Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Mini-Review Article

Therapeutic Strategies for COVID-19 Patients: An Update

Author(s): Muhammad Ibrahim Getso, Soudabeh Etemadi, Vahid Raissi, Moein Mohseni, Maedeh Sadat Mohseni, Farid Raeisi and Omid Raiesi*

Volume 22, Issue 6, 2022

Published on: 23 May, 2022

Article ID: e220322202523 Pages: 12

DOI: 10.2174/1871526522666220322145729

Price: $65

Abstract

The novel coronavirus SARS-coV-2, which emerged in Wuhan in November 2019, has increasingly spread, causing a global pandemic that infected more than 444 million people, resulting in severe social and economic ramifications, and claimed more than 6,010,000 lives by March 5, 2022. The pandemic attracted global attention with consequential multiple economic, social, and clinical studies. Among causes of poor clinical outcomes of the disease are therapeutic challenges, leading to spirals of studies in search of better therapeutic alternatives. Despite the worsening circumstances of the pandemic, no drug has yet shown remarkable efficacy in the clinical management of COVID-19 patients in large-scale trials. Many potential therapeutic strategies, including the use of nucleotide analogs, chloroquine phosphate, arbidol, protease inhibitors (lopinavir/ritonavir), plasma, monoclonal antibodies, plastic antibodies based on molecularly imprinted polymers (MIPs), traditional Chinese medicine (TCM), nanomaterials, vaccine, and mesenchymal stem cells (MSCs), have emerged with various degrees of successes. Remdesivir and dexamethasone have now been licensed based on the results of randomized controlled trials. Baricitinib, the Janus kinase (JAK) 1/2 inhibitor, is also an attractive candidate due to its properties as a potent anti-inflammatory agent and its hypothesized offtarget antiviral effects against SARS-CoV-2. Besides, human plasma from recovered COVID-19 patients is theoretically expected to be safe and effective for both therapy and post-exposure prophylaxis. In light of the literature, the correlation between the reduction of C5aR1/C5aR2 and the IL6-IL6R axis, using the available anti-IL6R mAb would be crucial. Moreover, MSCs are a potential therapeutic choice for patients with COVID-19 pneumonia. The coronavirus spike (S) protein that mediates the process of the infection via binding of host cells to the virus receptor is an essential focus for vaccine development. Importantly, with the number of patients increasing daily, there is an urgent need for effective therapeutic intervention. In this review, we expatiated on several strategies deployed for the treatment of COVID-19 infection.

Keywords: SARS-CoV-2, COVID-19, therapeutic strategies, vaccine, mesenchymal stem cells, treatment.

Graphical Abstract

[1]
Tabanejad Z, Darvish S, Boroujeni ZB, et al. Seroepidemiologi-cal study of novel corona virus (CoVID-19) in Tehran, Iran. medRxiv 2021.
[http://dx.doi.org/10.1101/2021.01.18.20248911]
[2]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[3]
De Jesús-González LA, Osuna-Ramos JF, Reyes-Ruiz JM, et al. Flavonoids and nucleotide analogs show high affinity for viral proteins of SARS-CoV-2 by in silico analysis: New candidates for the treatment of COVID-19. 2020.
[4]
Chien M, Anderson TK, Jockusch S, et al. Nucleotide analogues as inhibitors of SARS-CoV-2 polymerase, a key drug target for COVID-19. J Proteome Res 2020; 19(11): 4690-7.
[http://dx.doi.org/10.1021/acs.jproteome.0c00392] [PMID: 32692185]
[5]
Lu G, Zhang X, Zheng W, et al. Development of a simple in vitro assay to identify and evaluate nucleotide analogs against SARS-CoV-2 RNA-dependent RNA polymerase. Antimicrob Agents Chemother 2020; 65(1): e01508-20.
[http://dx.doi.org/10.1128/AAC.01508-20] [PMID: 33122171]
[6]
Vetter P, Kaiser L, Calmy A, Agoritsas T, Huttner A. Dexame-thasone and remdesivir: finding method in the COVID-19 mad-ness. Lancet Microbe 2020; 1(8): e309-10.
[http://dx.doi.org/10.1016/S2666-5247(20)30173-7]
[7]
Horby P, Lim WS, Emberson JR, et al. RECOVERY Collabora-tive Group. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021; 384(8): 693-704.
[http://dx.doi.org/10.1056/NEJMoa2021436] [PMID: 32678530]
[8]
Horby P, Lim WS, Emberson JR, et al. Effect of Dexame-thasone in Hospitalized Patients with COVID-19 – Preliminary Report. MedRxiv 2020. Available from: https://www.medrxiv.org/content/10.1101/2020.06.22.20137273v1
[9]
Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19—preliminary report. N Engl J Med 2020; 383: 1813-26.
[http://dx.doi.org/10.1056/NEJMoa2007764]
[10]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[11]
Spinner CD, Gottlieb RL, Criner GJ, et al. GS-US-540-5774 Investigators. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a ran-domized clinical trial. JAMA 2020; 324(11): 1048-57.
[http://dx.doi.org/10.1001/jama.2020.16349] [PMID: 32821939]
[12]
Consortium WST. Repurposed antiviral drugs for COVID-19—interim WHO SOLIDARITY trial results. N Engl J Med 2021; 384(6): 497-511.
[13]
Abd-Elsalam S, Ahmed OA, Mansour NO, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am J Trop Med Hyg 2021; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[14]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of com-bined sofosbuvir and daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2021; 1-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[15]
Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Arch Virol 2021; 166(3): 949-54.
[http://dx.doi.org/10.1007/s00705-021-04956-9] [PMID: 33492523]
[16]
Titanji BK, Farley MM, Mehta A, et al. Use of baricitinib in patients with moderate and severe COVID-19. Clin Infect Dis 2021; 72(7): 1247-50.
[PMID: 32597466]
[17]
Plantone D, Koudriavtseva T. Current and future use of chloro-quine and hydroxychloroquine in infectious, immune, neo-plastic, and neurological diseases: a mini-review. Clin Drug Investig 2018; 38(8): 653-71.
[http://dx.doi.org/10.1007/s40261-018-0656-y] [PMID: 29737455]
[18]
Kashour Z, Riaz M, Garbati MA, et al. Efficacy of chloroquine or hydroxychloroquine in COVID-19 patients: a systematic re-view and meta-analysis. J Antimicrob Chemother 2021; 76(1): 30-42.
[http://dx.doi.org/10.1093/jac/dkaa403] [PMID: 33031488]
[19]
Campos EVR, Pereira AES, de Oliveira JL, et al. How can nano-technology help to combat COVID-19? Opportunities and ur-gent need. J Nanobiotechnology 2020; 18(1): 125.
[http://dx.doi.org/10.1186/s12951-020-00685-4] [PMID: 32891146]
[20]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do zinc supple-ments enhance the clinical efficacy of hydroxychloroquine?: a randomized, multicenter trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[21]
Deng L, Li C, Zeng Q, et al. Arbidol combined with LPV/r ver-sus LPV/r alone against corona virus disease 2019: A retrospec-tive cohort study. J Infect 2020; 81(1): e1-5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[22]
Zhu Z, Lu Z, Xu T, et al. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J Infect 2020; 81(1): e21-3.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[23]
Huang D, Yu H, Wang T, Yang H, Yao R, Liang Z. Efficacy and safety of umifenovir for coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J Med Virol 2021; 93(1): 481-90.
[http://dx.doi.org/10.1002/jmv.26256] [PMID: 32617989]
[24]
Wu C-Y, Jan J-T, Ma S-H, et al. Small molecules targeting se-vere acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA 2004; 101(27): 10012-7.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[25]
Mukherjee P, Desai P, Ross L, White EL, Avery MA. Structure-based virtual screening against SARS-3CL(pro) to identify nov-el non-peptidic hits. Bioorg Med Chem 2008; 16(7): 4138-49.
[http://dx.doi.org/10.1016/j.bmc.2008.01.011] [PMID: 18343121]
[26]
Chu CM, Cheng VC, Hung IF, et al. HKU/UCH SARS Study Group. Role of lopinavir/ritonavir in the treatment of SARS: ini-tial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[27]
Chan KS, Lai ST, Chu CM, et al. Treatment of severe acute respiratory syndrome with lopinavir/ritonavir: a multicentre ret-rospective matched cohort study. Hong Kong Med J 2003; 9(6): 399-406.
[PMID: 14660806]
[28]
Ahn D-G, Shin H-J, Kim M-H, et al. Current status of epidemi-ology, diagnosis, therapeutics, and vaccines for novel corona-virus disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 80(3): 313-24.
[PMID: 32238757]
[29]
Arabi YM, Alothman A, Balkhy HH, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir-ritonavir and interferon-β1b (MIRACLE trial): study protocol for a randomized controlled trial. Trials 2018; 19(1): 1-13.
[http://dx.doi.org/10.1186/s13063-017-2427-0] [PMID: 29298706]
[30]
Ye XT, Luo YL, Xia SC, et al. Clinical efficacy of lop-inavir/ritonavir in the treatment of Coronavirus disease 2019. Eur Rev Med Pharmacol Sci 2020; 24(6): 3390-6.
[PMID: 32271456]
[31]
Zuo Y, Liu Y, Zhong Q, Zhang K, Xu Y, Wang Z. Lop-inavir/ritonavir and interferon combination therapy may help shorten the duration of viral shedding in patients with COVID-19: A retrospective study in two designated hospitals in Anhui, China. J Med Virol 2020; 92(11): 2666-74.
[http://dx.doi.org/10.1002/jmv.26127] [PMID: 32492211]
[32]
Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in pa-tients at risk of serious illness, company reports. BMJ 2021; 375: n2713.
[PMID: 34750163]
[33]
Mouffak S, Shubbar Q, Saleh E, El-Awady R. Recent advances in management of COVID-19: A review. Biomed Pharmacother 2021; 143: 112107.
[http://dx.doi.org/10.1016/j.biopha.2021.112107] [PMID: 34488083]
[34]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evalu-ating the efficacy of ivermectin in COVID-19 treatment: A ran-domized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[35]
Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID-19. J Cell Physiol 2020; 235(12): 9133-42.
[http://dx.doi.org/10.1002/jcp.29785] [PMID: 32394467]
[36]
Alam S, Sarker MMR, Afrin S, et al. Traditional herbal medi-cines, bioactive metabolites, and plant products against COVID-19: Update on clinical trials and mechanism of actions. Front Pharmacol 2021; 12: 671498.
[http://dx.doi.org/10.3389/fphar.2021.671498] [PMID: 34122096]
[37]
Li L-C, Zhang Z-H, Zhou W-C, et al. Lianhua qingwen pre-scription for coronavirus disease 2019 (COVID-19) treatment: Advances and prospects. Biomed Pharmacother 2020; 130: 110641.
[http://dx.doi.org/10.1016/j.biopha.2020.110641] [PMID: 34321172]
[38]
Bloch EM, Shoham S, Casadevall A, et al. Deployment of con-valescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020; 130(6): 2757-65.
[http://dx.doi.org/10.1172/JCI138745] [PMID: 32254064]
[39]
Li L, Zhang W, Hu Y, et al. Effect of convalescent plasma ther-apy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA 2020; 324(5): 460-70.
[http://dx.doi.org/10.1001/jama.2020.10044] [PMID: 32492084]
[40]
Liu ST, Lin H-M, Baine I, et al. Convalescent plasma treatment of severe COVID-19: A matched control study. medRxiv 2020.
[http://dx.doi.org/10.1101/2020.05.20.20102236]
[41]
Hegerova L, Gooley TA, Sweerus KA, et al. Use of convales-cent plasma in hospitalized patients with COVID-19: case se-ries. Blood 2020; 136(6): 759-62.
[http://dx.doi.org/10.1182/blood.2020006964] [PMID: 32559767]
[42]
Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[43]
Joyner MJ, Bruno KA, Klassen SA, et al. Safety update: COVID-19 convalescent plasma in 20,000 hospitalized patients. Mayo Clinic Proceedings 2020; 95(9): 1888-97.
[PMID: 32861333]
[44]
Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P. Convalescent plasma in the management of moder-ate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939.
[PMID: 33093056]
[45]
Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol 2012; 22(1): 2-17.
[http://dx.doi.org/10.1002/rmv.706] [PMID: 21905149]
[46]
Schoeman D, Fielding BC. Coronavirus envelope protein: cur-rent knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[47]
Li F. Evidence for a common evolutionary origin of corona-virus spike protein receptor-binding subunits. J Virol 2012; 86(5): 2856-8.
[http://dx.doi.org/10.1128/JVI.06882-11] [PMID: 22205743]
[48]
Berry JD, Jones S, Drebot MA, et al. Development and charac-terisation of neutralising monoclonal antibody to the SARS-coronavirus. J Virol Methods 2004; 120(1): 87-96.
[http://dx.doi.org/10.1016/j.jviromet.2004.04.009] [PMID: 15234813]
[49]
Mulangu S, Dodd LE, Davey RT Jr, et al. A randomized, con-trolled trial of Ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[50]
Marovich M, Mascola JR, Cohen MS. Monoclonal antibodies for prevention and treatment of COVID-19. JAMA 2020; 324(2): 131-2.
[http://dx.doi.org/10.1001/jama.2020.10245] [PMID: 32539093]
[51]
Koirala A, Joo YJ, Khatami A, Chiu C, Britton PN. Vaccines for COVID-19: The current state of play. Paediatr Respir Rev 2020; 35: 43-9.
[PMID: 32653463]
[52]
Buonaguro FM, Ascierto PA, Morse GD, et al. COVID-19: Time for a paradigm change. Rev Med Virol 2020; 30(5): e2134.
[http://dx.doi.org/10.1002/rmv.2134] [PMID: 32618072]
[53]
Guy RK, DiPaola RS, Romanelli F, Dutch RE. Rapid repurpos-ing of drugs for COVID-19. Science 2020; 368(6493): 829-30.
[http://dx.doi.org/10.1126/science.abb9332] [PMID: 32385101]
[54]
Wang C, Li W, Drabek D, et al. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun 2020; 11(1): 1-6.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 31911652]
[55]
Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009; 157(2): 220-33.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00190.x] [PMID: 19459844]
[56]
Parisi OI, Ruffo M, Malivindi R, Vattimo AF, Pezzi V, Puoci F. Molecularly imprinted polymers (MIPs) as theranostic systems for sunitinib controlled release and self-monitoring in cancer therapy. Pharmaceutics 2020; 12(1): 41.
[http://dx.doi.org/10.3390/pharmaceutics12010041] [PMID: 31947815]
[57]
Hoshino Y, Kodama T, Okahata Y, Shea KJ. Peptide imprinted polymer nanoparticles: a plastic antibody. J Am Chem Soc 2008; 130(46): 15242-3.
[http://dx.doi.org/10.1021/ja8062875] [PMID: 18942788]
[58]
Ding S, Lyu Z, Niu X, et al. Integrating ionic liquids with mo-lecular imprinting technology for biorecognition and biosensing: A review. Biosens Bioelectron 2020; 149: 111830.
[http://dx.doi.org/10.1016/j.bios.2019.111830] [PMID: 31710919]
[59]
Puoci F. “Monoclonal-Type” plastic antibodies for COVID-19 treatment: what is the idea? J Funct Biomater 2020; 11(2): 43.
[http://dx.doi.org/10.3390/jfb11020043] [PMID: 32560382]
[60]
Saldanha-Araujo F, Melgaço Garcez E, Silva-Carvalho AE, Car-valho JL. Mesenchymal stem cells: A new piece in the puzzle of COVID-19 treatment. Front Immunol 2020; 11: 1563.
[http://dx.doi.org/10.3389/fimmu.2020.01563] [PMID: 32719683]
[61]
Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses 2020; 144: 109865.
[http://dx.doi.org/10.1016/j.mehy.2020.109865] [PMID: 32562911]
[62]
Zhang Y, Ding J, Ren S, et al. Intravenous infusion of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia. Stem Cell Res Ther 2020; 11(1): 207.
[http://dx.doi.org/10.1186/s13287-020-01725-4] [PMID: 32460839]
[63]
Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4(9): e269.
[http://dx.doi.org/10.1371/journal.pmed.0040269] [PMID: 17803352]
[64]
Shyamsundar M, McAuley DF, Ingram RJ, et al. Keratinocyte growth factor promotes epithelial survival and resolution in a human model of lung injury. Am J Respir Crit Care Med 2014; 189(12): 1520-9.
[http://dx.doi.org/10.1164/rccm.201310-1892OC] [PMID: 24716610]
[65]
Teuwen L-A, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nat Rev Immunol 2020; 20(7): 389-91.
[PMID: 32439870]
[66]
Shu L, Niu C, Li R, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther 2020; 11(1): 361.
[http://dx.doi.org/10.1186/s13287-020-01875-5] [PMID: 32811531]
[67]
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11(1): 305.
[http://dx.doi.org/10.1186/s13287-020-01804-6] [PMID: 32698898]
[68]
Akst J. COVID-19 vaccine frontrunners. Scientist 2020; 7.
[69]
Mohamed AA, Mohamed N, Mohamoud S, et al. SARS-CoV-2: the path of prevention and control. Infect Disord Drug Targets 2021; 21(3): 358-62.
[PMID: 32433010]
[70]
Forni G, Mantovani A. COVID-19 commission of accademia nazionale dei lincei, Rome. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ 2021; 28(2): 626-39.
[http://dx.doi.org/10.1038/s41418-020-00720-9] [PMID: 33479399]
[71]
Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): 561-4.
[http://dx.doi.org/10.1038/nature02463] [PMID: 15024391]
[72]
Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011; 23(3): 421-9.
[http://dx.doi.org/10.1016/j.coi.2011.03.008] [PMID: 21530212]
[73]
Hakim AS, Syame SM, Shehata MM, Sayed ATA. The battle with COVID-19: Insight on external intervention and future vaccination. South Asian J Res Microbiol. 2020; 46-61.
[74]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[75]
Zhang C, Maruggi G, Shan H, Li J. Advances in mRNA vaccines for infectious diseases. Front Immunol 2019; 10: 594.
[http://dx.doi.org/10.3389/fimmu.2019.00594] [PMID: 30972078]
[76]
Klugar M, Riad A, Mekhemar M, et al. Side effects of mRNA-Based and viral vector-based COVID-19 vaccines among Ger-man healthcare workers. Biology (Basel) 2021; 10(8): 752.
[http://dx.doi.org/10.3390/biology10080752] [PMID: 34439984]
[77]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[78]
Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infec-tion of mice induced by a soluble recombinant polypeptide con-taining an N-terminal segment of the spike glycoprotein. Virology 2005; 334(2): 160-5.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[79]
Okba NM, Raj VS, Haagmans BL. Middle East respiratory syn-drome coronavirus vaccines: current status and novel ap-proaches. Curr Opin Virol 2017; 23: 49-58.
[http://dx.doi.org/10.1016/j.coviro.2017.03.007] [PMID: 28412285]
[80]
Kang MC, Park HW, Choi D-H, et al. Erratum: Plasmacytoid dendritic cells contribute to the protective immunity induced by intranasal treatment with Fc-fused interleukin-7 against lethal influenza virus infection. Immune network 2017; 17(6): 460.
[PMID: 12725690]
[81]
Tirado SMC, Yoon K-J. Antibody-dependent enhancement of virus infection and disease. Viral immunology 2003; 16(1): 69-86.
[82]
Khandia R, Munjal A, Dhama K, et al. Modulation of den-gue/zika virus pathogenicity by antibody-dependent enhance-ment and strategies to protect against enhancement in zika virus infection. Front Immunol 2018; 9: 597.
[http://dx.doi.org/10.3389/fimmu.2018.00597] [PMID: 29740424]
[83]
Wan Y, Shang J, Sun S, et al. Molecular mechanism for anti-body-dependent enhancement of coronavirus entry. J Virol 2020; 94(5): e02015-9.
[http://dx.doi.org/10.1128/JVI.02015-19] [PMID: 31826992]
[84]
Wang S-F, Tseng S-P, Yen C-H, et al. Antibody-dependent SARS coronavirus infection is mediated by antibodies against spike proteins. Biochem Biophys Res Commun 2014; 451(2): 208-14.
[http://dx.doi.org/10.1016/j.bbrc.2014.07.090] [PMID: 25073113]
[85]
Kim TW, Lee JH, Hung C-F, et al. Generation and characteriza-tion of DNA vaccines targeting the nucleocapsid protein of se-vere acute respiratory syndrome coronavirus. J Virol 2004; 78(9): 4638-45.
[http://dx.doi.org/10.1128/JVI.78.9.4638-4645.2004] [PMID: 15078946]
[86]
Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol 2018; 16(8): e3000003.
[PMID: 33397941]
[87]
Tavakol S, Zahmatkeshan M, Mohammadinejad MR, et al. The role of nanotechnology in current COVID-19 outbreak. Heliyon 2021; 7(4): e06841.
[PMID: 33880422]
[88]
Ku Z, Xie X, Davidson E, et al. Molecular determinants and mechanism for antibody cocktail preventing SARS-CoV-2 es-cape. Nat Commun 12(1): 469.
[PMID: 33473140]
[89]
Baranov MV, Bianchi F. G. The PIKfyve inhibitor apilimod: a double-edged sword against COVID-19. Cells 2021; 10(1): 30.
[PMID: 33375410]
[90]
Khan FA, Stewart I, Fabbri L, et al. Systematic review and me-ta-analysis of anakinra, sarilumab, siltuximab and tocilizumab for COVID-19. Thorax 2021; 76(9): 907-19.
[http://dx.doi.org/10.1136/thoraxjnl-2020-215266] [PMID: 33579777]
[91]
OHare R. Blood thinners may improve outcomes in’moderately ill’COVID patients 2021. Available from: https://www.imperial.ac.uk/news/213253/blood-thinners-improve-outcomes-moderately-covid/
[92]
Bardaweel SK, Hajjo R, Sabbah DA. Sitagliptin: a potential drug for the treatment of COVID-19? Acta Pharm 2021; 71(2): 175-84.
[http://dx.doi.org/10.2478/acph-2021-0013] [PMID: 33151168]
[93]
Vuong W, Fischer C, Khan MB, et al. Improved SARS-CoV-2 Mpro inhibitors based on feline antiviral drug GC376: Structural enhancements, increased solubility, and micellar studies. Eur J Med Chem 2021; 222: 113584.
[http://dx.doi.org/10.1016/j.ejmech.2021.113584] [PMID: 34118724]
[94]
Montealegre-Gómez G, Garavito E, Gómez-López A, Rojas-Villarraga A, Parra-Medina R. Colchicine: A potential therapeu-tic tool against COVID-19. Experience of 5 patients. Reumatol Clin 2021; 17(7): 371-5.
[http://dx.doi.org/10.1016/j.reumae.2020.05.008] [PMID: 34301378]
[95]
Garcia N, Ambasch G, Coscia E, Díaz J, Bueno G. Therapeutic potential of ibuprofen inhalation for CO-VID-19 pneumonia: Report of two first cases. J Clin Images Med Case Rep 2021; 2(5): 1336.
[96]
Sosa JP, Ferreira Caceres MM, Ross Comptis J, et al. Effects of interferon beta in COVID-19 adult patients: systematic review. Infect Chemother 2021; 53(2): 247-60.
[http://dx.doi.org/10.3947/ic.2021.0028] [PMID: 34216119]
[97]
Singh AK, Singh A, Singh R, Misra A. Molnupiravir in COVID-19: A systematic review of literature. Diabetes Metab Syndr 2021; 15(6): 102329.
[http://dx.doi.org/10.1016/j.dsx.2021.102329] [PMID: 34742052]
[98]
Zarabanda D, Vukkadala N, Phillips KM, et al. The Effect of Povidone‐Iodine Nasal Spray on COVID‐19 Nasopharyngeal Viral Load in Patients: A Randomized Control Trial. Laryngoscope 2021.
[http://dx.doi.org/10.1002/lary.29935]
[99]
Lotz C, Muellenbach RM, Meybohm P, et al. Effects of inhaled nitric oxide in COVID-19-induced ARDS - Is it worthwhile? Acta Anaesthesiol Scand 2021; 65(5): 629-32.
[http://dx.doi.org/10.1111/aas.13757] [PMID: 33296498]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy