Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Immunomodulatory Therapeutic Effects of Curcumin on M1/M2 Macrophage Polarization in Inflammatory Diseases

Author(s): Elham Abdollahi, Thomas P. Johnston, Zahra Ghaneifar, Parviz Vahedi, Pouya Goleij, Sara Azhdari* and Abbas Shapouri Moghaddam*

Volume 16, Issue 1, 2023

Published on: 27 August, 2022

Article ID: e240322202579 Pages: 13

DOI: 10.2174/1874467215666220324114624

Price: $65

Abstract

Background: Due to their plasticity, macrophages exert critical effects on both promoting and suppressing inflammatory processes. Pathologic inflammatory conditions are frequently correlated with dynamic alterations in macrophage activation, with classically activated M1 cells associated with the promotion and maintenance of inflammation and M2 cells being linked to the resolution or smouldering of chronic inflammation. Inflammation deputes a common feature of various chronic diseases and the direct involvement in the insurgence and development of these conditions. Macrophages participate in an autoregulatory loop characterizing the inflammatory process, as they produce a wide range of biologically active mediators that exert either deleterious or beneficial effects during the inflammation. Therefore, balancing the favorable ratios of M1/M2 macrophages can help ameliorate the inflammatory landscape of pathologic conditions. Curcumin is a component of turmeric with many pharmacological properties.

Objective: Recent results from both in-vivo and in-vitro studies have indicated that curcumin can affect polarization and/or functions of macrophage subsets in the context of inflammation-related diseases. There is no comprehensive review of the impact of curcumin on cytokines involved in macrophage polarization in the context of inflammatory diseases. The present review will cover some efforts to explore the underlying molecular mechanisms by which curcumin modulates the macrophage polarization in distant pathological inflammatory conditions, such as cancer, autoimmunity, renal inflammation, stroke, atherosclerosis, and macrophage-driven pathogenesis.

Results: The accumulation of the findings from in vitro and in vivo experimental studies suggests that curcumin beneficially influences M1 and M2 macrophages in a variety of inflammatory diseases with unfavorable macrophage activation.

Conclusion: Curcumin not only enhances anti-tumor immunity (via shifting M polarization towards M1 phenotype and/or up-regulation of M1 markers expression) but ameliorates inflammatory diseases, including autoimmune diseases (experimental autoimmune myocarditis and Behcet's disease), nephropathy, chronic serum sickness, stroke, and atherosclerosis.

Keywords: Atherosclerosis, autoimmunity, Immunomodulation, Inflammation, Cancer, Curcumin, Macrophages, Stroke.

Graphical Abstract

[1]
DiPietro, L.A.; Wilgus, T.A.; Koh, T.J. Macrophages in healing wounds: Paradoxes and paradigms. Int. J. Mol. Sci., 2021, 22(2), 950.
[http://dx.doi.org/10.3390/ijms22020950] [PMID: 33477945]
[2]
Epelman, S.; Lavine, K.J.; Randolph, G.J. Origin and functions of tissue macrophages. Immunity, 2014, 41(1), 21-35.
[http://dx.doi.org/10.1016/j.immuni.2014.06.013] [PMID: 25035951]
[3]
Haniffa, M.; Bigley, V.; Collin, M. Human mononuclear phagocyte system reunited. Seminars in cell & developmental biology; Elsevier: New Jersey, 2015.
[4]
Laskin, D.L.; Sunil, V.R.; Gardner, C.R.; Laskin, J.D. Macrophages and tissue injury: Agents of defense or destruction? Annu. Rev. Pharmacol. Toxicol., 2011, 51(1), 267-288.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105812] [PMID: 20887196]
[5]
Bruno, A.; Pagani, A.; Pulze, L.; Albini, A.; Dallaglio, K.; Noonan, D.M.; Mortara, L. Orchestration of angiogenesis by immune cells. Front. Oncol., 2014, 4, 131.
[http://dx.doi.org/10.3389/fonc.2014.00131] [PMID: 25072019]
[6]
Bruno, A.; Pagani, A.; Magnani, E.; Rossi, T.; Noonan, D.M.; Cantelmo, A.R.; Albini, A. Inflammatory angiogenesis and the tumor microenvironment as targets for cancer therapy and prevention. Cancer Treat. Res., 2014, 159, 401-426.
[http://dx.doi.org/10.1007/978-3-642-38007-5_23] [PMID: 24114493]
[7]
Noonan, D.M.; De Lerma Barbaro, A.; Vannini, N.; Mortara, L.; Albini, A. Inflammation, inflammatory cells and angiogenesis: Decisions and indecisions. Cancer Metastasis Rev., 2008, 27(1), 31-40.
[http://dx.doi.org/10.1007/s10555-007-9108-5] [PMID: 18087678]
[8]
Jeannin, P.; Paolini, L.; Adam, C.; Delneste, Y. The roles of CSFs on the functional polarization of tumor-associated macrophages. FEBS J., 2018, 285(4), 680-699.
[http://dx.doi.org/10.1111/febs.14343] [PMID: 29171156]
[9]
Abdollahi, E.; Momtazi, A.A.; Johnston, T.P.; Sahebkar, A. Therapeutic effects of curcumin in inflammatory and immune-mediated diseases: A nature-made jack-of-all-trades? J. Cell. Physiol., 2018, 233(2), 830-848.
[http://dx.doi.org/10.1002/jcp.25778] [PMID: 28059453]
[10]
Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer, 2006, 42(6), 717-727.
[http://dx.doi.org/10.1016/j.ejca.2006.01.003] [PMID: 16520032]
[11]
Stout, R.D.; Jiang, C.; Matta, B.; Tietzel, I.; Watkins, S.K.; Suttles, J. Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J. Immunol., 2005, 175(1), 342-349.
[http://dx.doi.org/10.4049/jimmunol.175.1.342] [PMID: 15972667]
[12]
Durgaprasad, S.; Pai, C.G. Vasanthkumar; Alvres, J.F.; Namitha, S. A pilot study of the antioxidant effect of curcumin in tropical pancreatitis. Indian J. Med. Res., 2005, 122(4), 315-318.
[PMID: 16394323]
[13]
Gulati, K.; Guhathakurta, S.; Joshi, J.; Rai, N.; Ray, A. Cytokines and their role in health and disease: A brief overview. MOJ Immunol., 2016, 4(2), 1-9.
[14]
Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135.
[http://dx.doi.org/10.1016/j.autrev.2017.11.016] [PMID: 29180127]
[15]
Bakır, B.; Yetkin Ay, Z.; Büyükbayram, H.İ Kumbul Doğuç, D.; Bayram, D.; Candan, İA.; Uskun, E. Effect of curcumin on systemic T helper 17 cell response; gingival expressions of interleukin‐17 and retinoic acid receptor‐related orphan receptor γt; and alveolar bone loss in experimental periodontitis. J. Periodontol., 2016, 87(11), e183-e191.
[http://dx.doi.org/10.1902/jop.2016.150722] [PMID: 27452394]
[16]
Momtazi-Borojeni, A.A.; Abdollahi, E.; Nikfar, B.; Chaichian, S.; Ekhlasi-Hundrieser, M. Curcumin as a potential modulator of M1 and M2 macrophages: New insights in atherosclerosis therapy. Heart Fail. Rev., 2019, 24(3), 399-409.
[http://dx.doi.org/10.1007/s10741-018-09764-z] [PMID: 30673930]
[17]
Mohammadian Haftcheshmeh, S.; Karimzadeh, M.R.; Azhdari, S.; Vahedi, P.; Abdollahi, E.; Momtazi-Borojeni, A.A. Modulatory effects of curcumin on the atherogenic activities of inflammatory monocytes: Evidence from in vitro and animal models of human atherosclerosis. Biofactors, 2020, 46(3), 341-355.
[http://dx.doi.org/10.1002/biof.1603] [PMID: 31875344]
[18]
Ghaneifar, Z.; Yousefi, Z.; Tajik, F.; Nikfar, B.; Ghalibafan, F.; Abdollahi, E.; Momtazi-Borojeni, A.A. The potential therapeutic effects of curcumin on pregnancy complications: Novel insights into reproductive medicine. IUBMB Life, 2020, 72(12), 2572-2583.
[http://dx.doi.org/10.1002/iub.2399] [PMID: 33107698]
[19]
Shapouri-Moghaddam, A; Mohammadian, S; Vazini, H; Taghadosi, M; Esmaeili, SA; Mardani, F Macrophage plasticity, polarization, and function in health and disease. 2018, 233(9), 6425-6440.
[http://dx.doi.org/10.1002/jcp.26429]
[20]
Chistiakov, D.A.; Bobryshev, Y.V.; Nikiforov, N.G.; Elizova, N.V.; Sobenin, I.A.; Orekhov, A.N. Macrophage phenotypic plasticity in atherosclerosis: The associated features and the peculiarities of the expression of inflammatory genes. Int. J. Cardiol., 2015, 184, 436-445.
[http://dx.doi.org/10.1016/j.ijcard.2015.03.055] [PMID: 25755062]
[21]
Takeda, N.; O’Dea, E.L.; Doedens, A.; Kim, J.W.; Weidemann, A.; Stockmann, C.; Asagiri, M.; Simon, M.C.; Hoffmann, A.; Johnson, R.S. Differential activation and antagonistic function of HIF-alpha isoforms in macrophages are essential for NO homeostasis. Genes Dev., 2010, 24(5), 491-501.
[http://dx.doi.org/10.1101/gad.1881410] [PMID: 20194441]
[22]
Bogdan, C. Nitric oxide and the immune response. Nat. Immunol., 2001, 2(10), 907-916.
[http://dx.doi.org/10.1038/ni1001-907] [PMID: 11577346]
[23]
Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstone, H.; Sahgal, N.; Hussell, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol., 2011, 12(3), 231-238.
[http://dx.doi.org/10.1038/ni.1990] [PMID: 21240265]
[24]
Hao, N-B.; Lü, M-H.; Fan, Y-H.; Cao, Y-L.; Zhang, Z-R.; Yang, S-M. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol., 2012, 2012, 948098.
[http://dx.doi.org/10.1155/2012/948098] [PMID: 22778768]
[25]
Xu, M.; Mizoguchi, I.; Morishima, N.; Chiba, Y.; Mizuguchi, J.; Yoshimoto, T. Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin. Dev. Immunol., 2010, 2010, 832454.
[26]
Colombo, M.P.; Trinchieri, G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev., 2002, 13(2), 155-168.
[http://dx.doi.org/10.1016/S1359-6101(01)00032-6 ] [PMID: 11900991]
[27]
Liu, Z.; Ran, Y.; Huang, S.; Wen, S.; Zhang, W.; Liu, X.; Ji, Z.; Geng, X.; Ji, X.; Du, H.; Leak, R.K.; Hu, X. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front. Aging Neurosci., 2017, 9, 233.
[http://dx.doi.org/10.3389/fnagi.2017.00233] [PMID: 28785217]
[28]
Gao, S.; Zhou, J.; Liu, N.; Wang, L.; Gao, Q.; Wu, Y.; Zhao, Q.; Liu, P.; Wang, S.; Liu, Y.; Guo, N.; Shen, Y.; Wu, Y.; Yuan, Z. Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J. Mol. Cell. Cardiol., 2015, 85, 131-139.
[http://dx.doi.org/10.1016/j.yjmcc.2015.04.025] [PMID: 25944087]
[29]
Li, B.; Hu, Y.; Zhao, Y.; Cheng, M.; Qin, H.; Cheng, T.; Wang, Q.; Peng, X.; Zhang, X. Curcumin attenuates titanium particle-induced inflammation by regulating macrophage polarization in vitro and in vivo. Front. Immunol., 2017, 8, 55.
[http://dx.doi.org/10.3389/fimmu.2017.00055] [PMID: 28197150]
[30]
Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol., 2002, 23(11), 549-555.
[http://dx.doi.org/10.1016/S1471-4906(02)02302-5 ] [PMID: 12401408]
[31]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[32]
Gordon, S.; Martinez, F.O. Alternative activation of macrophages: Mechanism and functions. Immunity, 2010, 32(5), 593-604.
[http://dx.doi.org/10.1016/j.immuni.2010.05.007] [PMID: 20510870]
[33]
Mills, C.D. M1 and M2 macrophages: Oracles of health and disease. Crit. Rev. Immunol., 2012, 32(6), 463-488.
[http://dx.doi.org/10.1615/CritRevImmunol.v32.i6.10 ] [PMID: 23428224]
[34]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[35]
Vakili-Ghartavol, R.; Mombeiny, R.; Salmaninejad, A.; Sorkhabadi, S.M.R.; Faridi-Majidi, R.; Jaafari, M.R.; Mirzaei, H. Tumor-associated macrophages and epithelial-mesenchymal transition in cancer: Nanotechnology comes into view. J. Cell. Physiol., 2018, 233(12), 9223-9236.
[http://dx.doi.org/10.1002/jcp.27027] [PMID: 30078227]
[36]
Salmaninejad, A.; Valilou, S.F.; Soltani, A.; Ahmadi, S.; Abarghan, Y.J.; Rosengren, R.J.; Sahebkar, A. Tumor-associated macrophages: Role in cancer development and therapeutic implications. Cell Oncol. (Dordr.), 2019, 42(5), 591-608.
[http://dx.doi.org/10.1007/s13402-019-00453-z] [PMID: 31144271]
[37]
Mohammadi, A.; Blesso, C.N.; Barreto, G.E.; Banach, M.; Majeed, M.; Sahebkar, A. Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J. Nutr. Biochem., 2019, 66, 1-16.
[http://dx.doi.org/10.1016/j.jnutbio.2018.12.005] [PMID: 30660832]
[38]
Choi, H.M.; Moon, S.Y.; Yang, H.I.; Kim, K.S. Understanding viral infection mechanisms and patient symptoms for the development of COVID-19 therapeutics. Int. J. Mol. Sci., 2021, 22(4), 1737.
[http://dx.doi.org/10.3390/ijms22041737] [PMID: 33572274]
[39]
Vannuccini, S.; Clifton, V.L.; Fraser, I.S.; Taylor, H.S.; Critchley, H.; Giudice, L.C.; Petraglia, F. Infertility and reproductive disorders: Impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum. Reprod. Update, 2016, 22(1), 104-115.
[http://dx.doi.org/10.1093/humupd/dmv044] [PMID: 26395640]
[40]
Mohammadi, S.; Abdollahi, E.; Nezamnia, M.; Esmaeili, S-A.; Tavasolian, F.; Sathyapalan, T.; Sahebkar, A. Adoptive transfer of Tregs: A novel strategy for cell-based immunotherapy in spontaneous abortion: Lessons from experimental models. Int. Immunopharmacol., 2021, 90, 107195.
[http://dx.doi.org/10.1016/j.intimp.2020.107195] [PMID: 33278746]
[41]
Xu, G.; Feng, L.; Song, P.; Xu, F.; Li, A.; Wang, Y.; Shen, Y.; Wu, X.; Luo, Q.; Wu, X.; Sun, Y.; Wu, X.; Xu, Q. Isomeranzin suppresses inflammation by inhibiting M1 macrophage polarization through the NF-κB and ERK pathway. Int. Immunopharmacol., 2016, 38, 175-185.
[http://dx.doi.org/10.1016/j.intimp.2016.05.027] [PMID: 27285671]
[42]
Murray, P.J. Macrophage Polarization. Annu. Rev. Physiol., 2017, 79(1), 541-566.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034339 ] [PMID: 27813830]
[43]
Sica, A.; Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest., 2007, 117(5), 1155-1166.
[http://dx.doi.org/10.1172/JCI31422] [PMID: 17476345]
[44]
Pauleau, A.L.; Rutschman, R.; Lang, R.; Pernis, A.; Watowich, S.S.; Murray, P.J. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol., 2004, 172(12), 7565-7573.
[http://dx.doi.org/10.4049/jimmunol.172.12.7565] [PMID: 15187136]
[45]
Lang, R.; Patel, D.; Morris, J.J.; Rutschman, R.L.; Murray, P.J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol., 2002, 169(5), 2253-2263.
[http://dx.doi.org/10.4049/jimmunol.169.5.2253] [PMID: 12193690]
[46]
Whyte, C.S.; Bishop, E.T.; Rückerl, D.; Gaspar-Pereira, S.; Barker, R.N.; Allen, J.E.; Rees, A.J.; Wilson, H.M. Suppressor of cytokine signaling (SOCS)1 is a key determinant of differential macrophage activation and function. J. Leukoc. Biol., 2011, 90(5), 845-854.
[http://dx.doi.org/10.1189/jlb.1110644] [PMID: 21628332]
[47]
Liu, Y.; Stewart, K.N.; Bishop, E.; Marek, C.J.; Kluth, D.C.; Rees, A.J.; Wilson, H.M. Unique expression of suppressor of cytokine signaling 3 is essential for classical macrophage activation in rodents in vitro and in vivo. J. Immunol., 2008, 180(9), 6270-6278.
[http://dx.doi.org/10.4049/jimmunol.180.9.6270] [PMID: 18424750]
[48]
Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Red Eagle, A.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120.
[http://dx.doi.org/10.1038/nature05894] [PMID: 17515919]
[49]
Kang, K.; Reilly, S.M.; Karabacak, V.; Gangl, M.R.; Fitzgerald, K.; Hatano, B.; Lee, C.H. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab., 2008, 7(6), 485-495.
[http://dx.doi.org/10.1016/j.cmet.2008.04.002] [PMID: 18522830]
[50]
Cao, Z.; Sun, X.; Icli, B.; Wara, A.K.; Feinberg, M.W. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood, 2010, 116(22), 4404-4414.
[http://dx.doi.org/10.1182/blood-2010-05-285353] [PMID: 20616217]
[51]
Liao, X.; Sharma, N.; Kapadia, F.; Zhou, G.; Lu, Y.; Hong, H.; Paruchuri, K.; Mahabeleshwar, G.H.; Dalmas, E.; Venteclef, N.; Flask, C.A.; Kim, J.; Doreian, B.W.; Lu, K.Q.; Kaestner, K.H.; Hamik, A.; Clément, K.; Jain, M.K. Krüppel-like factor 4 regulates macrophage polarization. J. Clin. Invest., 2011, 121(7), 2736-2749.
[http://dx.doi.org/10.1172/JCI45444] [PMID: 21670502]
[52]
Szanto, A.; Balint, B.L.; Nagy, Z.S.; Barta, E.; Dezso, B.; Pap, A.; Szeles, L.; Poliska, S.; Oros, M.; Evans, R.M.; Barak, Y.; Schwabe, J.; Nagy, L. STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells. Immunity, 2010, 33(5), 699-712.
[http://dx.doi.org/10.1016/j.immuni.2010.11.009] [PMID: 21093321]
[53]
Mahabeleshwar, G.H.; Kawanami, D.; Sharma, N.; Takami, Y.; Zhou, G.; Shi, H.; Nayak, L.; Jeyaraj, D.; Grealy, R.; White, M.; McManus, R.; Ryan, T.; Leahy, P.; Lin, Z.; Haldar, S.M.; Atkins, G.B.; Wong, H.R.; Lingrel, J.B.; Jain, M.K. The myeloid transcription factor KLF2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity, 2011, 34(5), 715-728.
[http://dx.doi.org/10.1016/j.immuni.2011.04.014] [PMID: 21565532]
[54]
Pello, O.M.; De Pizzol, M.; Mirolo, M.; Soucek, L.; Zammataro, L.; Amabile, A.; Doni, A.; Nebuloni, M.; Swigart, L.B.; Evan, G.I.; Mantovani, A.; Locati, M. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood, 2012, 119(2), 411-421.
[http://dx.doi.org/10.1182/blood-2011-02-339911] [PMID: 22067385]
[55]
Porta, C.; Rimoldi, M.; Raes, G.; Brys, L.; Ghezzi, P.; Di Liberto, D.; Dieli, F.; Ghisletti, S.; Natoli, G.; De Baetselier, P.; Mantovani, A.; Sica, A. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor kappaB. Proc. Natl. Acad. Sci. USA, 2009, 106(35), 14978-14983.
[http://dx.doi.org/10.1073/pnas.0809784106] [PMID: 19706447]
[56]
Bonizzi, G.; Karin, M. The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends Immunol., 2004, 25(6), 280-288.
[http://dx.doi.org/10.1016/j.it.2004.03.008] [PMID: 15145317]
[57]
Lawrence, T.; Gilroy, D.W. Chronic inflammation: A failure of resolution? Int. J. Exp. Pathol., 2007, 88(2), 85-94.
[http://dx.doi.org/10.1111/j.1365-2613.2006.00507.x ] [PMID: 17408451]
[58]
Hagemann, T.; Lawrence, T.; McNeish, I.; Charles, K.A.; Kulbe, H.; Thompson, R.G.; Robinson, S.C.; Balkwill, F.R. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med., 2008, 205(6), 1261-1268.
[http://dx.doi.org/10.1084/jem.20080108] [PMID: 18490490]
[59]
Momtazi, A.A.; Shahabipour, F.; Khatibi, S.; Johnston, T.P.; Pirro, M.; Sahebkar, A. Curcumin as a MicroRNA regulator in cancer: A review. Reviews of Physiology, Biochemistry and Pharmacology; Springer, 2016, 171, p. 1-38.
[60]
Momtazi, A.A.; Derosa, G.; Maffioli, P.; Banach, M.; Sahebkar, A. Role of microRNAs in the therapeutic effects of curcumin in non-cancer diseases. Mol. Diagn. Ther., 2016, 20(4), 335-345.
[http://dx.doi.org/10.1007/s40291-016-0202-7] [PMID: 27241179]
[61]
Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.M.; Torti, S.V. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci., 2008, 65(11), 1631-1652.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[62]
Baliga, M.S.; Joseph, N.; Venkataranganna, M.V.; Saxena, A.; Ponemone, V.; Fayad, R. Curcumin, an active component of turmeric in the prevention and treatment of ulcerative colitis: Preclinical and clinical observations. Food Funct., 2012, 3(11), 1109-1117.
[http://dx.doi.org/10.1039/c2fo30097d] [PMID: 22833299]
[63]
Gupta, S.C.; Patchva, S.; Aggarwal, B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J., 2013, 15(1), 195-218.
[http://dx.doi.org/10.1208/s12248-012-9432-8] [PMID: 23143785]
[64]
Strimpakos, A.S.; Sharma, R.A. Curcumin: Preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid. Redox Signal., 2008, 10(3), 511-545.
[http://dx.doi.org/10.1089/ars.2007.1769] [PMID: 18370854]
[65]
Xu, X-Y.; Meng, X.; Li, S.; Gan, R-Y.; Li, Y.; Li, H-B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients, 2018, 10(10), 1553.
[http://dx.doi.org/10.3390/nu10101553] [PMID: 30347782]
[66]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[67]
John, M.K.; Xie, H.; Bell, E.C.; Liang, D. Development and pharmacokinetic evaluation of a curcumin co-solvent formulation. Anticancer Res., 2013, 33(10), 4285-4291.
[PMID: 24122994]
[68]
Hu, L.; Shi, Y.; Li, J.H.; Gao, N.; Ji, J.; Niu, F.; Chen, Q.; Yang, X.; Wang, S. Enhancement of oral bioavailability of curcumin by a novel solid dispersion system. AAPS PharmSciTech, 2015, 16(6), 1327-1334.
[http://dx.doi.org/10.1208/s12249-014-0254-0] [PMID: 25804949]
[69]
Siviero, A.; Gallo, E.; Maggini, V.; Gori, L.; Mugelli, A.; Firenzuoli, F.; Vannacci, A. Curcumin, a golden spice with a low bioavailability. J. Herb. Med., 2015, 5(2), 57-70.
[http://dx.doi.org/10.1016/j.hermed.2015.03.001]
[70]
Gupta, S.C.; Patchva, S.; Koh, W.; Aggarwal, B.B. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin. Exp. Pharmacol. Physiol., 2012, 39(3), 283-299.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x ] [PMID: 22118895]
[71]
Momtazi-Borojeni, A.A.; Mosafer, J.; Nikfar, B.; Ekhlasi-Hundrieser, M.; Chaichian, S.; Mehdizadehkashi, A. Correction to: Curcumin in advancing treatment for gynecological cancers with developed drug-and radiotherapy-associated resistance. Rev. Physiolo. Biochem. Pharmacol., 2018, 176, 131.
[72]
Hajavi, J.; Momtazi, A.A.; Johnston, T.P.; Banach, M.; Majeed, M.; Sahebkar, A. Curcumin: A naturally occurring modulator of adipokines in diabetes. J. Cell. Biochem., 2017, 118(12), 4170-4182.
[http://dx.doi.org/10.1002/jcb.26121] [PMID: 28485496]
[73]
Barati, N.; Momtazi-Borojeni, A.A.; Majeed, M.; Sahebkar, A. Potential therapeutic effects of curcumin in gastric cancer. J. Cell. Physiol., 2019, 234(3), 2317-2328.
[http://dx.doi.org/10.1002/jcp.27229] [PMID: 30191991]
[74]
Soflaei, S.S.; Momtazi-Borojeni, A.A.; Majeed, M.; Derosa, G.; Maffioli, P.; Sahebkar, A. Curcumin: A natural pan-HDAC inhibitor in cancer. Curr. Pharm. Des., 2018, 24(2), 123-129.
[http://dx.doi.org/10.2174/1381612823666171114165051 ] [PMID: 29141538]
[75]
Zendehdel, E.; Abdollahi, E.; Momtazi-Borojeni, A.A.; Korani, M.; Alavizadeh, S.H.; Sahebkar, A. The molecular mechanisms of curcumin’s inhibitory effects on cancer stem cells. J. Cell. Biochem., 2019, 120(4), 4739-4747.
[http://dx.doi.org/10.1002/jcb.27757] [PMID: 30269360]
[76]
Naeini, M.B.; Momtazi, A.A.; Jaafari, M.R.; Johnston, T.P.; Barreto, G.; Banach, M.; Sahebkar, A. Antitumor effects of curcumin: A lipid perspective. J. Cell. Physiol., 2019, 234(9), 14743-14758.
[http://dx.doi.org/10.1002/jcp.28262] [PMID: 30741424]
[77]
Soetikno, V.; Sari, F.R.; Veeraveedu, P.T.; Thandavarayan, R.A.; Harima, M.; Sukumaran, V.; Lakshmanan, A.P.; Suzuki, K.; Kawachi, H.; Watanabe, K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr. Metab. (Lond.), 2011, 8(1), 35.
[http://dx.doi.org/10.1186/1743-7075-8-35] [PMID: 21663638]
[78]
Park, K-R.; Lee, J-H.; Choi, C.; Liu, K-H.; Seog, D-H.; Kim, Y-H.; Kim, D.E.; Yun, C.H.; Yea, S.S. Suppression of interleukin-2 gene expression by isoeugenol is mediated through down-regulation of NF-AT and NF-kappaB. Int. Immunopharmacol., 2007, 7(9), 1251-1258.
[http://dx.doi.org/10.1016/j.intimp.2007.05.015] [PMID: 17630204]
[79]
Panahi, Y.; Sahebkar, A.; Parvin, S.; Saadat, A. A randomized controlled trial on the anti-inflammatory effects of curcumin in patients with chronic sulphur mustard-induced cutaneous complications. Ann. Clin. Biochem., 2012, 49(Pt 6), 580-588.
[http://dx.doi.org/10.1258/acb.2012.012040] [PMID: 23038702]
[80]
Jurrmann, N.; Brigelius-Flohé, R.; Böl, G-F. Curcumin blocks interleukin-1 (IL-1) signaling by inhibiting the recruitment of the IL-1 receptor-associated kinase IRAK in murine thymoma EL-4 cells. J. Nutr., 2005, 135(8), 1859-1864.
[http://dx.doi.org/10.1093/jn/135.8.1859] [PMID: 16046709]
[81]
Saqib, U.; Sarkar, S.; Suk, K.; Mohammad, O.; Baig, M.S.; Savai, R. Phytochemicals as modulators of M1-M2 macrophages in inflammation. Oncotarget, 2018, 9(25), 17937-17950.
[http://dx.doi.org/10.18632/oncotarget.24788] [PMID: 29707159]
[82]
Lin, Y.; Xu, J.; Lan, H. Tumor-associated macrophages in tumor metastasis: Biological roles and clinical therapeutic applications. J. Hematol. Oncol., 2019, 12(1), 76.
[http://dx.doi.org/10.1186/s13045-019-0760-3] [PMID: 31300030]
[83]
Cheng, H.; Wang, Z.; Fu, L.; Xu, T. Macrophage polarization in the development and progression of ovarian cancers: An overview. Front. Oncol., 2019, 9, 421.
[http://dx.doi.org/10.3389/fonc.2019.00421] [PMID: 31192126]
[84]
Gabrilovich, D.I.; Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol., 2009, 9(3), 162-174.
[http://dx.doi.org/10.1038/nri2506] [PMID: 19197294]
[85]
Umemura, N.; Saio, M.; Suwa, T.; Kitoh, Y.; Bai, J.; Nonaka, K.; Ouyang, G.F.; Okada, M.; Balazs, M.; Adany, R.; Shibata, T.; Takami, T. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J. Leukoc. Biol., 2008, 83(5), 1136-1144.
[http://dx.doi.org/10.1189/jlb.0907611] [PMID: 18285406]
[86]
Najafi, M.; Hashemi Goradel, N.; Farhood, B.; Salehi, E.; Nashtaei, M.S.; Khanlarkhani, N.; Khezri, Z.; Majidpoor, J.; Abouzaripour, M.; Habibi, M.; Kashani, I.R.; Mortezaee, K. Macrophage polarity in cancer: A review. J. Cell. Biochem., 2019, 120(3), 2756-2765.
[http://dx.doi.org/10.1002/jcb.27646] [PMID: 30270458]
[87]
Parayath, N.N.; Parikh, A.; Amiji, M.M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating microRNA-125b. Nano Lett., 2018, 18(6), 3571-3579.
[http://dx.doi.org/10.1021/acs.nanolett.8b00689] [PMID: 29722542]
[88]
Genard, G.; Wera, A-C.; Huart, C.; Le Calve, B.; Penninckx, S.; Fattaccioli, A.; Tabarrant, T.; Demazy, C.; Ninane, N.; Heuskin, A.C.; Lucas, S.; Michiels, C. Proton irradiation orchestrates macrophage reprogramming through NFκB signaling. Cell Death Dis., 2018, 9(7), 728.
[http://dx.doi.org/10.1038/s41419-018-0757-9] [PMID: 29950610]
[89]
Tu, S.P.; Jin, H.; Shi, J.D.; Zhu, L.M.; Suo, Y.; Lu, G.; Liu, A.; Wang, T.C.; Yang, C.S. Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prev. Res. (Phila.), 2012, 5(2), 205-215.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0247 ] [PMID: 22030090]
[90]
Shiri, S.; Alizadeh, A.M.; Baradaran, B.; Farhanghi, B.; Shanehbandi, D.; Khodayari, S.; Khodayari, H.; Tavassoli, A. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment. Asian Pac. J. Cancer Prev., 2015, 16(9), 3917-3922.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3917] [PMID: 25987060]
[91]
Zhang, X.; Tian, W.; Cai, X.; Wang, X.; Dang, W.; Tang, H.; Cao, H.; Wang, L.; Chen, T. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One, 2013, 8(6), e65896.
[http://dx.doi.org/10.1371/journal.pone.0065896] [PMID: 23825527]
[92]
Mukherjee, S.; Baidoo, J.; Fried, A.; Atwi, D.; Dolai, S.; Boockvar, J.; Symons, M.; Ruggieri, R.; Raja, K.; Banerjee, P. Curcumin changes the polarity of tumor-associated microglia and eliminates glioblastoma. Int. J. Cancer, 2016, 139(12), 2838-2849.
[http://dx.doi.org/10.1002/ijc.30398] [PMID: 27543754]
[93]
Mukherjee, S.; Fried, A.; Hussaini, R.; White, R.; Baidoo, J.; Yalamanchi, S.; Banerjee, P. Phytosomal curcumin causes natural killer cell-dependent repolarization of glioblastoma (GBM) tumor-associated microglia/macrophages and elimination of GBM and GBM stem cells. J. Exp. Clin. Cancer Res., 2018, 37(1), 168.
[http://dx.doi.org/10.1186/s13046-018-0792-5] [PMID: 30041669]
[94]
Funes, S.C.; Rios, M.; Escobar-Vera, J.; Kalergis, A.M. Implications of macrophage polarization in autoimmunity. Immunology, 2018, 154(2), 186-195.
[http://dx.doi.org/10.1111/imm.12910] [PMID: 29455468]
[95]
Fairweather, D.; Cihakova, D. Alternatively activated macrophages in infection and autoimmunity. J. Autoimmun., 2009, 33(3-4), 222-230.
[http://dx.doi.org/10.1016/j.jaut.2009.09.012] [PMID: 19819674]
[96]
Jiang, Z.; Jiang, J.X.; Zhang, G.X. Macrophages: A double-edged sword in experimental autoimmune encephalomyelitis. Immunol. Lett., 2014, 160(1), 17-22.
[http://dx.doi.org/10.1016/j.imlet.2014.03.006] [PMID: 24698730]
[97]
Smith, A.M.; Rahman, F.Z.; Hayee, B.; Graham, S.J.; Marks, D.J.; Sewell, G.W.; Palmer, C.D.; Wilde, J.; Foxwell, B.M.; Gloger, I.S.; Sweeting, T.; Marsh, M.; Walker, A.P.; Bloom, S.L.; Segal, A.W. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J. Exp. Med., 2009, 206(9), 1883-1897.
[http://dx.doi.org/10.1084/jem.20091233] [PMID: 19652016]
[98]
Khallou-Laschet, J.; Varthaman, A.; Fornasa, G.; Compain, C.; Gaston, A.T.; Clement, M.; Dussiot, M.; Levillain, O.; Graff-Dubois, S.; Nicoletti, A.; Caligiuri, G. Macrophage plasticity in experimental atherosclerosis. PLoS One, 2010, 5(1), e8852.
[http://dx.doi.org/10.1371/journal.pone.0008852] [PMID: 20111605]
[99]
Nishikawa, K.; Seo, N.; Torii, M.; Ma, N.; Muraoka, D.; Tawara, I.; Masuya, M.; Tanaka, K.; Takei, Y.; Shiku, H.; Katayama, N.; Kato, T. Interleukin-17 induces an atypical M2-like macrophage subpopulation that regulates intestinal inflammation. PLoS One, 2014, 9(9), e108494.
[http://dx.doi.org/10.1371/journal.pone.0108494] [PMID: 25254662]
[100]
Marchetti, V.; Yanes, O.; Aguilar, E.; Wang, M.; Friedlander, D.; Moreno, S.; Storm, K.; Zhan, M.; Naccache, S.; Nemerow, G.; Siuzdak, G.; Friedlander, M. Differential macrophage polarization promotes tissue remodeling and repair in a model of ischemic retinopathy. Sci. Rep., 2011, 1(1), 76.
[http://dx.doi.org/10.1038/srep00076] [PMID: 22355595]
[101]
Shehzad, A.; Wahid, F.; Lee, Y.S. Curcumin in cancer chemoprevention: Molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch. Pharm. (Weinheim), 2010, 343(9), 489-499.
[http://dx.doi.org/10.1002/ardp.200900319] [PMID: 20726007]
[102]
Shehzad, A.; Rehman, G.; Lee, Y.S. Curcumin in inflammatory diseases. Biofactors, 2013, 39(1), 69-77.
[http://dx.doi.org/10.1002/biof.1066] [PMID: 23281076]
[103]
Smith, S.C.; Allen, P.M. Myosin-induced acute myocarditis is a T cell-mediated disease. J. Immunol., 1991, 147(7), 2141-2147.
[PMID: 1918949]
[104]
Matsui, Y.; Okamoto, H.; Jia, N.; Akino, M.; Uede, T.; Kitabatake, A.; Nishihira, J. Blockade of macrophage migration inhibitory factor ameliorates experimental autoimmune myocarditis. J. Mol. Cell. Cardiol., 2004, 37(2), 557-566.
[http://dx.doi.org/10.1016/j.yjmcc.2004.05.016] [PMID: 15276025]
[105]
Cihakova, D.; Barin, J.G.; Afanasyeva, M.; Kimura, M.; Fairweather, D.; Berg, M.; Talor, M.V.; Baldeviano, G.C.; Frisancho, S.; Gabrielson, K.; Bedja, D.; Rose, N.R. Interleukin-13 protects against experimental autoimmune myocarditis by regulating macrophage differentiation. Am. J. Pathol., 2008, 172(5), 1195-1208.
[http://dx.doi.org/10.2353/ajpath.2008.070207] [PMID: 18403598]
[106]
Palizgir, M.T.; Akhtari, M.; Mahmoudi, M.; Mostafaei, S.; Rezaiemanesh, A.; Shahram, F. Curcumin reduces the expression of interleukin 1β and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with Behcet’s disease. Immunopharmacol. Immunotoxicol., 2018, 40(4), 297-302.
[http://dx.doi.org/10.1080/08923973.2018.1474921 ] [PMID: 29806793]
[107]
Mazzoccoli, G.; Matarangolo, A.; Rubino, R.; Inglese, M.; De Cata, A. Behçet syndrome: From pathogenesis to novel therapies. Clin. Exp. Med., 2016, 16(1), 1-12.
[http://dx.doi.org/10.1007/s10238-014-0328-z] [PMID: 25447032]
[108]
Davies, L.C.; Jenkins, S.J.; Allen, J.E.; Taylor, P.R. Tissue-resident macrophages. Nat. Immunol., 2013, 14(10), 986-995.
[http://dx.doi.org/10.1038/ni.2705] [PMID: 24048120]
[109]
Laria, A.; Lurati, A.; Marrazza, M.; Mazzocchi, D.; Re, K.A.; Scarpellini, M. The macrophages in rheumatic diseases. J. Inflamm. Res., 2016, 9, 1-11.
[PMID: 26929657]
[110]
Kim, M-G.; Kim, S.C.; Ko, Y.S.; Lee, H.Y.; Jo, S-K.; Cho, W. The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One, 2015, 10(12), e0143961.
[http://dx.doi.org/10.1371/journal.pone.0143961] [PMID: 26630505]
[111]
Cao, Q.; Wang, Y.; Zheng, D.; Sun, Y.; Wang, Y.; Lee, V.W.; Zheng, G.; Tan, T.K.; Ince, J.; Alexander, S.I.; Harris, D.C. IL-10/TGF-β-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J. Am. Soc. Nephrol., 2010, 21(6), 933-942.
[http://dx.doi.org/10.1681/ASN.2009060592] [PMID: 20299353]
[112]
Lee, S.; Huen, S.; Nishio, H.; Nishio, S.; Lee, H.K.; Choi, B-S.; Ruhrberg, C.; Cantley, L.G. Distinct macrophage phenotypes contribute to kidney injury and repair. J. Am. Soc. Nephrol., 2011, 22(2), 317-326.
[http://dx.doi.org/10.1681/ASN.2009060615] [PMID: 21289217]
[113]
Karuppagounder, V.; Arumugam, S.; Thandavarayan, R.A.; Sreedhar, R.; Giridharan, V.V.; Afrin, R.; Harima, M.; Miyashita, S.; Hara, M.; Suzuki, K.; Nakamura, M.; Ueno, K.; Watanabe, K. Curcumin alleviates renal dysfunction and suppresses inflammation by shifting from M1 to M2 macrophage polarization in daunorubicin induced nephrotoxicity in rats. Cytokine, 2016, 84, 1-9.
[http://dx.doi.org/10.1016/j.cyto.2016.05.001] [PMID: 27203664]
[114]
Vaziri, N.D.; Bai, Y.; Ni, Z.; Quiroz, Y.; Pandian, R.; Rodriguez-Iturbe, B. Intra-renal angiotensin II/AT1 receptor, oxidative stress, inflammation, and progressive injury in renal mass reduction. J. Pharmacol. Exp. Ther., 2007, 323(1), 85-93.
[http://dx.doi.org/10.1124/jpet.107.123638] [PMID: 17636006]
[115]
Sochett, E.B.; Cherney, D.Z.; Curtis, J.R.; Dekker, M.G.; Scholey, J.W.; Miller, J.A. Impact of renin angiotensin system modulation on the hyperfiltration state in type 1 diabetes. J. Am. Soc. Nephrol., 2006, 17(6), 1703-1709.
[http://dx.doi.org/10.1681/ASN.2005080872] [PMID: 16672313]
[116]
Yamamoto, S.; Yancey, P.G.; Zuo, Y.; Ma, L.J.; Kaseda, R.; Fogo, A.B.; Ichikawa, I.; Linton, M.F.; Fazio, S.; Kon, V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(12), 2856-2864.
[http://dx.doi.org/10.1161/ATVBAHA.111.237198 ] [PMID: 21979434]
[117]
Liou, G.Y.; Döppler, H.; Necela, B.; Edenfield, B.; Zhang, L.; Dawson, D.W.; Storz, P. Mutant KRAS-induced expression of ICAM-1 in pancreatic acinar cells causes attraction of macrophages to expedite the formation of precancerous lesions. Cancer Discov., 2015, 5(1), 52-63.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0474] [PMID: 25361845]
[118]
Martinez, F.O.; Sica, A.; Mantovani, A.; Locati, M. Macrophage activation and polarization. Front. Biosci., 2008, 13(13), 453-461.
[http://dx.doi.org/10.2741/2692] [PMID: 17981560]
[119]
Jacob, A.; Chaves, L.; Eadon, M.T.; Chang, A.; Quigg, R.J.; Alexander, J.J. Curcumin alleviates immune-complex-mediated glomerulonephritis in factor-H-deficient mice. Immunology, 2013, 139(3), 328-337.
[http://dx.doi.org/10.1111/imm.12079] [PMID: 23347386]
[120]
Janssen, W.J.; Henson, P.M. Cellular regulation of the inflammatory response. Toxicol. Pathol., 2012, 40(2), 166-173.
[http://dx.doi.org/10.1177/0192623311428477] [PMID: 22089838]
[121]
Tang, Y.; Le, W. Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[122]
Hu, X.; Li, P.; Guo, Y.; Wang, H.; Leak, R.K.; Chen, S.; Gao, Y.; Chen, J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012, 43(11), 3063-3070.
[http://dx.doi.org/10.1161/STROKEAHA.112.659656 ] [PMID: 22933588]
[123]
Hu, X.; Leak, R.K.; Shi, Y.; Suenaga, J.; Gao, Y.; Zheng, P.; Chen, J. Microglial and macrophage polarization—new prospects for brain repair. Nat. Rev. Neurol., 2015, 11(1), 56-64.
[http://dx.doi.org/10.1038/nrneurol.2014.207] [PMID: 25385337]
[124]
Girard, S.; Brough, D.; Lopez-Castejon, G.; Giles, J.; Rothwell, N.J.; Allan, S.M. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia, 2013, 61(5), 813-824.
[http://dx.doi.org/10.1002/glia.22478] [PMID: 23404620]
[125]
Lee, J.H.; Wei, Z.Z.; Cao, W.; Won, S.; Gu, X.; Winter, M.; Dix, T.A.; Wei, L.; Yu, S.P. Regulation of therapeutic hypothermia on inflammatory cytokines, microglia polarization, migration and functional recovery after ischemic stroke in mice. Neurobiol. Dis., 2016, 96, 248-260.
[http://dx.doi.org/10.1016/j.nbd.2016.09.013] [PMID: 27659107]
[126]
Liu, S.; Cao, Y.; Qu, M.; Zhang, Z.; Feng, L.; Ye, Z.; Xiao, M.; Hou, S.T.; Zheng, R.; Han, Z. Curcumin protects against stroke and increases levels of Notch intracellular domain. Neurol. Res., 2016, 38(6), 553-559.
[http://dx.doi.org/10.1080/01616412.2016.1187804 ] [PMID: 27320251]
[127]
Yang, Y.; Liu, H.; Zhang, H.; Ye, Q.; Wang, J.; Yang, B.; Mao, L.; Zhu, W.; Leak, R.K.; Xiao, B.; Lu, B.; Chen, J.; Hu, X. ST2/IL-33-dependent microglial response limits acute ischemic brain injury. J. Neurosci., 2017, 37(18), 4692-4704.
[http://dx.doi.org/10.1523/JNEUROSCI.3233-16.2017 ] [PMID: 28389473]
[128]
Qin, H.; Holdbrooks, A.T.; Liu, Y.; Reynolds, S.L.; Yanagisawa, L.L.; Benveniste, E.N. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol., 2012, 189(7), 3439-3448.
[http://dx.doi.org/10.4049/jimmunol.1201168] [PMID: 22925925]
[129]
Kim, H.Y.; Park, E.J.; Joe, E.H.; Jou, I. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J. Immunol., 2003, 171(11), 6072-6079.
[http://dx.doi.org/10.4049/jimmunol.171.11.6072] [PMID: 14634121 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy