Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

DDSolver Software Application for Quantitative Analysis of In vitro Drug Release Behavior of the Gastroretentive Floating Tablets Combined with Radiological Study in Rabbits

Author(s): Bazigha K. Abdul Rasool* and Rana Sammour

Volume 19, Issue 9, 2022

Published on: 12 May, 2022

Page: [949 - 965] Pages: 17

DOI: 10.2174/1567201819666220304203014

Price: $65

Abstract

Background: Gastroretentive drug delivery systems (GRDDSs) are designed to release the drug in the stomach over a prolonged time; thus, they can reduce drug dosing frequency and dose size and improve patient compliance. GRDDSs are also highly effective in enhancing the bioavailability of the drug that exhibits window absorption in specific segments of the gastrointestinal (GI) tract. Famotidine (FMT), an H2 receptor antagonist, is an example of these drugs. FMT is a slightly watersoluble drug but well soluble in an acidic medium. This research aims to formulate FMT gastroretentive floating tablets (FMT-GRFTs) to improve the bioavailability and therapeutic activity of the drug and increase patients' adherence to treatment. In addition, the in vitro release behavior of the prepared FMT-GRFTs was quantitatively analyzed using the DDSolver software to assist in selecting the successful formulation that was then evaluated in vivo.

Methods: The direct compression technique prepared numerous tablet formulations and was subjected to the pre-and post-compression evaluation. Data of FMT dissolution in the simulated gastric medium was analyzed by various kinetic models built in the DDSolver program. In addition, the simulated pharmacokinetics (AUC, MDT, and MRT), R2 adjusted, AIC, MSC, correlation of the residuals, and similarity factor (f2) were also generated.

Results: The results revealed that FMT release from the candidate formula (FH3) fitted to the first-order kinetic model, with a high value of R2 adjusted and MSC and a low AIC. The release behavior exhibited the Fickian diffusion mechanism. The similarity factor showed no significant difference (p < 0.05) of the test sample compared to the reference product. Nevertheless, the simulated pharmacokinetic parameter, AUC, proved a two-fold enhancement in FMT bioavailability, with a significant increment in the MDT and MRT compared with the reference product. The FT-IR spectroscopy analysis indicated the absence of drug-excipients/polymer interaction. The in vivo X-ray studies on rabbits confirmed that the floating tablets showed nearly eight hours of gastric residence.

Conclusion: DDSolver software was helpful in deciding the optimized formulation of FMT floating tablets. The radiological examination in rabbits for gastric retention was consistent with the release data analysis in vitro.

Keywords: Floating tablets, gastroretentive, DDSolver, kinetics, drug release, famotidine, HPMC, carbopol.

Graphical Abstract

[1]
Arora, S.; Ali, J.; Ahuja, A.; Khar, R.K.; Baboota, S. Floating drug delivery systems: A review. AAPS PharmSciTech, 2005, 6(3), E372-E390.
[http://dx.doi.org/10.1208/pt060347] [PMID: 16353995]
[2]
Jassal, M.; Nautiyal, U.; Kundlas, J.; Singh, D.A. Review: Gastroretentive drug delivery system (GRDDs). Indian J. Pharm. Biol. Res., 2015, 3(1), 82-92.
[http://dx.doi.org/10.30750/ijpbr.3.1.13]
[3]
Bhosale, A.R.; Shinde, J.V.; Chavan, R.S. A comprehensive review on floating drug delivery system (FDDS). J. Drug Deliv. Ther., 2020, 10(6), 174-182.
[http://dx.doi.org/10.22270/jddt.v10i6.4461]
[4]
More, S.; Gavali, K.; Doke, O.; Kasgawade, P. Gastroretentive drug delivery system. J. Drug Deliv. Ther., 2018, 8(4), 24-35.
[http://dx.doi.org/10.22270/jddt.v8i4.1788]
[5]
Abdul Rasool, B.K.; Khalifa, A.; Abu-Gharbieh, E.; Khan, R. Employment of alginate floating in situ gel for controlled delivery of celecoxib: Solubilization and formulation studies. BioMed Res. Int., 2020, 2020, 1879125.
[http://dx.doi.org/10.1155/2020/1879125] [PMID: 32596281]
[6]
Raghu Kiran, C.V.S.; Gopinath, C. Development and evaluation of interpenetrating polymer network based superporous hydrogel gastroreten-tive drug delivery systems (SPH IPN-GRDDS). Mater. Today Proc., 2021, 46(8), 3056-3061.
[http://dx.doi.org/10.1016/j.matpr.2021.02.381]
[7]
Kim, S.; Hwang, K.M.; Park, Y.S.; Nguyen, T.T.; Park, E.S. Preparation and evaluation of non-effervescent gastroretentive tablets containing pregabalin for once-daily administration and dose proportional pharmacokinetics. Int. J. Pharm., 2018, 550(1-2), 160-169.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.038] [PMID: 30138708]
[8]
Bhavsar, D.N. Advances in GRDDS: Raft forming system a review. J. Drug Deliv. Ther., 2012, 2(5)
[http://dx.doi.org/10.22270/jddt.v2i5.228]
[9]
Khalifa, A.M.; Abdul Rasool, B.K. Optimized mucoadhesive coated niosomes as a sustained oral delivery system of famotidine. AAPS PharmSciTech, 2017, 18(8), 3064-3075.
[http://dx.doi.org/10.1208/s12249-017-0780-7] [PMID: 28516414]
[10]
Sandhya, C.; Kushagra, N.; Mukesh, S.; Sujata, G.; Harsha, S.; Kalyani, D.; Garima, S.; Vandana, D.S.; Manisha, M.; Tripathi, D.K.; Amit, A. Ajazuddin. Formulation and evaluation of floating tablet of metronidazole for eradication of Helicobacter pylori. Research J. Pharm. Tech., 2016, 9(7), 870-874.
[http://dx.doi.org/10.5958/0974-360X.2016.00165.7]
[11]
Kailash, S.; Amit, A.; Hemlata, T.; Tripti, B.; Palak, A.; Akansha, B.; Aditi, B.; Swapnil, G.; Hemlata, S.; Shradha, D.D.; Pankaj, S.; Siddharth, K.S.; Pooja, Y.; Deeksha, D. Deepika; Hemant, R.B.; Mukesh, S.; Tripathi, D.K.; Ajazuddin, Formulation and evaluation of gastro retentive sustained release tablets of ziprasidone hydrochloride. Research J. Pharm. Tech., 2018, 11(5), 2080-2085.
[http://dx.doi.org/10.5958/0974-360X.2018.00386.4]
[12]
Echizen, H.; Ishizaki, T. Clinical pharmacokinetics of famotidine. Clin. Pharmacokinet., 1991, 21(3), 178-194.
[http://dx.doi.org/10.2165/00003088-199121030-00003] [PMID: 1764869]
[13]
Drug Bank Online. Available from: https://go.drugbank.com/drugs/DB00927 (Accessed December 6, 2021).
[14]
Islam, M.S.; Narurkar, M.M. Solubility, stability and ionization behaviour of famotidine. J. Pharm. Pharmacol., 1993, 45(8), 682-686.
[http://dx.doi.org/10.1111/j.2042-7158.1993.tb07088.x] [PMID: 7901363]
[15]
Narendra, C.; Srinath, M.S.; Babu, G. Optimization of bilayer floating tablet containing metoprolol tartrate as a model drug for gastric reten-tion. AAPS PharmSciTech, 2006, 7(2), E34.
[http://dx.doi.org/10.1208/pt070234] [PMID: 16796352]
[16]
Gupta, R.; Prajapati, S.K.; Pattnaik, S.; Bhardwaj, P. Formulation and evaluation of novel stomach specific floating microspheres bearing famotidine for treatment of gastric ulcer and their radiographic study. Asian Pac. J. Trop. Biomed., 2014, 4(9), 729-735.
[http://dx.doi.org/10.12980/APJTB.4.201414B73]
[17]
Abdullah, E.C.; Geldart, D. The use of bulk density measurements as flowability indicators. Powder Technol., 1999, 102(2), 151-165.
[http://dx.doi.org/10.1016/S0032-5910(98)00208-3]
[18]
Albadri, A.; Ali, W.; Al-Saady, F. Formulation and evaluation of prochlorperazine maleate sustained release floating Tablet. Int. J. Pharm. Pharm. Sci., 2017, 9(2), 89.
[http://dx.doi.org/10.22159/ijpps.2017v9i2.15665]
[19]
Zhu, X.; Qi, X.; Wu, Z.; Zhang, Z.; Xing, J.; Li, X. Preparation of multiple-unit floating-bioadhesive cooperative minitablets for improving the oral bioavailability of famotidine in rats. Drug Deliv., 2014, 21(6), 459-466.
[http://dx.doi.org/10.3109/10717544.2013.879626] [PMID: 24456044]
[20]
Siswanto, A.; Fudholi, A.; Nugroho, A.; Martono, S. In vitro release modeling of aspirin floating tablets using DDSolver. Indones. J. Pharm., 2015, 26(2), 94.
[http://dx.doi.org/10.14499/indonesianjpharm26iss2pp94]
[21]
Almurisi, S.H.; Doolaanea, A.A.; Akkawi, M.E.; Chatterjee, B.; Ahmed Saeed Aljapairai, K.; Islam Sarker, M.Z. Formulation development of paracetamol instant jelly for pediatric use. Drug Dev. Ind. Pharm., 2020, 46(8), 1373-1383.
[http://dx.doi.org/10.1080/03639045.2020.1791165] [PMID: 32619118]
[22]
Zuo, J.; Gao, Y.; Bou-Chacra, N.; Löbenberg, R. Evaluation of the DDSolver software applications, Available from: https://www.hindawi.com/journals/bmri/2014/204925/10.1155/2014/204925 (Accessed June 30, 2020).
[23]
Zhang, Y.; Huo, M.; Zhou, J.; Zou, A.; Li, W.; Yao, C.; Xie, S. DDSolver: An add-in program for modeling and comparison of drug dissolu-tion profiles. AAPS J., 2010, 12(3), 263-271.
[http://dx.doi.org/10.1208/s12248-010-9185-1] [PMID: 20373062]
[24]
Rasool, B.K.; Fahmy, S.A.; Galeel, O.W. Impact of chitosan as a disintegrant on the bioavailability of furosemide tablets: In vitro evaluation and in vivo simulation of novel formulations. Pak. J. Pharm. Sci., 2012, 25(4), 815-822.
[PMID: 23009999]
[25]
Crouter, A.; Briens, L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech, 2014, 15(1), 65-74.
[http://dx.doi.org/10.1208/s12249-013-0036-0] [PMID: 24092523]
[26]
Sandler, N.; Reiche, K.; Heinämäki, J.; Yliruusi, J. Effect of moisture on powder flow properties of theophylline. Pharmaceutics, 2010, 2(3), 275-290.
[http://dx.doi.org/10.3390/pharmaceutics2030275] [PMID: 27721356]
[27]
Shahzad, Y.; Ibrar, N.; Hussain, T.; Yousaf, A.M.; Khan, I.U.; Rizvi, S. Relevancy of nizatidine release from floating tablets with the viscosi-ty of various cellulose ethers. Sci., 2019, 1(1), 22.
[http://dx.doi.org/10.3390/sci1010022]
[28]
Jaimini, M.; Rana, A.C.; Tanwar, Y.S. Formulation and evaluation of famotidine floating tablets. Curr. Drug Deliv., 2007, 4(1), 51-55.
[http://dx.doi.org/10.2174/156720107779314730] [PMID: 17269917]
[29]
Reddy Donthi, M.; Dudipala, N. Design and evaluation of floating multi unit mini tablets (mumts) muco adhesive drug delivery system of famotidine to treat upper gastrointestinal ulcers. J. Pharmacovigil., 2015, 3(5), 1000179.
[http://dx.doi.org/10.4172/2329-6887.1000179]
[30]
Acharya, S.; Patra, S.; Pani, N.R. Optimization of HPMC and carbopol concentrations in non-effervescent floating tablet through factorial design. Carbohydr. Polym., 2014, 102, 360-368.
[http://dx.doi.org/10.1016/j.carbpol.2013.11.060] [PMID: 24507292]
[31]
Razavi, M.; Nyamathulla, S.; Karimian, H.; Noordin, M.I. Novel swellable polymer of orchidaceae family for gastroretentive drug delivery of famotidine. Drug Des. Devel. Ther., 2014, 8, 1315-1329.
[http://dx.doi.org/10.2147/DDDT.S68517] [PMID: 25246773]
[32]
Patel, D.M.; Patel, M.J.; Patel, A.N.; Patel, C.N. Formulation and evaluation of mixed matrix gastro-retentive drug delivery for famotidine. Int. J. Pharm. Investig., 2011, 1(4), 247-254.
[http://dx.doi.org/10.4103/2230-973X.93006] [PMID: 23071951]
[33]
Ahuja, N.; Katare, O.P.; Singh, B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur. J. Pharm. Biopharm., 2007, 65(1), 26-38.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.007] [PMID: 16962750]
[34]
Ramteke, K.H.; Dighe, P.A.; Kharat, A.R.; Patil, S.V. Mathematical models of drug dissolution: A review. Sch. Acad. J. Pharm., 2014, 3(5), 388-396.
[35]
Costa, P.; Sousa, Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[36]
Vrieze, S.I. Model selection and psychological theory: A discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods, 2012, 17(2), 228-243.
[http://dx.doi.org/10.1037/a0027127] [PMID: 22309957]
[37]
Allen, D.M. Mean square error of prediction as a criterion for selecting variables. Technometrics, 1971, 13(3), 469-475.
[http://dx.doi.org/10.1080/00401706.1971.10488811]
[38]
Chen, Q.; Xue, B.; Zhang, M. Improving symbolic regression based on correlation between residuals and variables. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 2020, pp. 922-930.
[http://dx.doi.org/10.1145/3377930.3390161]
[39]
Abdul Rasool, B.K.; Mohammed, A.A.; Salem, Y.Y. The optimization of a dimenhydrinate transdermal patch formulation based on the quan-titative analysis of in vitro release data by DDSolver through skin penetration studies. Sci. Pharm., 2021, 89(3), 33.
[http://dx.doi.org/10.3390/scipharm89030033]
[40]
Elmowafy, E.M.; Awad, G.A.S.; Mansour, S.; El-Shamy, A-H. Release mechanisms behind polysaccharides-based famotidine controlled release matrix tablets. AAPS PharmSciTech, 2008, 9(4), 1230-1239.
[http://dx.doi.org/10.1208/s12249-008-9155-4] [PMID: 19089643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy