Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Preparation and In Vitro Evaluation of Thermosensitive Liposomes Targeting Ovarian Cancer

Author(s): Xingming Wang, Fang Wang, Sixie Li, Guangfu Yin and Ximing Pu*

Volume 19, Issue 9, 2022

Published on: 27 April, 2022

Page: [940 - 948] Pages: 9

DOI: 10.2174/1567201819666220321110812

Price: $65

Abstract

Introduction: Liposomes have been widely used in drug delivery systems because the encapsulation of liposomes changes the biological distribution profile and improves the therapeutic indices of various drugs. Thermosensitive liposomes have been proven to be a precise and effective method for cancer therapy in many preclinical studies. However, the lack of specific targeting ability to cancer cells limited their application in safe and efficient chemotherapy.

Methods: In the present study, an ovarian targeting ligand namely WSGFPGVWGASVK (WSG) screened by phage display in vivo was grafted on the thermosensitive phospholipids to prepare the liposomes targeting ovarian cancer cells. WSG was first grafted onto the hydrophilic terminal of DSPEPEG2000 molecules, and then the WSG modified thermosensitive liposomes (WSG-Lipo) were prepared by thin-film hydration method. Doxorubicin hydrochloride (DOX) was used as a model drug to investigate the drug release behavior of liposomes at different temperatures. The specificity of liposomes to SKOV-3 cells was studied by cell uptake in vitro.

Results: The WSG-Lipo-DOX could release more DOX at 42°C than at 37°C, showing stronger specificity to SKOV-3 cells and thus selectively inhibiting SKOV-3 cells activity in vitro.

Conclusion: The active targeting liposome showed potential in improving the specificity of thermosensitive liposomes and would be applied in the chemotherapy combined with a thermotherapy.

Keywords: Thermosensitivity, liposomes, tumor targeting, ovarian cancer, cellular specificity, controlled drug release.

Graphical Abstract

[1]
Christa, L.P.; Slatnik, N. Ovarian cancer ensuring early diagnosis. Nurse Pract., 2015, 47(9), 47-54.
[PMID: 26274886]
[2]
Kim, B.J.; Misra, S.; Chen, H.; Bell, T.M.; Koniaris, L.G.; Valsangkar, N.P. National cancer institute centers and society of surgical oncology cancer research synergy. J. Surg. Res., 2019, 236, 92-100.
[http://dx.doi.org/10.1016/j.jss.2018.11.009] [PMID: 30694784]
[3]
Carollo, E.; Paris, B.; Samuel, P.; Pantazi, P.; Bartelli, T.F.; Dias-Neto, E.; Brooks, S.A.; Pink, R.C.; Carter, D.R.F. Detecting ovarian cancer using extracellular vesicles: Progress and possibilities. Biochem. Soc. Trans., 2019, 47(1), 295-304.
[http://dx.doi.org/10.1042/BST20180286] [PMID: 30700499]
[4]
Franier, B.; Thompson, M. Early stage detection and screening of ovarian cancer: A research opportunity and significant challenge for bio-sensor technology. Biosens. Bioelectron., 2019, 135, 71-81.
[http://dx.doi.org/10.1016/j.bios.2019.03.041] [PMID: 31003031]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[6]
Stewart, C.; Ralyea, C.; Lockwood, S. Ovarian cancer: An integrated review. Semin. Oncol. Nurs., 2019, 35(2), 151-156.
[http://dx.doi.org/10.1016/j.soncn.2019.02.001] [PMID: 30867104]
[7]
Lim, G.H.; Borje, E.; Allen, J.C. Jr. Evaluating the performance of national comprehensive cancer network (NCCN) breast and ovarian genet-ic/familial high risk assessment referral criteria for breast cancer women in an Asian surgical breast clinic. Gland Surg., 2017, 6(1), 35-42.
[http://dx.doi.org/10.21037/gs.2016.11.05] [PMID: 28210550]
[8]
Kommoss, F.; Lehr, H.A. Sex cord-stromal tumors of the ovary: Current aspects with a focus on granulosa cell tumors, Sertoli-leydig cell tumors, and gynandroblastomas. Pathologe, 2019, 40(1), 61-72.
[http://dx.doi.org/10.1007/s00292-018-0562-3] [PMID: 30659330]
[9]
Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[10]
Patil, S.; Lalani, R.; Bhatt, P.; Vhora, I.; Patel, V.; Patel, H.; Misra, A. Hydroxyethyl substituted linear polyethylenimine for safe and efficient delivery of siRNA therapeutics. RSC Advances, 2018, 8(62), 35461-35473.
[http://dx.doi.org/10.1039/C8RA06298F]
[11]
Fathi, S.; Oyelere, A.K. Liposomal drug delivery systems for targeted cancer therapy: Is active targeting the best choice? Future Med. Chem., 2016, 8(17), 2091-2112.
[http://dx.doi.org/10.4155/fmc-2016-0135] [PMID: 27774793]
[12]
Li, M.; Du, C.; Guo, N.; Teng, Y.; Meng, X.; Sun, H.; Li, S.; Yu, P.; Galons, H. Composition design and medical application of liposomes. Eur. J. Med. Chem., 2019, 164, 640-653.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.007] [PMID: 30640028]
[13]
Shehata, T.; Ogawara, K.; Higaki, K.; Kimura, T. Prolongation of residence time of liposome by surface-modification with mixture of hydro-philic polymers. Int. J. Pharm., 2008, 359(1-2), 272-279.
[http://dx.doi.org/10.1016/j.ijpharm.2008.04.004] [PMID: 18486370]
[14]
Bhatt, P.; Vhora, I.; Patil, S.; Amrutiya, J.; Bhattacharya, C.; Misra, A.; Mashru, R. Role of antibodies in diagnosis and treatment of ovarian cancer: Basic approach and clinical status. J. Control. Release, 2016, 226, 148-167.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.008] [PMID: 26860284]
[15]
Cheng, Y.; Zou, T.; Dai, M.; He, X.Y.; Peng, N.; Wu, K.; Wang, X.Q.; Liao, C.Y.; Liu, Y. Doxorubicin loaded tumor-triggered targeting am-monium bicarbonate liposomes for tumor-specific drug delivery. Colloids Surf. B Biointerfaces, 2019, 178, 263-268.
[http://dx.doi.org/10.1016/j.colsurfb.2019.03.002] [PMID: 30877911]
[16]
Thundimadathil, J. Cancer treatment using peptides: Current therapies and future prospects. J. Amino Acids, 2012, 2012, 967347-967347.
[http://dx.doi.org/10.1155/2012/967347] [PMID: 23316341]
[17]
Ma, C.; Yin, G.; Yan, D.; He, X.; Zhang, L.; Wei, Y.; Huang, Z. A novel peptide specifically targeting ovarian cancer identified by in vivo phage display. J. Pept. Sci., 2013, 19(12), 730-736.
[http://dx.doi.org/10.1002/psc.2555] [PMID: 24105738]
[18]
Sabín, J.; Prieto, G.; Estelrich, J.; Sarmiento, F.; Costas, M. Insertion of semifluorinated diblocks on DMPC and DPPC liposomes. Influence on the gel and liquid states of the bilayer. J. Colloid Interface Sci., 2010, 348(2), 388-392.
[http://dx.doi.org/10.1016/j.jcis.2010.04.067] [PMID: 20483424]
[19]
Dunne, M.; Regenold, M.; Allen, C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv. Drug Deliv. Rev., 2020, 163-164, 98-124.
[http://dx.doi.org/10.1016/j.addr.2020.07.007] [PMID: 32681862]
[20]
Kossatz, S.; Grandke, J.; Couleaud, P.; Latorre, A.; Aires, A.; Crosbie-Staunton, K.; Ludwig, R.; Dähring, H.; Ettelt, V.; Lazaro-Carrillo, A.; Calero, M.; Sader, M.; Courty, J.; Volkov, Y.; Prina-Mello, A.; Villanueva, A.; Somoza, Á.; Cortajarena, A.L.; Miranda, R.; Hilger, I. Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery. Breast Cancer Res., 2015, 17(1), 66.
[http://dx.doi.org/10.1186/s13058-015-0576-1] [PMID: 25968050]
[21]
Li, L.; ten Hagen, T.L.; Schipper, D.; Wijnberg, T.M.; van Rhoon, G.C.; Eggermont, A.M.; Lindner, L.H.; Koning, G.A. Triggered content release from optimized stealth thermosensitive liposomes using mild hyperthermia. J. Control. Release, 2010, 143(2), 274-279.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.006] [PMID: 20074595]
[22]
Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev., 2001, 53(3), 285-305.
[http://dx.doi.org/10.1016/S0169-409X(01)00233-2] [PMID: 11744173]
[23]
Su, Q.; Pu, X.; Bai, H.; Chen, X.; Liao, X.; Huang, Z.; Yin, G. Improvement of thermosensitive liposome stability by cerasome forming lipid with Si-O-Si network structure. Curr. Drug Deliv., 2018, 15(4), 585-593.
[http://dx.doi.org/10.2174/1567201814666170719111653] [PMID: 28721817]
[24]
Moosavian, S.A.; Sahebkar, A. Aptamer-functionalized liposomes for targeted cancer therapy. Cancer Lett., 2019, 448, 144-154.
[http://dx.doi.org/10.1016/j.canlet.2019.01.045] [PMID: 30763718]
[25]
Le, N.T.T.; Cao, V.D.; Nguyen, T.N.Q.; Le, T.T.H.; Tran, T.T.; Hoang Thi, T.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. Int. J. Mol. Sci., 2019, 20(19), 27.
[http://dx.doi.org/10.3390/ijms20194706] [PMID: 31547569]
[26]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[27]
Moffitt, L.; Karimnia, N.; Stephens, A.; Bilandzic, M. Therapeutic targeting of collective invasion in ovarian cancer. Int. J. Mol. Sci., 2019, 20(6), E1466.
[http://dx.doi.org/10.3390/ijms20061466] [PMID: 30909510]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy