Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Current Frontiers

COVID-19 Vaccine-Induced Pro-thrombotic Immune Thrombocytopenia (VIPIT): State of the Art

Author(s): Giuseppe Calcaterra, Pier Paolo Bassareo*, Cesare De Gregorio, Francesco Barilla, Francesco Romeo and Jawahar L. Mehta

Volume 18, Issue 5, 2022

Published on: 17 May, 2022

Article ID: e210322202448 Pages: 7

DOI: 10.2174/1573403X18666220321105909

Abstract

In 2020, as the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pandemic spread rapidly throughout the world, scientists worked relentlessly to develop and test the safety and effectiveness of potential vaccines. Usually, the vaccine development process involves years of investigation and testing prior to gaining approval for use in practice. A pathogenic PF4-dependent syndrome, unrelated to the use of heparin therapy, may be manifested following the administration of viral vector vaccines. It leads to severe clot formation at unusual sites approximately in 1 out of 110.000 vaccinated persons. This side effect, although rare, represents a newly devastating clotting phenomenon manifested in otherwise healthy young adults, who are often female. An in-depth description of the specific biological mechanisms implicated in the syndrome is here summarized.

Keywords: Vaccine, clot, thrombocytopenia, VIPIT, side effect, SARS-CoV-2.

Graphical Abstract

[1]
Spellberg B, Nielsen TB, Casadevall A. Antibodies, immunity, and COVID-19. JAMA Intern Med 2021; 181(4): 460-2.
[http://dx.doi.org/10.1001/jamainternmed.2020.7986] [PMID: 33231673]
[2]
Bassareo PP, Melis MR, Marras S, Calcaterra G. Learning from the past in the COVID-19 era: Rediscovery of quarantine, previous pan-demics, origin of hospitals and national healthcare systems, and ethics in medicine. Postgrad Med J 2020; 96(1140): 633-8.
[http://dx.doi.org/10.1136/postgradmedj-2020-138370] [PMID: 32907877]
[3]
Behring E, Kitasato S. On the development of diphtheria immunity and tetanus immunity in animals. Dtsch Med Wochenschr 1890; 16(49): 1113-4.
[http://dx.doi.org/10.1055/s-0029-1207589]
[4]
Banton HJ, Mulford DJ. A clinical trial of immune serum globulin prepared from outdated liquid plasma. Am J Public Health Nations Health 1950; 40(6): 697-703.
[http://dx.doi.org/10.2105/AJPH.40.6.697] [PMID: 15413712]
[5]
Kruse RL. Therapeutic strategies in an outbreak scenario to treat the novel coronavirus originating in Wuhan, China. F1000 Res 2020; 9: 72.
[http://dx.doi.org/10.12688/f1000research.22211.2] [PMID: 32117569]
[6]
Dhama K, Sharun K, Tiwari R, et al. COVID-19, an emerging coronavirus infection: Advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother 2020; 16(6): 1232-8.
[http://dx.doi.org/10.1080/21645515.2020.1735227] [PMID: 32186952]
[7]
McMurtry CM. Managing immunization stress-related response: A contributor to sustaining trust in vaccines. Can Commun Dis Rep 2020; M46(6): 210-8.
[http://dx.doi.org/10.14745/ccdr.v46i06a10]
[8]
Kounis NG, Koniari I, de Gregorio C, et al. Allergic reactions to current available COVID-19 vaccinations: Pathophysiology, causality, and therapeutic considerations. Vaccines (Basel) 2021; 9(3): 221.
[http://dx.doi.org/10.3390/vaccines9030221] [PMID: 33807579]
[9]
Jackson LA, Anderson EJ, Rouphael NG, et al. mRNA-1273 Study Group. An mRNA vaccine against SARS-CoV-2 - preliminary report. N Engl J Med 2020; 383(20): 1920-31.
[http://dx.doi.org/10.1056/NEJMoa2022483] [PMID: 32663912]
[10]
Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial. Lancet 2020; 395(10240): 1845-54.
[http://dx.doi.org/10.1016/S0140-6736(20)31208-3] [PMID: 32450106]
[11]
Geisbert TW, Bailey M, Hensley L, et al. Recombinant adenovirus serotype 26 (Ad26) and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge. J Virol 2011; 85(9): 4222-33.
[http://dx.doi.org/10.1128/JVI.02407-10] [PMID: 21325402]
[12]
Renoud L, Khouri C, Revol B. Association of facial paralysis with mRNA COVID-19 vaccines: A disproportionality analysis using the world health organization pharmacovigilance database. JAMA Intern Med 2021; 181(9): 1243-5.
[http://dx.doi.org/10.1001/jamainternmed.2021.2219] [PMID: 33904857]
[13]
European Medicine Agency. BMJ 2021; 372: 774.
[14]
Livingston EH, Malani PN, Creech CB. The Johnson & Johnson vaccine for COVID-19. JAMA 2021; 325(15): 1575.
[http://dx.doi.org/10.1001/jama.2021.2927] [PMID: 33646285]
[15]
Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coro-navirus disease 2019 (COVID-19). J Pathol 2020; 251(3): 228-48.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[16]
Bhattacharjee S, Banerjee M. Immune thrombocytopenia secondary to COVID-19: A systematic review. SN Compr Clin Med 2020; 2(11): 1-11.
[http://dx.doi.org/10.1007/s42399-020-00521-8] [PMID: 32984764]
[17]
Piazza G, Campia U, Hurwitz S, et al. Registry of arterial and venous thromboembolic complications in patients with COVID-19. J Am Coll Cardiol 2020; 76(18): 2060-72.
[http://dx.doi.org/10.1016/j.jacc.2020.08.070] [PMID: 33121712]
[18]
The Johns Hopkins 30-Minute COVID-19 briefing: Expert insights on what you need to know now. Johns Hopkins Coronavirus Resource Center Home 2021.
[19]
DeMerle K, Angus DC, Seymour CW. Precision medicine for COVID-19: Phenotype anarchy or promise realized? JAMA 2021; 325(20): 2041-2.
[http://dx.doi.org/10.1001/jama.2021.5248] [PMID: 33961002]
[20]
Pradhan D, Biswasroy P, Kumar Naik P, Ghosh G, Rath G. A review of current interventions for COVID-19 prevention. Arch Med Res 2020; 51(5): 363-74.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.020] [PMID: 32409144]
[21]
Islam MS, Rahman KM, Sun Y, et al. Current knowledge of COVID-19 and infection prevention and control strategies in healthcare set-tings: A global analysis. Infect Control Hosp Epidemiol 2020; 41(10): 1196-206.
[http://dx.doi.org/10.1017/ice.2020.237] [PMID: 32408911]
[22]
Pottegård A, Lund LC, Karlstad Ø, et al. Arterial events, venous thromboembolism, thrombocytopenia, and bleeding after vaccination with Oxford-AstraZeneca ChAdOx1-S in Denmark and Norway: Population based cohort study. BMJ 2021; 373(1114)
[http://dx.doi.org/10.1136/bmj.n1114] [PMID: 33952445]
[23]
Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vac-cination. N Engl J Med 2021; 384(22): 2092-101.
[http://dx.doi.org/10.1056/NEJMoa2104840] [PMID: 33835769]
[24]
Al-Mayhani T, Saber S, Stubbs MJ, et al. Ischaemic stroke as a presenting feature of ChAdOx1 nCoV-19 vaccine-induced immune throm-botic thrombocytopenia. J Neurol Neurosurg Psychiatry 2021; 92(11): 1247-8.
[http://dx.doi.org/10.1136/jnnp-2021-326984] [PMID: 34035134]
[25]
Mehta PR, Mangion AS, Benger M, et al. Cerebral venous sinus thrombosis and thrombocytopenia after COVID-19 vaccination - A report of two UK cases. Brain Behav Immun 2021; 95: 514-7.
[http://dx.doi.org/10.1016/j.bbi.2021.04.006] [PMID: 33857630]
[26]
Schultz NH, Sørvoll IH, Michelsen AE, et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384(22): 2124-30.
[http://dx.doi.org/10.1056/NEJMoa2104882] [PMID: 33835768]
[27]
See I, Su JR, Lale A, et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination. JAMA 2021; 325(24): 2448-56.
[PMID: 33929487]
[28]
Karron RA, Key NS, Sharfstein JM. Assessing a rare and serious adverse event following administration of the Ad26.COV2.S Vaccine. JAMA 2021; 325(24): 2445-7.
[http://dx.doi.org/10.1001/jama.2021.7637] [PMID: 33929484]
[29]
Muir KL, Kallam A, Koepsell SA, Gundabolu K. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med 2021; 384(20): 1964-5.
[http://dx.doi.org/10.1056/NEJMc2105869] [PMID: 33852795]
[30]
European medicines agency: Signal assessment report on embolic and thrombotic events (SMQ) with COVID-19 Vaccine (ChAdOx1- S [recombinant]) – COVID-19 vaccine astrazeneca (Other viral vaccines). Available from: https://www. ema.europa.eu/en/documents/prac-recommendation/signal-assessment-reportembolic-thrombotic-events-smq-covid-19-vaccine-chadox1-s-recombinant-covid_en.pdf(Accessed 5 April 2021).
[31]
Medicines and Healthcare Products Regulatory Agency 2021. Report
[32]
Girolami B, Girolami A. Heparin-induced thrombocytopenia: A review. Semin Thromb Hemost 2006; 32(8): 803-9.
[http://dx.doi.org/10.1055/s-2006-955463] [PMID: 17171593]
[33]
Vayne C, Nguyen TH, Rollin J, et al. Characterization of new monoclonal PF4-specific antibodies as useful tools for studies on typical and autoimmune heparin-induced thrombocytopenia. Thromb Haemost 2021; 121(3): 322-31.
[http://dx.doi.org/10.1055/s-0040-1717078] [PMID: 33086397]
[34]
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: Lessons from mice. FEBS Lett 2019; 593(24): 3461-83.
[http://dx.doi.org/10.1002/1873-3468.13696] [PMID: 31769012]
[35]
Brunetti-Pierri N, Palmer DJ, Beaudet AL, Carey KD, Finegold M, Ng P. Acute toxicity after high-dose systemic injection of helper-dependent adenoviral vectors into nonhuman primates. Hum Gene Ther 2004; 15(1): 35-46.
[http://dx.doi.org/10.1089/10430340460732445] [PMID: 14965376]
[36]
Kounis NG, Koniari I, de Gregorio C. COVID-19 and kounis syndrome: Deciphering their relationship. Balkan Med J 2021; 38(3): 145-9.
[http://dx.doi.org/10.5152/balkanmedj.2021.21097] [PMID: 34142957]
[37]
McGonagle D, De Marco G, Bridgewood C. Mechanisms of immunethrombosis in vaccine-induced thrombotic thrombocytopenia (VITT) compared to natural SARS-CoV-2 infection. J Autoimmun 2021; 121102662
[http://dx.doi.org/10.1016/j.jaut.2021.102662] [PMID: 34051613]
[38]
Warkentin TE, Kaatz S. COVID-19 versus HIT hypercoagulability. Thromb Res 2020; 196: 38-51.
[http://dx.doi.org/10.1016/j.thromres.2020.08.017] [PMID: 32841919]
[39]
Ropper AH, Klein JP, Klein JP. Cerebral venous thrombosis. N Engl J Med 2021; 385(1): 59-64.
[http://dx.doi.org/10.1056/NEJMra2106545] [PMID: 34192432]
[40]
Calcaterra G, Bassareo PP, Barilla’ F, Romeo F, Mehta JL. Concerning the unexpected prothrombotic state following some coronavirus disease 2019 vaccines. J Cardiovasc Med (Hagerstown) 2022; 23(2): 71-4.
[http://dx.doi.org/10.2459/JCM.0000000000001232] [PMID: 34366403]
[41]
Kowars E, Marschalek R. Vaccine-induced Covid-19 mimicry. syndrome (VIC19M syndrome). eLife 2022; 11e74974
[http://dx.doi.org/10.21203/rs.3.rs-558954/v1] [PMID: 35084333]
[42]
Clinical trials mix vaccine types to boost COVID protection. Medscape Medical News 2021. Available from: https://www.medscape.com/viewarticle/948921
[43]
Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature 2021; 595(7867): 421-5.
[http://dx.doi.org/10.1038/s41586-021-03647-4] [PMID: 34030176]
[44]
Calcaterra G, Bassareo PP, Mehta JL. Letter in response to “COVID-19, Virchow’s triad and thromboembolic risk in obese pregnant wom-en”. Clin Cardiol 2021; 44(5): 595.
[http://dx.doi.org/10.1002/clc.23601] [PMID: 33760240]
[45]
Mehta JL, Calcaterra G, Bassareo PP. COVID-19, thromboembolic risk, and Virchow’s triad: Lesson from the past. Clin Cardiol 2020; 43(12): 1362-7.
[http://dx.doi.org/10.1002/clc.23460] [PMID: 33176009]
[46]
Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021; 8(5): 416-27.
[http://dx.doi.org/10.1016/S2215-0366(21)00084-5] [PMID: 33836148]
[47]
Dias L, Soares-Dos-Reis R, Meira J, et al. Cerebral venous thrombosis after BNT162b2 mRNA SARS-CoV-2 vaccine. J Stroke Cerebrovasc Dis 2021; 30(8)105906
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2021.105906] [PMID: 34111775]
[48]
Calcaterra G, Bassareo PP, Barillà F, et al. The deadly quartet (Covid-19, Old Age, Lung Disease, and Heart Failure) explains why corona-virus-related mortality in northern Italy was so high. Curr Cardiol Rev 2021; 17(1): 74-7.
[http://dx.doi.org/10.2174/1573403X16666200731162614] [PMID: 32735524]

© 2024 Bentham Science Publishers | Privacy Policy