y.; Guan, T.; Lai, Y.; Shen, Y.; Zeyaweiding, A.; Maimaiti, T.; Li, F.; Zhao, H.; Liu, C. Association of ACE2 poly-morphisms with susceptibility to essential hypertension and dyslipidemia in Xinjiang, China. Lipids Health Dis., 2018, 17(1), 241.
[http://dx.doi.org/10.1186/s12944-018-0890-6] [PMID: 30342552]
[83]
Fan, Z.; Wu, G.; Yue, M.; Ye, J.; Chen, Y.; Xu, B.; Shu, Z.; Zhu, J.; Lu, N.; Tan, X. Hypertension and hypertensive left ventricular hyper-trophy are associated with ACE2 genetic polymorphism. Life Sci., 2019, 225, 39-45.
[http://dx.doi.org/10.1016/j.lfs.2019.03.059] [PMID: 30917908]
[84]
Luo, Y.; Liu, C.; Guan, T.; Li, Y.; Lai, Y.; Li, F.; Zhao, H.; Maimaiti, T.; Zeyaweiding, A. Association of ACE2 genetic polymorphisms with hypertension-related target organ damages in south Xinjiang. Hypertens. Res., 2019, 42(5), 681-689.
[http://dx.doi.org/10.1038/s41440-018-0166-6] [PMID: 30542083]
[85]
Patel, S.K.; Wai, B.; Ord, M.; MacIsaac, R.J.; Grant, S.; Velkoska, E.; Panagiotopoulos, S.; Jerums, G.; Srivastava, P.M.; Burrell, L.M. As-sociation of ACE2 genetic variants with blood pressure, left ventricular mass, and cardiac function in Caucasians with type 2 diabetes. Am. J. Hypertens., 2012, 25(2), 216-222.
[http://dx.doi.org/10.1038/ajh.2011.188] [PMID: 21993363]
[86]
Lieb, W.; Graf, J.; Götz, A.; König, I.R.; Mayer, B.; Fischer, M.; Stritzke, J.; Hengstenberg, C.; Holmer, S.R.; Döring, A.; Löwel, H.; Schunkert, H.; Erdmann, J. Association of angiotensin-converting enzyme 2 (ACE2) gene polymorphisms with parameters of left ventricu-lar hypertrophy in men. Results of the MONICA Augsburg echocardiographic substudy. J. Mol. Med. (Berl.), 2006, 84(1), 88-96.
[http://dx.doi.org/10.1007/s00109-005-0718-5] [PMID: 16283142]
[87]
Liu, C.; Li, Y.; Guan, T.; Lai, Y.; Shen, Y.; Zeyaweiding, A.; Zhao, H.; Li, F.; Maimaiti, T. ACE2 polymorphisms associated with cardio-vascular risk in Uygurs with type 2 diabetes mellitus. Cardiovasc. Diabetol., 2018, 17(1), 127.
[http://dx.doi.org/10.1186/s12933-018-0771-3] [PMID: 30227878]
[88]
Zheng, Y-Y.; Ma, Y-T.; Zhang, J-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol., 2020, 17(5), 259-260.
[http://dx.doi.org/10.1038/s41569-020-0360-5] [PMID: 32139904]
[89]
Fang, L.; Karakiulakis, G.; Roth, M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir. Med., 2020, 8(4)e21
[http://dx.doi.org/10.1016/S2213-2600(20)30116-8] [PMID: 32171062]
[90]
Mukherjee, S.; Pahan, K. Is COVID-19 Gender-sensitive? J. Neuroimmune Pharmacol., 2021, 16(1), 38-47.
[http://dx.doi.org/10.1007/s11481-020-09974-z] [PMID: 33405098]
[91]
Hamet, P.; Pausova, Z.; Attaoua, R.; Hishmih, C.; Haloui, M.; Shin, J.; Paus, T.; Abrahamowicz, M.; Gaudet, D.; Santucci, L.; Kotchen, T.A.; Cowley, A.W.; Hussin, J.; Tremblay, J. SARS-CoV-2 receptor ACE2 gene is associated with hypertension and severity of COVID 19: interaction with sex, obesity, and smoking. Am. J. Hypertens., 2021, 34(4), 367-376.
[http://dx.doi.org/10.1093/ajh/hpaa223] [PMID: 33386398]
[92]
Zhong, J.; Yan, Z.; Liu, D.; Ni, Y.; Zhao, Z.; Zhu, S.; Tepel, M.; Zhu, Z. Association of angiotensin-converting enzyme 2 gene A/G poly-morphism and elevated blood pressure in Chinese patients with metabolic syndrome. J. Lab. Clin. Med., 2006, 147(2), 91-95.
[http://dx.doi.org/10.1016/j.lab.2005.10.001] [PMID: 16459167]
[93]
Zhang, Q.; Cong, M.; Wang, N.; Li, X.; Zhang, H.; Zhang, K.; Jin, M.; Wu, N.; Qiu, C.; Li, J. Association of angiotensin-converting enzyme 2 gene polymorphism and enzymatic activity with essential hypertension in different gender: A case-control study. Medicine (Baltimore), 2018, 97(42)e12917
[http://dx.doi.org/10.1097/MD.0000000000012917] [PMID: 30335025]
[94]
Vangjeli, C.; Dicker, P.; Tregouet, D-A.; Shields, D.C.; Evans, A.; Stanton, A.V. A polymorphism in ACE2 is associated with a lower risk for fatal cardiovascular events in females: the MORGAM project. J. Renin Angiotensin Aldosterone Syst., 2011, 12(4), 504-509.
[http://dx.doi.org/10.1177/1470320311405557] [PMID: 21490025]
[95]
Yang, W.; Huang, W.; Su, S.; Li, B.; Zhao, W.; Chen, S.; Gu, D. Association study of ACE2 (angiotensin I-converting enzyme 2) gene pol-ymorphisms with coronary heart disease and myocardial infarction in a Chinese Han population. Clin. Sci. (Lond.), 2006, 111(5), 333-340.
[http://dx.doi.org/10.1042/CS20060020] [PMID: 16822235]
[96]
Novelli, A.; Biancolella, M.; Borgiani, P.; Cocciadiferro, D.; Colona, V.L.; D’Apice, M.R.; Rogliani, P.; Zaffina, S.; Leonardis, F.; Campana, A.; Raponi, M.; Andreoni, M.; Grelli, S.; Novelli, G. Analysis of ACE2 genetic variants in 131 Italian SARS-CoV-2-positive patients. Hum. Genomics, 2020, 14(1), 29.
[http://dx.doi.org/10.1186/s40246-020-00279-z] [PMID: 32917283]
[97]
Karakaş Çelik, S.; Çakmak Genç, G.; Pişkin, N.; Açikgöz, B.; Altinsoy, B.; Kurucu İşsiz, B.; Dursun, A. Polymorphisms of ACE (I/D) and ACE2 receptor gene (Rs2106809, Rs2285666) are not related to the clinical course of COVID-19: A case study. J. Med. Virol., 2021, 93(10), 5947-5952.
[http://dx.doi.org/10.1002/jmv.27160] [PMID: 34170561]
[98]
Gómez, J.; Albaiceta, G.M.; García-Clemente, M.; López-Larrea, C.; Amado-Rodríguez, L.; Lopez-Alonso, I.; Hermida, T.; Enriquez, A.I.; Herrero, P.; Melón, S.; Alvarez-Argüelles, M.E.; Boga, J.A.; Rojo-Alba, S.; Cuesta-Llavona, E.; Alvarez, V.; Lorca, R.; Coto, E. Angioten-sin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene, 2020, 762145102
[http://dx.doi.org/10.1016/j.gene.2020.145102] [PMID: 32882331]
[99]
Asselta, R.; Paraboschi, E.M.; Mantovani, A.; Duga, S. ACE2 and TMPRSS2 variants and expression as candidates to sex and country dif-ferences in COVID-19 severity in Italy. Aging (Albany NY), 2020, 12(11), 10087-10098.
[http://dx.doi.org/10.18632/aging.103415] [PMID: 32501810]
[100]
Chaudhry, F.; Lavandero, S.; Xie, X.; Sabharwal, B.; Zheng, Y-Y.; Correa, A.; Narula, J.; Levy, P. Manipulation of ACE2 expression in COVID-19. Open Heart, 2020, 7(2)e001424
[http://dx.doi.org/10.1136/openhrt-2020-001424] [PMID: 33443121]
[101]
Chen, Y.Y.; Zhang, P.; Zhou, X.M.; Liu, D.; Zhong, J.C.; Zhang, C.J.; Jin, L.J.; Yu, H.M. Relationship between genetic variants of ACE2 gene and circulating levels of ACE2 and its metabolites. J. Clin. Pharm. Ther., 2018, 43(2), 189-195.
[http://dx.doi.org/10.1111/jcpt.12625] [PMID: 28895159]
[102]
Lin, B.; Ferguson, C.; White, J.T.; Wang, S.; Vessella, R.; True, L.D.; Hood, L.; Nelson, P.S. Prostate-localized and androgen-regulated ex-pression of the membrane-bound serine protease TMPRSS2. Cancer Res., 1999, 59(17), 4180-4184.
[PMID: 10485450]
[103]
Shen, L.W.; Mao, H.J.; Wu, Y.L.; Tanaka, Y.; Zhang, W. TMPRSS2: A potential target for treatment of influenza virus and coronavirus infections. Biochimie, 2017, 142, 1-10.
[http://dx.doi.org/10.1016/j.biochi.2017.07.016] [PMID: 28778717]
[104]
Baughn, L.B.; Sharma, N.; Elhaik, E.; Sekulic, A.; Bryce, A.H.; Fonseca, R. Targeting TMPRSS2 in SARS-CoV-2 infection. Mayo Clin. Proc., 2020, 95(9), 1989-1999.
[http://dx.doi.org/10.1016/j.mayocp.2020.06.018] [PMID: 32861340]
[105]
Wang, S.; Zhou, X.; Zhang, T.; Wang, Z. The need for urogenital tract monitoring in COVID-19. Nat. Rev. Urol., 2020, 17(6), 314-315.
[http://dx.doi.org/10.1038/s41585-020-0319-7] [PMID: 32313110]
[106]
Bertram, S.; Heurich, A.; Lavender, H.; Gierer, S.; Danisch, S.; Perin, P.; Lucas, J.M.; Nelson, P.S.; Pöhlmann, S.; Soilleux, E.J. Influenza and SARS-coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One, 2012, 7(4)e35876
[http://dx.doi.org/10.1371/journal.pone.0035876] [PMID: 22558251]
[107]
Collin, J.; Queen, R.; Zerti, D.; Dorgau, B.; Georgiou, M.; Djidrovski, I.; Hussain, R.; Coxhead, J.M.; Joseph, A.; Rooney, P.; Lisgo, S.; Figueiredo, F.; Armstrong, L.; Lako, M. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul. Surf., 2021, 19, 190-200.
[http://dx.doi.org/10.1016/j.jtos.2020.05.013] [PMID: 32502616]
[108]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feld-man, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L-E.; Barbry, P.; Leslie, A.; Kiem, H-P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[109]
Russo, R.; Andolfo, I.; Lasorsa, V.A.; Iolascon, A.; Capasso, M. Genetic analysis of the coronavirus SARS-CoV-2 host protease TMPRSS2 in different populations. Front. Genet., 2020, 11, 872.
[http://dx.doi.org/10.3389/fgene.2020.00872] [PMID: 32849840]
[110]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[111]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[112]
Matsuyama, S.; Nao, N.; Shirato, K.; Kawase, M.; Saito, S.; Takayama, I.; Nagata, N.; Sekizuka, T.; Katoh, H.; Kato, F.; Sakata, M.; Tahara, M.; Kutsuna, S.; Ohmagari, N.; Kuroda, M.; Suzuki, T.; Kageyama, T.; Takeda, M. Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. USA, 2020, 117(13), 7001-7003.
[http://dx.doi.org/10.1073/pnas.2002589117] [PMID: 32165541]
[113]
Brest, P.; Refae, S.; Mograbi, B.; Hofman, P.; Milano, G. Host polymorphisms may impact SARS-CoV-2 infectivity. Trends Genet., 2020, 36(11), 813-815.
[http://dx.doi.org/10.1016/j.tig.2020.08.003] [PMID: 32828550]
[114]
Zipeto, D.; Palmeira, J.D.F.; Argañaraz, G.A.; Argañaraz, E.R. ACE2/ADAM17/TMPRSS2 interplay may be the main risk factor for COVID-19. Front. Immunol., 2020, 11576745
[http://dx.doi.org/10.3389/fimmu.2020.576745] [PMID: 33117379]
[115]
Heurich, A.; Hofmann-Winkler, H.; Gierer, S.; Liepold, T.; Jahn, O.; Pöhlmann, S. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J. Virol., 2014, 88(2), 1293-1307.
[http://dx.doi.org/10.1128/JVI.02202-13] [PMID: 24227843]
[116]
Andolfo, I.; Russo, R.; Lasorsa, V.A.; Cantalupo, S.; Rosato, B.E.; Bonfiglio, F.; Frisso, G.; Abete, P.; Cassese, G.M.; Servillo, G.; Esposi-to, G.; Gentile, I.; Piscopo, C.; Villani, R.; Fiorentino, G.; Cerino, P.; Buonerba, C.; Pierri, B.; Zollo, M.; Iolascon, A.; Capasso, M. Common variants at 21q22.3 locus influence MX1 and TMPRSS2 gene expression and susceptibility to severe COVID-19. iScience, 2021, 24(4)102322
[http://dx.doi.org/10.1016/j.isci.2021.102322] [PMID: 33748697]
[117]
Britto, C.J.; Niu, N.; Khanal, S.; Huleihel, L.; Herazo-Maya, J.D.; Thompson, A.; Sauler, M.; Slade, M.D.; Sharma, L.; Dela Cruz, C.S.; Ka-minski, N.; Cohn, L.E. BPIFA1 regulates lung neutrophil recruitment and interferon signaling during acute inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(2), L321-L333.
[http://dx.doi.org/10.1152/ajplung.00056.2018] [PMID: 30461288]
[118]
Bizzotto, J.; Sanchis, P.; Abbate, M.; Lage-Vickers, S.; Lavignolle, R.; Toro, A.; Olszevicki, S.; Sabater, A.; Cascardo, F.; Vazquez, E.; Cotignola, J.; Gueron, G. SARS-CoV-2 infection boosts MX1 antiviral effector in COVID-19 patients. iScience, 2020, 23(10)101585
[http://dx.doi.org/10.1016/j.isci.2020.101585] [PMID: 32989429]
[119]
David, A.; Parkinson, N.; Peacock, T.P.; Pairo-Castineira, E.; Khanna, T.; Cobat, A.; Tenesa, A.; Sancho-Shimizu, V.; Casanova, J-L.; Abel, L.; Barclay, W.S.; Baillie, J.K.; Sternberg, M.J.E. A common TMPRSS2 variant protects against severe COVID-19. medRxiv, 2021.
[http://dx.doi.org/10.1101/2021.03.04.21252931]
[120]
Sharma, S.; Singh, I.; Haider, S.; Malik, M.Z.; Ponnusamy, K.; Rai, E. ACE2 homo-dimerization, human genomic variants and interaction of host proteins explain high population specific differences in outcomes of COVID19. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.04.24.050534]
[121]
Wulandari, L.; Hamidah, B.; Pakpahan, C.; Damayanti, N.S.; Kurniati, N.D.; Adiatmaja, C.O.; Wigianita, M.R.; Soedarsono, S.; Husada, D.; Tinduh, D.; Prakoeswa, C.R.S.; Endaryanto, A.; Puspaningsih, N.N.T.; Lusida, M.I.; Shimizu, K.; Oceandy, D. Initial study on TMPRSS2 p.Val160Met genetic variant in COVID-19 patients. Research Square, 2021.
[122]
Singh, H.; Choudhari, R.; Nema, V.; Khan, A.A. ACE2 and TMPRSS2 polymorphisms in various diseases with special reference to its im-pact on COVID-19 disease. Microb. Pathog., 2021, 150104621
[http://dx.doi.org/10.1016/j.micpath.2020.104621] [PMID: 33278516]
[123]
Clinckemalie, L.; Spans, L.; Dubois, V.; Laurent, M.; Helsen, C.; Joniau, S.; Claessens, F. Androgen regulation of the TMPRSS2 gene and the effect of a SNP in an androgen response element. Mol. Endocrinol., 2013, 27(12), 2028-2040.
[http://dx.doi.org/10.1210/me.2013-1098] [PMID: 24109594]
[124]
Cheng, Z.; Zhou, J.; To, K.K-W.; Chu, H.; Li, C.; Wang, D.; Yang, D.; Zheng, S.; Hao, K.; Bossé, Y.; Obeidat, M.; Brandsma, C-A.; Song, Y-Q.; Chen, Y.; Zheng, B-J.; Li, L.; Yuen, K-Y. Identification of TMPRSS2 as a susceptibility gene for severe 2009 pandemic A(H1N1) In-fluenza and A(H7N9) influenza. J. Infect. Dis., 2015, 212(8), 1214-1221.
[http://dx.doi.org/10.1093/infdis/jiv246] [PMID: 25904605]
[125]
Clohisey, S.; Baillie, J.K. Host susceptibility to severe influenza A virus infection. Crit. Care, 2019, 23(1), 303.
[http://dx.doi.org/10.1186/s13054-019-2566-7] [PMID: 31488196]
[126]
Birra, D.; Benucci, M.; Landolfi, L.; Merchionda, A.; Loi, G.; Amato, P.; Licata, G.; Quartuccio, L.; Triggiani, M.; Moscato, P. COVID 19: A clue from innate immunity. Immunol. Res., 2020, 68(3), 161-168.
[http://dx.doi.org/10.1007/s12026-020-09137-5] [PMID: 32524333]
[127]
Debnath, M.; Banerjee, M.; Berk, M. Genetic gateways to COVID-19 infection: Implications for risk, severity, and outcomes. FASEB J., 2020, 34(7), 8787-8795.
[http://dx.doi.org/10.1096/fj.202001115R] [PMID: 32525600]
[128]
Hedayat, M.; Netea, M.G.; Rezaei, N. Targeting of Toll-like receptors: A decade of progress in combating infectious diseases. Lancet Infect. Dis., 2011, 11(9), 702-712.
[http://dx.doi.org/10.1016/S1473-3099(11)70099-8] [PMID: 21719349]
[129]
Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol., 2015, 33(1), 257-290.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112240] [PMID: 25581309]
[130]
Mohammad Hosseini, A.; Majidi, J.; Baradaran, B.; Yousefi, M. Toll-like receptors in the pathogenesis of autoimmune diseases. Adv. Pharm. Bull., 2015, 5(Suppl. 1), 605-614.
[http://dx.doi.org/10.15171/apb.2015.082] [PMID: 26793605]
[131]
Lee, J.; Wu, C.C.N.; Lee, K.J.; Chuang, T-H.; Katakura, K.; Liu, Y-T.; Chan, M.; Tawatao, R.; Chung, M.; Shen, C.; Cottam, H.B.; Lai, M.M.C.; Raz, E.; Carson, D.A. Activation of anti-hepatitis C virus responses via Toll-like receptor 7. Proc. Natl. Acad. Sci. USA, 2006, 103(6), 1828-1833.
[http://dx.doi.org/10.1073/pnas.0510801103] [PMID: 16446426]
[132]
Li, Z.J.; Sohn, K-C.; Choi, D-K.; Shi, G.; Hong, D.; Lee, H-E.; Whang, K.U.; Lee, Y.H. Im, M.; Lee, Y.; Seo, Y.J.; Kim, C.D.; Lee, J.H. Roles of TLR7 in activation of NF-κB signaling of keratinocytes by imiquimod. PLoS One, 2013, 8(10)e77159
[http://dx.doi.org/10.1371/journal.pone.0077159] [PMID: 24146965]
[133]
Tengroth, L.; Millrud, C.R.; Kvarnhammar, A.M.; Kumlien Georén, S.; Latif, L.; Cardell, L-O. Functional effects of Toll-like receptor (TLR)3, 7, 9, RIG-I and MDA-5 stimulation in nasal epithelial cells. PLoS One, 2014, 9(6)e98239
[http://dx.doi.org/10.1371/journal.pone.0098239] [PMID: 24886842]
[134]
Papatheodorou, I.; Fonseca, N.A.; Keays, M.; Tang, Y.A.; Barrera, E.; Bazant, W.; Burke, M.; Füllgrabe, A.; Fuentes, A.M-P.; George, N.; Huerta, L.; Koskinen, S.; Mohammed, S.; Geniza, M.; Preece, J.; Jaiswal, P.; Jarnuczak, A.F.; Huber, W.; Stegle, O.; Vizcaino, J.A.; Brazma, A.; Petryszak, R. Expression Atlas: gene and protein expression across multiple studies and organisms. Nucleic Acids Res., 2018, 46(D1), D246-D251.
[http://dx.doi.org/10.1093/nar/gkx1158] [PMID: 29165655]
[135]
Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol., 2021, 93(5), 2735-2739.
[http://dx.doi.org/10.1002/jmv.26826] [PMID: 33506952]
[136]
Diebold, S.S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science, 2004, 303(5663), 1529-1531.
[http://dx.doi.org/10.1126/science.1093616] [PMID: 14976261]
[137]
Lund, J.M.; Alexopoulou, L.; Sato, A.; Karow, M.; Adams, N.C.; Gale, N.W.; Iwasaki, A.; Flavell, R.A. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA, 2004, 101(15), 5598-5603.
[http://dx.doi.org/10.1073/pnas.0400937101] [PMID: 15034168]
[138]
Shen, N.; Fu, Q.; Deng, Y.; Qian, X.; Zhao, J.; Kaufman, K.M.; Wu, Y.L.; Yu, C.Y.; Tang, Y.; Chen, J-Y.; Yang, W.; Wong, M.; Kawasaki, A.; Tsuchiya, N.; Sumida, T.; Kawaguchi, Y.; Howe, H.S.; Mok, M.Y.; Bang, S-Y.; Liu, F-L.; Chang, D-M.; Takasaki, Y.; Hashimoto, H.; Harley, J.B.; Guthridge, J.M.; Grossman, J.M.; Cantor, R.M.; Song, Y.W.; Bae, S-C.; Chen, S.; Hahn, B.H.; Lau, Y.L.; Tsao, B.P. Sex-specific association of X-linked Toll-like receptor 7 (TLR7) with male systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA, 2010, 107(36), 15838-15843.
[http://dx.doi.org/10.1073/pnas.1001337107] [PMID: 20733074]
[139]
Lee, Y.H.; Lee, H-S.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between TLR polymorphisms and systemic lupus erythematosus: A sys-tematic review and meta-analysis. Clin. Exp. Rheumatol., 2012, 30(2), 262-265.
[PMID: 22325161]
[140]
Tian, T.; Sun, D.; Wang, P.; Wang, H.; Bai, X.; Yang, X.; Wang, Z.; Dong, M. Roles of toll-like receptor 7 and 8 in prevention of intrauter-ine transmission of hepatitis B virus. Cell. Physiol. Biochem., 2015, 37(2), 445-453.
[http://dx.doi.org/10.1159/000430367] [PMID: 26315138]
[141]
Chang, S.; Kodys, K.; Szabo, G. Impaired expression and function of toll-like receptor 7 in hepatitis C virus infection in human hepatoma cells. Hepatology, 2010, 51(1), 35-42.
[http://dx.doi.org/10.1002/hep.23256] [PMID: 19821521]
[142]
Abdel-Raouf, T.A.; Ahmed, A.; Zaki, W.K.; Abdella, H.M.; Zid, M.A. Study of toll-like receptor 7 expression and interferon α in Egyptian patients with chronic hepatitis C infection and hepatocellular carcinoma. Egypt. J. Med. Hum. Genet., 2014, 15(4), 387-392.
[http://dx.doi.org/10.1016/j.ejmhg.2014.07.003]
[143]
Oh, D-Y.; Baumann, K.; Hamouda, O.; Eckert, J.K.; Neumann, K.; Kücherer, C.; Bartmeyer, B.; Poggensee, G.; Oh, N.; Pruss, A.; Jessen, H.; Schumann, R.R. A frequent functional toll-like receptor 7 polymorphism is associated with accelerated HIV-1 disease progression. AIDS, 2009, 23(3), 297-307.
[http://dx.doi.org/10.1097/QAD.0b013e32831fb540] [PMID: 19114863]
[144]
Fallerini, C.; Daga, S.; Mantovani, S.; Benetti, E.; Picchiotti, N.; Francisci, D.; Paciosi, F.; Schiaroli, E.; Baldassarri, M.; Fava, F.; Palmieri, M.; Ludovisi, S.; Castelli, F.; Quiros-Roldan, E.; Vaghi, M.; Rusconi, S.; Siano, M.; Bandini, M.; Spiga, O.; Capitani, K.; Furini, S.; Mari, F.; Renieri, A.; Mondelli, M.U.; Frullanti, E. Association of Toll-like receptor 7 variants with life-threatening COVID-19 disease in males: findings from a nested case-control study. eLife, 2021, 10e67569
[http://dx.doi.org/10.7554/eLife.67569] [PMID: 33650967]
[145]
Miettinen, M.; Sareneva, T.; Julkunen, I.; Matikainen, S. IFNs activate toll-like receptor gene expression in viral infections. Genes Immun., 2001, 2(6), 349-355.
[http://dx.doi.org/10.1038/sj.gene.6363791] [PMID: 11607792]
[146]
Lester, R.T.; Yao, X-D.; Ball, T.B.; McKinnon, L.R.; Kaul, R.; Wachihi, C.; Jaoko, W.; Plummer, F.A.; Rosenthal, K.L. Toll-like receptor expression and responsiveness are increased in viraemic HIV-1 infection. AIDS, 2008, 22(6), 685-694.
[http://dx.doi.org/10.1097/QAD.0b013e3282f4de35] [PMID: 18356597]
[147]
Komatsuda, A.; Wakui, H.; Iwamoto, K.; Ozawa, M.; Togashi, M.; Masai, R.; Maki, N.; Hatakeyama, T.; Sawada, K. Up-regulated expres-sion of Toll-like receptors mRNAs in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Clin. Exp. Immunol., 2008, 152(3), 482-487.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03646.x] [PMID: 18373699]
[148]
Sheyhidin, I.; Nabi, G.; Hasim, A.; Zhang, R-P.; Ainiwaer, J.; Ma, H.; Wang, H. Overexpression of TLR3, TLR4, TLR7 and TLR9 in esophageal squamous cell carcinoma. World J. Gastroenterol., 2011, 17(32), 3745-3751.
[http://dx.doi.org/10.3748/wjg.v17.i32.3745] [PMID: 21990957]
[149]
Roelofs, M.F.; Joosten, L.A.B.; Abdollahi-Roodsaz, S.; van Lieshout, A.W.T.; Sprong, T.; van den Hoogen, F.H.; van den Berg, W.B.; Rad-stake, T.R.D.J. The expression of toll-like receptors 3 and 7 in rheumatoid arthritis synovium is increased and costimulation of toll-like re-ceptors 3, 4, and 7/8 results in synergistic cytokine production by dendritic cells. Arthritis Rheum., 2005, 52(8), 2313-2322.
[http://dx.doi.org/10.1002/art.21278] [PMID: 16052591]
[150]
Yazdanpanah, F.; Hamblin, M.R.; Rezaei, N. The immune system and COVID-19: Friend or foe? Life Sci., 2020, 256117900
[http://dx.doi.org/10.1016/j.lfs.2020.117900] [PMID: 32502542]
[151]
Sooryanarain, H.; Rogers, A.J.; Cao, D.; Haac, M.E.R.; Karpe, Y.A.; Meng, X-J. ISG15 modulates type I interferon signaling and the antivi-ral response during hepatitis E virus replication. J. Virol., 2017, 91(19), e00621-e17.
[http://dx.doi.org/10.1128/JVI.00621-17] [PMID: 28724761]
[152]
Okumura, A.; Lu, G.; Pitha-Rowe, I.; Pitha, P.M. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1440-1445.
[http://dx.doi.org/10.1073/pnas.0510518103] [PMID: 16434471]
[153]
Mesev, E.V.; LeDesma, R.A.; Ploss, A. Decoding type I and III interferon signalling during viral infection. Nat. Microbiol., 2019, 4(6), 914-924.
[http://dx.doi.org/10.1038/s41564-019-0421-x] [PMID: 30936491]
[154]
Kee, B.P.; Lian, L.H.; Lee, P.C.; Lai, T.X.; Chua, K.H. Genetic data for 15 STR loci in a Kadazan-Dusun population from East Malaysia. Genet. Mol. Res., 2011, 10(2), 739-743.
[http://dx.doi.org/10.4238/vol10-2gmr1064] [PMID: 21523653]
[155]
Zeberg, H.; Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature, 2020, 587(7835), 610-612.
[http://dx.doi.org/10.1038/s41586-020-2818-3] [PMID: 32998156]
[156]
Li, Y.; Ke, Y.; Xia, X.; Wang, Y.; Cheng, F.; Liu, X.; Jin, X.; Li, B.; Xie, C.; Liu, S.; Chen, W.; Yang, C.; Niu, Y.; Jia, R.; Chen, Y.; Liu, X.; Wang, Z.; Zheng, F.; Jin, Y.; Li, Z.; Yang, N.; Cao, P.; Chen, H.; Ping, J.; He, F.; Wang, C.; Zhou, G. Genome-wide association study of COVID-19 severity among the Chinese population. Cell Discov., 2021, 7(1), 76.
[http://dx.doi.org/10.1038/s41421-021-00318-6] [PMID: 34465742]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy