Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

A Review On Huntington Protein: Insight Into Protein Aggregation and Therapeutic Interventions

Author(s): Ekambaram Srinivasan, Vavish Ram and Ramalingam Rajasekaran*

Volume 23, Issue 4, 2022

Published on: 25 May, 2022

Page: [260 - 282] Pages: 23

DOI: 10.2174/1389200223666220321103942

Price: $65

Abstract

Huntington's disease (HD) is a distressing, innate neurodegenerative disease that descends from CAG repeat expansion in the huntingtin gene causing behavioral changes, motor dysfunction, and dementia in children and adults. Mutation in huntingtin (HTT) protein has been suggested to cause neuron loss in the cortex and striatum through various mechanisms, including abnormal regulation of transcription, proteasomal dysfunction, posttranslational modification, and other events regulating toxicity. Pathogenesis of HD involves cleavage of the huntingtin protein followed by the neuronal accumulation of its aggregated form. Several research groups made possible efforts to reduce huntingtin gene expression, protein accumulation, and protein aggregation using inhibitors and molecular chaperones as developing drugs against HD. Herein, we review the mechanism proposed towards the formation of HTT protein aggregation and the impact of therapeutic strategies for the treatment of HD.

Keywords: HTT mutation, protein aggregation, molecular chaperons, huntington’s disease, neurodegenerative disease, dementia.

Graphical Abstract

[1]
Zoghbi, H.Y.; Orr, H.T. Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci., 2000, 23(1), 217-247.
[http://dx.doi.org/10.1146/annurev.neuro.23.1.217] [PMID: 10845064]
[2]
Zheng, Z.; Diamond, M.I. Chapter 6 - Huntington Disease and the Huntingtin Protein In: Prog. Mol. Biol. Transl. Sci; Teplow, D.B., Ed.; Academic Press,, 2012; 107, pp. 189-214.
[http://dx.doi.org/10.1016/B978-0-12-385883-2.00010-2]
[3]
Pringsheim, T.; Wiltshire, K.; Day, L.; Dykeman, J.; Steeves, T.; Jette, N. The incidence and prevalence of Huntington’s disease: A system-atic review and meta-analysis. Mov. Disord., 2012, 27(9), 1083-1091.
[http://dx.doi.org/10.1002/mds.25075] [PMID: 22692795]
[4]
Smith, M.A.; Brandt, J.; Shadmehr, R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature, 2000, 403(6769), 544-549.
[http://dx.doi.org/10.1038/35000576] [PMID: 10676962]
[5]
Julien, C.L.; Thompson, J.C.; Wild, S.; Yardumian, P.; Snowden, J.S.; Turner, G.; Craufurd, D. Psychiatric disorders in preclinical Hunting-ton’s disease. J. Neurol. Neurosurg. Psychiatry, 2007, 78(9), 939-943.
[http://dx.doi.org/10.1136/jnnp.2006.103309] [PMID: 17178819]
[6]
Paulsen, J.S. Cognitive impairment in Huntington disease: diagnosis and treatment. Curr. Neurol. Neurosci. Rep., 2011, 11(5), 474-483.
[http://dx.doi.org/10.1007/s11910-011-0215-x] [PMID: 21861097]
[7]
Reiner, A.; Dragatsis, I.; Dietrich, P. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol., 2011, 98, 325-372.
[http://dx.doi.org/10.1016/B978-0-12-381328-2.00014-6]
[8]
Kim, E.H.; Mehrabi, N.; Tippett, L.J.; Waldvogel, H.J.; Faull, R.L.M. Chapter 8 - Huntington DiseaseCereb. Cortex Neurodegener. Neu-ropsychiatr. Disord; Cechetto, D.F.; Weishaupt, N., Eds.; Academic Press: San Diego, 2017, pp. 195-221.
[http://dx.doi.org/10.1016/B978-0-12-801942-9.00008-2]
[9]
Adegbuyiro, A.; Sedighi, F.; Pilkington, A.W., IV; Groover, S.; Legleiter, J. Proteins containing expanded polyglutamine tracts and neuro-degenerative disease. Biochemistry, 2017, 56(9), 1199-1217.
[http://dx.doi.org/10.1021/acs.biochem.6b00936] [PMID: 28170216]
[10]
Havel, L.S.; Wang, C-E.; Wade, B.; Huang, B.; Li, S.; Li, X-J. Preferential accumulation of N-terminal mutant Huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum. Mol. Genet., 2011, 20(7), 1424-1437.
[http://dx.doi.org/10.1093/hmg/ddr023] [PMID: 21245084]
[11]
Harding, R.J.; Tong, Y.F. Proteostasis in Huntington’s disease: disease mechanisms and therapeutic opportunities. Acta Pharmacol. Sin., 2018, 39(5), 754-769.
[http://dx.doi.org/10.1038/aps.2018.11] [PMID: 29620053]
[12]
Seredenina, T.; Luthi-Carter, R. What have we learned from gene expression profiles in Huntington’s disease? Neurobiol. Dis., 2012, 45(1), 83-98.
[http://dx.doi.org/10.1016/j.nbd.2011.07.001] [PMID: 21820514]
[13]
Johri, A.; Chandra, A.; Flint Beal, M. PGC-1α mitochondrial dysfunction, and Huntington’s disease. Free Radic. Biol. Med., 2013, 62, 37-46.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.016] [PMID: 23602910]
[14]
Nithianantharajah, J.; Hannan, A.J. Dysregulation of synaptic proteins, dendritic spine abnormalities and pathological plasticity of synapses as experience-dependent mediators of cognitive and psychiatric symptoms in Huntington’s disease. Neuroscience, 2013, 251, 66-74.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.043] [PMID: 22633949]
[15]
Bano, D.; Zanetti, F.; Mende, Y.; Nicotera, P. Neurodegenerative processes in Huntington’s disease. Cell Death Dis., 2011, 2(11), e228-e228.
[http://dx.doi.org/10.1038/cddis.2011.112] [PMID: 22071633]
[16]
Mattis, V.B.; Tom, C.; Akimov, S.; Saeedian, J.; Østergaard, M.E.; Southwell, A.L.; Doty, C.N.; Ornelas, L.; Sahabian, A.; Lenaeus, L.; Mandefro, B.; Sareen, D.; Arjomand, J.; Hayden, M.R.; Ross, C.A.; Svendsen, C.N. HD iPSC-derived neural progenitors accumulate in cul-ture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum. Mol. Genet., 2015, 24(11), 3257-3271.
[http://dx.doi.org/10.1093/hmg/ddv080] [PMID: 25740845]
[17]
Möncke-Buchner, E.; Reich, S.; Mücke, M.; Reuter, M.; Messer, W.; Wanker, E.E.; Krüger, D.H. Counting CAG repeats in the Huntington’s disease gene by restriction endonuclease EcoP15I cleavage. Nucleic Acids Res., 2002, 30(16), e83.
[http://dx.doi.org/10.1093/nar/gnf082] [PMID: 12177311]
[18]
Langbehn, D.R.; Hayden, M.R.; Paulsen, J.S. CAG-repeat length and the age of onset in Huntington disease (HD): A review and validation study of statistical approaches. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2010, 153B(2), 397-408.
[http://dx.doi.org/10.1002/ajmg.b.30992] [PMID: 19548255]
[19]
Trottier, Y.; Biancalana, V.; Mandel, J.L. Instability of CAG repeats in Huntington’s disease: Relation to parental transmission and age of onset. J. Med. Genet., 1994, 31(5), 377-382.
[http://dx.doi.org/10.1136/jmg.31.5.377] [PMID: 8064815]
[20]
Ridley, R.M.; Frith, C.D.; Crow, T.J.; Conneally, P.M. Anticipation in Huntington’s disease is inherited through the male line but may origi-nate in the female. J. Med. Genet., 1988, 25(9), 589-595.
[http://dx.doi.org/10.1136/jmg.25.9.589] [PMID: 2972838]
[21]
Aviolat, H.; Pinto, R.M.; Godschall, E.; Murtha, R.; Richey, H.E.; Sapp, E.; Vodicka, P.; Wheeler, V.C.; Kegel-Gleason, K.B.; DiFiglia, M. Assessing average somatic CAG repeat instability at the protein level. Sci. Rep., 2019, 9(1), 19152.
[http://dx.doi.org/10.1038/s41598-019-55202-x] [PMID: 31844074]
[22]
Langbehn, D.R.; Stout, J.C.; Gregory, S.; Mills, J.A.; Durr, A.; Leavitt, B.R.; Roos, R.A.C.; Long, J.D.; Owen, G.; Johnson, H.J.; Borowsky, B.; Craufurd, D.; Reilmann, R.; Landwehrmeyer, G.B.; Scahill, R.I.; Tabrizi, S.J. Association of CAG repeats with long-term progression in Huntington disease. JAMA Neurol., 2019, 76(11), 1375-1385.
[http://dx.doi.org/10.1001/jamaneurol.2019.2368] [PMID: 31403680]
[23]
Sampedro, F.; Martínez-Horta, S.; Perez-Perez, J.; Horta-Barba, A.; Martin-Lahoz, J.; Alonso-Solís, A.; Corripio, I.; Gomez-Anson, B.; Kulisevsky, J. Widespread increased diffusivity reveals early cortical degeneration in Huntington disease. Am. J. Neuroradiol., 2019, 40(9), 1464-1468.
[http://dx.doi.org/10.3174/ajnr.A6168] [PMID: 31467235]
[24]
Shacham, T.; Sharma, N.; Lederkremer, G.Z. Protein misfolding and ER stress in Huntington’s disease. Front. Mol. Biosci., 2019, 6, 20.
[http://dx.doi.org/10.3389/fmolb.2019.00020] [PMID: 31001537]
[25]
Sahoo, B.; Singer, D.; Kodali, R.; Zuchner, T.; Wetzel, R. Aggregation behavior of chemically synthesized, full-length Huntingtin exon1. Biochemistry, 2014, 53(24), 3897-3907.
[http://dx.doi.org/10.1021/bi500300c] [PMID: 24921664]
[26]
Wanker, E.E.; Ast, A.; Schindler, F.; Trepte, P.; Schnoegl, S. The pathobiology of perturbed mutant Huntingtin protein-protein interactions in Huntington’s disease. J. Neurochem., 2019, 151(4), 507-519.
[http://dx.doi.org/10.1111/jnc.14853] [PMID: 31418858]
[27]
Huang, S.; Yang, S.; Guo, J.; Yan, S.; Gaertig, M.A.; Li, S.; Li, X.J. Large polyglutamine repeats cause muscle degeneration in SCA17 mice. Cell Rep., 2015, 13(1), 196-208.
[http://dx.doi.org/10.1016/j.celrep.2015.08.060] [PMID: 26387956]
[28]
Gatto, E.M.; Rojas, N.G.; Persi, G.; Etcheverry, J.L.; Cesarini, M.E.; Perandones, C. Huntington disease: Advances in the understanding of its mechanisms. Clin. Park. Relat. Disord., 2020, 3, 100056.
[http://dx.doi.org/10.1016/j.prdoa.2020.100056] [PMID: 34316639]
[29]
Lotz, G.P.; Legleiter, J.; Aron, R.; Mitchell, E.J.; Huang, S-Y.; Ng, C.; Glabe, C.; Thompson, L.M.; Muchowski, P.J. Hsp70 and Hsp40 func-tionally interact with soluble mutant Huntingtin oligomers in a classic ATP-dependent reaction cycle. J. Biol. Chem., 2010, 285(49), 38183-38193.
[http://dx.doi.org/10.1074/jbc.M110.160218] [PMID: 20864533]
[30]
Ciechanover, A.; Kwon, Y.T. Protein quality control by molecular chaperones in neurodegeneration. Front. Neurosci., 2017, 11, 185.
[http://dx.doi.org/10.3389/fnins.2017.00185] [PMID: 28428740]
[31]
Lieberman, A.P.; Shakkottai, V.G.; Albin, R.L. Polyglutamine repeats in neurodegenerative diseases. Annu. Rev. Pathol., 2019, 14(1), 1-27.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012418-012857] [PMID: 30089230]
[32]
Schipper-Krom, S.; Juenemann, K.; Reits, E.A.J. The ubiquitin-proteasome system in Huntington’s disease: Are proteasomes impaired, initiators of disease, or coming to the rescue? Biochem. Res. Int., 2012, 2012, 837015.
[http://dx.doi.org/10.1155/2012/837015] [PMID: 23050151]
[33]
Ortega, Z.; Lucas, J.J. Ubiquitin-proteasome system involvement in Huntington’s disease. Front. Mol. Neurosci., 2014, 7, 77.
[http://dx.doi.org/10.3389/fnmol.2014.00077] [PMID: 25324717]
[34]
Haun, F.; Nakamura, T.; Shiu, A.D.; Cho, D-H.; Tsunemi, T.; Holland, E.A.; La Spada, A.R.; Lipton, S.A. S-nitrosylation of dynamin-related protein 1 mediates mutant Huntingtin-induced mitochondrial fragmentation and neuronal injury in Huntington’s disease. Antioxid. Redox Signal., 2013, 19(11), 1173-1184.
[http://dx.doi.org/10.1089/ars.2012.4928] [PMID: 23641925]
[35]
Massey, T.H.; Jones, L. The central role of DNA damage and repair in CAG repeat diseases. Dis. Model. Mech., 2018, 11(1), dmm031930.
[http://dx.doi.org/10.1242/dmm.031930] [PMID: 29419417]
[36]
Ooi, J.; Langley, S.R.; Xu, X.; Utami, K.H.; Sim, B.; Huang, Y.; Harmston, N.P.; Tay, Y.L.; Ziaei, A.; Zeng, R.; Low, D.; Aminkeng, F.; Sobota, R.M.; Ginhoux, F.; Petretto, E.; Pouladi, M.A. Unbiased profiling of isogenic huntington disease hPSC-derived CNS and peripheral cells reveals strong cell-type specificity of CAG length effects. Cell Rep., 2019, 26(9), 2494-2508.e7.
[http://dx.doi.org/10.1016/j.celrep.2019.02.008] [PMID: 30811996]
[37]
Gallardo-Orihuela, A.; Hervás-Corpión, I.; Hierro-Bujalance, C.; Sanchez-Sotano, D.; Jiménez-Gómez, G.; Mora-López, F.; Campos-Caro, A.; Garcia-Alloza, M.; Valor, L.M. Transcriptional correlates of the pathological phenotype in a Huntington’s disease mouse model. Sci. Rep., 2019, 9(1), 18696.
[http://dx.doi.org/10.1038/s41598-019-55177-9] [PMID: 31822756]
[38]
Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s Disease: Mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[39]
Landles, C.; Bates, G.P. Huntingtin and the molecular pathogenesis of Huntington’s disease. Fourth in molecular medicine review series. EMBO Rep., 2004, 5(10), 958-963.
[http://dx.doi.org/10.1038/sj.embor.7400250] [PMID: 15459747]
[40]
Sari, Y. Huntington’s disease: From mutant Huntingtin protein to neurotrophic factor therapy. Int. J. Biomed. Sci., 2011, 7(2), 89-100.
[PMID: 21841917]
[41]
Rossetti, G.; Magistrato, A. Molecular mechanism of Huntington’s disease-a computational perspective.Huntington’s Disease Core Con-cepts Current Advances; InTech, 2012.
[http://dx.doi.org/10.5772/32025]
[42]
Denis, H.L.; Lamontagne-Proulx, J.; St-Amour, I.; Mason, S.L.; Rowley, J.W.; Cloutier, N.; Tremblay, M.È.; Vincent, A.T.; Gould, P.V.; Chouinard, S.; Weyrich, A.S.; Rondina, M.T.; Barker, R.A.; Boilard, E.; Cicchetti, F. Platelet abnormalities in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry, 2019, 90(3), 272-283.
[http://dx.doi.org/10.1136/jnnp-2018-318854] [PMID: 30567722]
[43]
Huang, B.; Wei, W.; Wang, G.; Gaertig, M.A.; Feng, Y.; Wang, W.; Li, X.J.; Li, S. Mutant Huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes. Neuron, 2015, 85(6), 1212-1226.
[http://dx.doi.org/10.1016/j.neuron.2015.02.026] [PMID: 25789755]
[44]
Ferrari Bardile, C.; Garcia-Miralles, M.; Caron, N.S.; Rayan, N.A.; Langley, S.R.; Harmston, N.; Rondelli, A.M.; Teo, R.T.Y.; Waltl, S.; An-derson, L.M.; Bae, H.G.; Jung, S.; Williams, A.; Prabhakar, S.; Petretto, E.; Hayden, M.R.; Pouladi, M.A. Intrinsic mutant HTT-mediated de-fects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc. Natl. Acad. Sci. USA, 2019, 116(19), 9622-9627.
[http://dx.doi.org/10.1073/pnas.1818042116] [PMID: 31015293]
[45]
Wood, T.E.; Barry, J.; Yang, Z.; Cepeda, C.; Levine, M.S.; Gray, M. Mutant Huntingtin reduction in astrocytes slows disease progression in the BACHD conditional Huntington’s disease mouse model. Hum. Mol. Genet., 2019, 28(3), 487-500.
[http://dx.doi.org/10.1093/hmg/ddy363] [PMID: 30312396]
[46]
Soares, T.R.; Reis, S.D.; Pinho, B.R.; Duchen, M.R.; Oliveira, J.M.A. Targeting the proteostasis network in Huntington’s disease. Ageing Res. Rev., 2019, 49, 92-103.
[http://dx.doi.org/10.1016/j.arr.2018.11.006] [PMID: 30502498]
[47]
Monsellier, E.; Redeker, V.; Ruiz-Arlandis, G.; Bousset, L.; Melki, R. Molecular interaction between the chaperone Hsc70 and the N-terminal flank of Huntingtin exon 1 modulates aggregation. J. Biol. Chem., 2015, 290(5), 2560-2576.
[http://dx.doi.org/10.1074/jbc.M114.603332] [PMID: 25505179]
[48]
Kim, S.; Kim, K-T. Therapeutic approaches for inhibition of protein aggregation in Huntington’s disease. Exp. Neurobiol., 2014, 23(1), 36-44.
[http://dx.doi.org/10.5607/en.2014.23.1.36] [PMID: 24737938]
[49]
Koyuncu, S.; Fatima, A.; Gutierrez-Garcia, R.; Vilchez, D. Proteostasis of Huntingtin in health and disease. Int. J. Mol. Sci., 2017, 18(7), 1568.
[http://dx.doi.org/10.3390/ijms18071568] [PMID: 28753941]
[50]
Tourette, C.; Li, B.; Bell, R.; O’Hare, S.; Kaltenbach, L.S.; Mooney, S.D.; Hughes, R.E. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J. Biol. Chem., 2014, 289(10), 6709-6726.
[http://dx.doi.org/10.1074/jbc.M113.523696] [PMID: 24407293]
[51]
Tousley, A.; Iuliano, M.; Weisman, E.; Sapp, E.; Zhang, N.; Vodicka, P.; Alexander, J.; Aviolat, H.; Gatune, L.; Reeves, P.; Li, X.; Khvo-rova, A.; Ellerby, L.M.; Aronin, N.; DiFiglia, M.; Kegel-Gleason, K.B. Rac1 activity is modulated by Huntingtin and dysregulated in models of Huntington’s disease. J. Huntingtons Dis., 2019, 8(1), 53-69.
[http://dx.doi.org/10.3233/JHD-180311] [PMID: 30594931]
[52]
Olzscha, H.; Fedorov, O.; Kessler, B.M.; Knapp, S.; La Thangue, N.B. CBP/p300 Bromodomains regulate amyloid-like protein aggregation upon aberrant lysine acetylation. Cell Chem. Biol., 2017, 24(1), 9-23.
[http://dx.doi.org/10.1016/j.chembiol.2016.11.009] [PMID: 27989401]
[53]
Dragatsis, I.; Dietrich, P.; Ren, H.; Deng, Y.P.; Del Mar, N.; Wang, H.B.; Johnson, I.M.; Jones, K.R.; Reiner, A. Effect of early embryonic deletion of Huntingtin from pyramidal neurons on the development and long-term survival of neurons in cerebral cortex and striatum. Neurobiol. Dis., 2018, 111, 102-117.
[http://dx.doi.org/10.1016/j.nbd.2017.12.015] [PMID: 29274742]
[54]
Monteys, A.M.; Ebanks, S.A.; Keiser, M.S.; Davidson, B.L. CRISPR/Cas9 editing of the mutant Huntingtin allele in vitro and in vivo. Mol. Ther., 2017, 25(1), 12-23.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.010] [PMID: 28129107]
[55]
Ramdzan, Y.M.; Trubetskov, M.M.; Ormsby, A.R.; Newcombe, E.A.; Sui, X.; Tobin, M.J.; Bongiovanni, M.N.; Gras, S.L.; Dewson, G.; Miller, J.M.L.; Finkbeiner, S.; Moily, N.S.; Niclis, J.; Parish, C.L.; Purcell, A.W.; Baker, M.J.; Wilce, J.A.; Waris, S.; Stojanovski, D.; Böck-ing, T.; Ang, C.S.; Ascher, D.B.; Reid, G.E.; Hatters, D.M. Huntingtin inclusions trigger cellular quiescence, deactivate apoptosis, and lead to delayed necrosis. Cell Rep., 2017, 19(5), 919-927.
[http://dx.doi.org/10.1016/j.celrep.2017.04.029] [PMID: 28467905]
[56]
Alterman, J.F.; Hall, L.M.; Coles, A.H.; Hassler, M.R.; Didiot, M-C.; Chase, K.; Abraham, J.; Sottosanti, E.; Johnson, E.; Sapp, E.; Osborn, M.F.; Difiglia, M.; Aronin, N.; Khvorova, A. Hydrophobically modified siRNAs silence Huntingtin mRNA in primary neurons and mouse brain. Mol. Ther. Nucleic Acids, 2015, 4, e266.
[http://dx.doi.org/10.1038/mtna.2015.38] [PMID: 26623938]
[57]
Miniarikova, J.; Zanella, I.; Huseinovic, A.; van der Zon, T.; Hanemaaijer, E.; Martier, R.; Koornneef, A.; Southwell, A.L.; Hayden, M.R.; van Deventer, S.J.; Petry, H.; Konstantinova, P. Design, characterization, and lead selection of therapeutic miRNAs targeting Huntingtin for development of gene therapy for Huntington’s disease. Mol. Ther. Nucleic Acids, 2016, 5, e297.
[http://dx.doi.org/10.1038/mtna.2016.7] [PMID: 27003755]
[58]
Grondin, R.; Ge, P.; Chen, Q.; Sutherland, J.E.; Zhang, Z.; Gash, D.M.; Stiles, D.K.; Stewart, G.R.; Sah, D.W.; Kaemmerer, W.F. Onset time and durability of Huntingtin suppression in rhesus putamen after direct infusion of antiHuntingtin siRNA. Mol. Ther. Nucleic Acids, 2015, 4, e245.
[http://dx.doi.org/10.1038/mtna.2015.20] [PMID: 26125484]
[59]
Cariulo, C.; Azzollini, L.; Verani, M.; Martufi, P.; Boggio, R.; Chiki, A.; Deguire, S.M.; Cherubini, M.; Gines, S.; Marsh, J.L.; Conforti, P.; Cattaneo, E.; Santimone, I.; Squitieri, F.; Lashuel, H.A.; Petricca, L.; Caricasole, A. Phosphorylation of Huntingtin at residue T3 is decreased in Huntington’s disease and modulates mutant Huntingtin protein conformation. Proc. Natl. Acad. Sci. USA, 2017, 114(50), E10809-E10818.
[http://dx.doi.org/10.1073/pnas.1705372114] [PMID: 29162692]
[60]
Daldin, M.; Fodale, V.; Cariulo, C.; Azzollini, L.; Verani, M.; Martufi, P.; Spiezia, M.C.; Deguire, S.M.; Cherubini, M.; Macdonald, D.; Weiss, A.; Bresciani, A.; Vonsattel, J.G.; Petricca, L.; Marsh, J.L.; Gines, S.; Santimone, I.; Marano, M.; Lashuel, H.A.; Squitieri, F.; Cari-casole, A. Polyglutamine expansion affects Huntingtin conformation in multiple Huntington’s disease models. Sci. Rep., 2017, 7(1), 5070.
[http://dx.doi.org/10.1038/s41598-017-05336-7] [PMID: 28698602]
[61]
Wild, E.J.; Boggio, R.; Langbehn, D.; Robertson, N.; Haider, S.; Miller, J.R.C.; Zetterberg, H.; Leavitt, B.R.; Kuhn, R.; Tabrizi, S.J.; Macdon-ald, D.; Weiss, A. Quantification of mutant Huntingtin protein in cerebrospinal fluid from Huntington’s disease patients. J. Clin. Invest., 2015, 125(5), 1979-1986.
[http://dx.doi.org/10.1172/JCI80743] [PMID: 25844897]
[62]
Zheng, J.; Yang, J.; Choe, Y-J.; Hao, X.; Cao, X.; Zhao, Q.; Zhang, Y.; Franssens, V.; Hartl, F.U.; Nyström, T.; Winderickx, J.; Liu, B. Role of the ribosomal quality control machinery in nucleocytoplasmic translocation of polyQ-expanded Huntingtin exon-1. Biochem. Biophys. Res. Commun., 2017, 493(1), 708-717.
[http://dx.doi.org/10.1016/j.bbrc.2017.08.126] [PMID: 28864412]
[63]
Bowles, K.R.; Stone, T.; Holmans, P.; Allen, N.D.; Dunnett, S.B.; Jones, L. SMAD transcription factors are altered in cell models of HD and regulate HTT expression. Cell. Signal., 2017, 31, 1-14.
[http://dx.doi.org/10.1016/j.cellsig.2016.12.005] [PMID: 27988204]
[64]
Chaibva, M.; Gao, X.; Jain, P.; Campbell, W.A., IV; Frey, S.L.; Legleiter, J. Sphingomyelin and GM1 influence Huntingtin binding to, dis-ruption of, and aggregation on lipid membranes. ACS Omega, 2018, 3(1), 273-285.
[http://dx.doi.org/10.1021/acsomega.7b01472] [PMID: 29399649]
[65]
Rué, L.; Bañez-Coronel, M.; Creus-Muncunill, J.; Giralt, A.; Alcalá-Vida, R.; Mentxaka, G.; Kagerbauer, B.; Zomeño-Abellán, M.T.; Aranda, Z.; Venturi, V.; Pérez-Navarro, E.; Estivill, X.; Martí, E. Targeting CAG repeat RNAs reduces Huntington’s disease phenotype independent-ly of Huntingtin levels. J. Clin. Invest., 2016, 126(11), 4319-4330.
[http://dx.doi.org/10.1172/JCI83185] [PMID: 27721240]
[66]
Keum, J.W.; Shin, A.; Gillis, T.; Mysore, J.S.; Abu Elneel, K.; Lucente, D.; Hadzi, T.; Holmans, P.; Jones, L.; Orth, M.; Kwak, S.; MacDon-ald, M.E.; Gusella, J.F.; Lee, J.M. The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington dis-ease. Am. J. Hum. Genet., 2016, 98(2), 287-298.
[http://dx.doi.org/10.1016/j.ajhg.2015.12.018] [PMID: 26849111]
[67]
Francelle, L.; Galvan, L.; Gaillard, M-C.; Petit, F.; Bernay, B.; Guillermier, M.; Bonvento, G.; Dufour, N.; Elalouf, J.M.; Hantraye, P.; Dé-glon, N.; de Chaldée, M.; Brouillet, E. Striatal long noncoding RNA Abhd11os is neuroprotective against an N-terminal fragment of mutant Huntingtin in vivo. Neurobiol. Aging, 2015, 36(3), 1601.e7-1601.e16.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.11.014] [PMID: 25619660]
[68]
Neueder, A.; Landles, C.; Ghosh, R.; Howland, D.; Myers, R.H.; Faull, R.L.M.; Tabrizi, S.J.; Bates, G.P. The pathogenic exon 1 HTT protein is produced by incomplete splicing in Huntington’s disease patients. Sci. Rep., 2017, 7(1), 1307.
[http://dx.doi.org/10.1038/s41598-017-01510-z] [PMID: 28465506]
[69]
Chen, M.; Wolynes, P.G. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Hun-tington’s disease. Proc. Natl. Acad. Sci. USA, 2017, 114(17), 4406-4411.
[http://dx.doi.org/10.1073/pnas.1702237114] [PMID: 28400517]
[70]
Arndt, J.R.; Chaibva, M.; Legleiter, J. The emerging role of the first 17 amino acids of Huntingtin in Huntington’s disease. Biomol. Concepts, 2015, 6(1), 33-46.
[http://dx.doi.org/10.1515/bmc-2015-0001] [PMID: 25741791]
[71]
Wagner, A.S.; Politi, A.Z.; Ast, A.; Bravo-Rodriguez, K.; Baum, K.; Buntru, A.; Strempel, N.U.; Brusendorf, L.; Hänig, C.; Boeddrich, A.; Plassmann, S.; Klockmeier, K.; Ramirez-Anguita, J.M.; Sanchez-Garcia, E.; Wolf, J.; Wanker, E.E. Self-assembly of Mutant Huntingtin Ex-on-1 fragments into large complex fibrillar structures involves nucleated branching. J. Mol. Biol., 2018, 430(12), 1725-1744.
[http://dx.doi.org/10.1016/j.jmb.2018.03.017] [PMID: 29601786]
[72]
Wagner, A.S.; Politi, A.Z.; Steinhof, A.; Bravo-Rodriguez, K.; Buntru, A.; Strempel, N.U. Fibril branching dominates self-assembly of mu-tant Huntingtin exon-1 aggregates in vitro. BioRxiv, 2017, 195297.
[73]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Auto-mated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[74]
Redler, R.L.; Shirvanyants, D.; Dagliyan, O.; Ding, F.; Kim, D.N.; Kota, P.; Proctor, E.A.; Ramachandran, S.; Tandon, A.; Dokholyan, N.V. Computational approaches to understanding protein aggregation in neurodegeneration. J. Mol. Cell Biol., 2014, 6(2), 104-115.
[http://dx.doi.org/10.1093/jmcb/mju007] [PMID: 24620031]
[75]
Smaoui, M.R.; Mazza-Anthony, C.; Waldispühl, J. Investigating mutations to reduce Huntingtin aggregation by increasing Htt-N-terminal stability and weakening interactions with PolyQ domain. Comput. Math. Methods Med., 2016, 2016, 6247867.
[http://dx.doi.org/10.1155/2016/6247867] [PMID: 28096892]
[76]
Chánez-Cárdenas, M.E.; Vázquez-Contreras, E. The aggregation of Huntingtin and &-synuclein. J. Biophys., 2012, 2012, 606172.
[http://dx.doi.org/10.1155/2012/606172] [PMID: 22899913]
[77]
Srinivasan, E.; Rajasekaran, R. Effect of &-cyclodextrin-EGCG complexion against aggregated a-synuclein through density functional theory and discrete molecular dynamics. Chem. Phys. Lett., 2019, 717, 38-46.
[http://dx.doi.org/10.1016/j.cplett.2018.12.042]
[78]
Nedd, S.; Redler, R.L.; Proctor, E.A.; Dokholyan, N.V.; Alexandrova, A.N. Cu,Zn-superoxide dismutase without Zn is folded but catalyti-cally inactive. J. Mol. Biol., 2014, 426(24), 4112-4124.
[http://dx.doi.org/10.1016/j.jmb.2014.07.016] [PMID: 25083917]
[79]
Proctor, E.A.; Ding, F.; Dokholyan, N.V. Discrete molecular dynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(1), 80-92.
[http://dx.doi.org/10.1002/wcms.4]
[80]
Shirvanyants, D.; Ding, F.; Tsao, D.; Ramachandran, S.; Dokholyan, N.V. Discrete molecular dynamics: An efficient and versatile simula-tion method for fine protein characterization. J. Phys. Chem. B, 2012, 116(29), 8375-8382.
[http://dx.doi.org/10.1021/jp2114576] [PMID: 22280505]
[81]
Proctor, E.A.; Dokholyan, N.V. Applications of discrete molecular dynamics in biology and medicine. Curr. Opin. Struct. Biol., 2016, 37, 9-13.
[http://dx.doi.org/10.1016/j.sbi.2015.11.001] [PMID: 26638022]
[82]
Lakhani, V.V.; Ding, F.; Dokholyan, N.V. Polyglutamine induced misfolding of Huntingtin exon1 is modulated by the flanking sequences. PLOS Comput. Biol., 2010, 6(4), e1000772.
[http://dx.doi.org/10.1371/journal.pcbi.1000772] [PMID: 20442863]
[83]
Srinivasan, E.; Rajasekaran, R. Exploring the cause of aggregation and reduced Zn binding affinity by G85R mutation in SOD1 rendering amyotrophic lateral sclerosis: In silico study on SOD1 mutant G85R. Proteins Struct. Funct. Bioinforma., 2017, 85, 1276-1286.
[http://dx.doi.org/10.1002/prot.25288]
[84]
Srinivasan, E.; Rajasekaran, R. Molecular binding response of naringin and naringenin to H46R mutant SOD1 protein in combating protein aggregation using density functional theory and discrete molecular dynamics. Prog. Biophys. Mol. Biol., 2019, 145, 40-51.
[http://dx.doi.org/10.1016/j.pbiomolbio.2018.12.003] [PMID: 30543828]
[85]
Srinivasan, E.; Rajasekaran, R. Rational design of linear tripeptides against the aggregation of human mutant SOD1 protein causing amyo-trophic lateral sclerosis. J. Neurol. Sci., 2019, 405, 116425.
[http://dx.doi.org/10.1016/j.jns.2019.116425] [PMID: 31422280]
[86]
Qi, R.; Wei, G.; Ma, B.; Nussinov, R. Replica exchange molecular dynamics: A practical application protocol with solutions to common problems and a peptide aggregation and self-assembly example. Methods Mol. Biol., 2018, 1777, 101-119.
[http://dx.doi.org/10.1007/978-1-4939-7811-3_5] [PMID: 29744830]
[87]
Nakano, M.; Ebina, K.; Tanaka, S. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynam-ics simulations. J. Mol. Model., 2013, 19(4), 1627-1639.
[http://dx.doi.org/10.1007/s00894-012-1712-9] [PMID: 23288093]
[88]
Binette, V.; Côté, S.; Mousseau, N. Free-energy landscape of the amino-terminal fragment of Huntingtin in aqueous solution. Biophys. J., 2016, 110(5), 1075-1088.
[http://dx.doi.org/10.1016/j.bpj.2016.01.015] [PMID: 26958885]
[89]
Tunalı, N.E Huntington’s Disease: Core Concepts and Current Advances BoD – Books on Demand, 2012.
[http://dx.doi.org/10.5772/1470]
[90]
Bachoud-Lévi, A-C.; Ferreira, J.; Massart, R.; Youssov, K.; Rosser, A.; Busse, M.; Craufurd, D.; Reilmann, R.; De Michele, G.; Rae, D.; Squitieri, F.; Seppi, K.; Perrine, C.; Scherer-Gagou, C.; Audrey, O.; Verny, C.; Burgunder, J.M. International guidelines for the treatment of Huntington’s disease. Front. Neurol., 2019, 10, 710.
[http://dx.doi.org/10.3389/fneur.2019.00710] [PMID: 31333565]
[91]
McColgan, P.; Tabrizi, S.J. Huntington’s disease: A clinical review. Eur. J. Neurol., 2018, 25(1), 24-34.
[http://dx.doi.org/10.1111/ene.13413] [PMID: 28817209]
[92]
Shannon, K.M.; Fraint, A. Therapeutic advances in Huntington’s disease. Mov. Disord., 2015, 30(11), 1539-1546.
[http://dx.doi.org/10.1002/mds.26331] [PMID: 26226924]
[93]
Coppen, E.M.; Roos, R.A.C. Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs, 2017, 77(1), 29-46.
[http://dx.doi.org/10.1007/s40265-016-0670-4] [PMID: 27988871]
[94]
Valdeolivas, S.; Navarrete, C.; Cantarero, I.; Bellido, M.L.; Muñoz, E.; Sagredo, O. Neuroprotective properties of cannabigerol in Hunting-ton’s disease: Studies in R6/2 mice and 3-nitropropionate-lesioned mice. Neurotherapeutics, 2015, 12(1), 185-199.
[http://dx.doi.org/10.1007/s13311-014-0304-z] [PMID: 25252936]
[95]
Raja, M.; Soleti, F.; Bentivoglio, A.R. Lithium treatment in patients with Huntington’s disease and suicidal behavior. Mov. Disord., 2015, 30(10), 1438.
[http://dx.doi.org/10.1002/mds.26260] [PMID: 26207615]
[96]
Frank, S. Treatment of Huntington’s disease. Neurotherapeutics, 2014, 11(1), 153-160.
[http://dx.doi.org/10.1007/s13311-013-0244-z] [PMID: 24366610]
[97]
Gelderblom, H.; Wüstenberg, T.; McLean, T.; Mütze, L.; Fischer, W.; Saft, C.; Hoffmann, R.; Süssmuth, S.; Schlattmann, P.; van Duijn, E.; Landwehrmeyer, B.; Priller, J. Bupropion for the treatment of apathy in Huntington’s disease: A multicenter, randomised, double-blind, pla-cebo-controlled, prospective crossover trial. PLoS One, 2017, 12(3), e0173872.
[http://dx.doi.org/10.1371/journal.pone.0173872] [PMID: 28323838]
[98]
Arnoux, I.; Willam, M.; Griesche, N.; Krummeich, J.; Watari, H.; Offermann, N.; Weber, S.; Narayan Dey, P.; Chen, C.; Monteiro, O.; Buett-ner, S.; Meyer, K.; Bano, D.; Radyushkin, K.; Langston, R.; Lambert, J.J.; Wanker, E.; Methner, A.; Krauss, S.; Schweiger, S.; Stroh, A. Metformin reverses early cortical network dysfunction and behavior changes in Huntington’s disease. eLife, 2018, 7, e38744.
[http://dx.doi.org/10.7554/eLife.38744] [PMID: 30179155]
[99]
Yin, X.; Manczak, M.; Reddy, P.H. Mitochondria-targeted molecules MitoQ and SS31 reduce mutant Huntingtin-induced mitochondrial toxicity and synaptic damage in Huntington’s disease. Hum. Mol. Genet., 2016, 25(9), 1739-1753.
[http://dx.doi.org/10.1093/hmg/ddw045] [PMID: 26908605]
[100]
Kumar, A.; Kumar, V.; Singh, K.; Kim, Y.-S.; Lee, Y.-M.; Kim, J.-J. Therapeutics advancement for huntington disease. Med. Pharmacol, 2019.
[http://dx.doi.org/10.20944/preprints201912.0261.v1]
[101]
Paldino, E.; Balducci, C.; La Vitola, P.; Artioli, L.; D’Angelo, V.; Giampà, C.; Artuso, V.; Forloni, G.; Fusco, F.R. Neuroprotective effects of doxycycline in the r6/2 mouse model of Huntington’s disease. Mol. Neurobiol., 2020, 57(4), 1889-1903.
[http://dx.doi.org/10.1007/s12035-019-01847-8] [PMID: 31879858]
[102]
Prilenia. A phase 3, randomized, double-blind, placebo-controlled, parallel arm, multicenter study evaluating the efficacy and safety of pridopidine in patients with early stage of huntington disease. Available from: http://clinicaltrials.gov2021.
[103]
Institut National de la Santé Et de la Recherche Médicale. A anaplerotic therapy in Huntington’s disease http://clinicaltrials.gov 2021.
[104]
National Institute of Neurological Disorders and Stroke (NINDS). NMDA-receptor blockade in Huntington’s Chorea. Available from: http://clinicaltrials.gov 2008.
[105]
MD KEA. An open label, phase Ib study to evaluate the impact of low doses of nilotinib treatment on safety, tolerability and biomarkers in Huntington’s disease. http://clinicaltrials.gov 2020.
[106]
Brown, A.E. Impact of deutetrabenazine on functional speech and gait dynamics in huntington disease., http://clinicaltrials.gov2021.
[107]
Second Affiliated Hospital, School of Medicine, Zhejiang University. Non-randomized control clinical trial to evaluate the efficacy and safe-ty of symptomatic drug therapy for mild to moderate Huntington’s disease patients. Available from: http://clinicaltrials.gov 2021.
[108]
University of California Irvine. A phase IIa, randomized, doubleblind, placebo-controlled study of the safety and efficacy of fenofibrate as a treatment for Huntington’s disease. Available from: http://clinicaltrials.gov 2021.
[109]
MD WO Available from: http://clinicaltrials.gov . 2019.
[110]
MD RS. Risperidone for the treatment of Huntington’s disease chorea., Available from: http://clinicaltrials.gov 2021.
[111]
Oregon Health and Science University. Ursodiol in Huntington’s Disease., Available from: http://clinicaltrials.gov 2009.
[112]
Teva Branded Pharmaceutical Products R&D, Inc.. A multicenter, multinational, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of laquinimod (0.5, 1.0 and 1.5 mg/day) as treatment in patients with Huntington’s disease Available from: http://clinicaltrials.gov 2020.
[113]
Stimming, E.F. Evaluating the efficacy of dextromethorphan/ quinidine in treating irritability in Huntington’s disease Available from: http://clinicaltrials.gov 2021.
[114]
Neurocrine Biosciences. Open-label rollover study for continuing valbenazine administration for the treatment of chorea associated with Huntington disease. http://clinicaltrials.gov 2021.
[115]
Reilmann, R.; McGarry, A.; Grachev, I.D.; Savola, J-M.; Borowsky, B.; Eyal, E.; Gross, N.; Langbehn, D.; Schubert, R.; Wickenberg, A.T.; Papapetropoulos, S.; Hayden, M.; Squitieri, F.; Kieburtz, K.; Landwehrmeyer, G.B.; Agarwal, P.; Anderson, K.E.; Aziz, N.A.; Azulay, J-P.; Bachoud-Levi, A.C.; Barker, R.; Bebak, A.; Beuth, M.; Biglan, K.; Blin, S.; Bohlen, S.; Bonelli, R.; Caldwell, S.; Calvas, F.; Carlos, J.; Casta-gliuolo, S.; Chong, T.; Chua, P.; Coleman, A.; Corey-Bloom, J.; Cousins, R.; Craufurd, D.; Davison, J.; Decorte, E.; De Michele, G.; Dorn-hege, L.; Feigin, A.; Gallehawk, S.; Gauteul, P.; Gonzales, C.; Griffith, J.; Gustov, A.; Guttman, M.; Heim, B.; Heller, H.; Hjermind, L.; Illar-ioshkin, S.; Ivanko, L.; Jaynes, J.; Jenckes, M.; Kaminski, B.; Kampstra, A.; Konkel, A.; Kopishinskaya, S.; Krystkowiak, P.; Komati, S.K.; Kwako, A.; Lakoning, S.; Latipova, G.; Leavitt, B.; Loy, C.; MacFarlane, C.; Madsen, L.; Marder, K.; Mason, S.; Mendis, N.; Mendis, T.; Nemeth, A.; Nevitt, L.; Norris, V.; O’Neill, C.; Olivier, A.; Orth, M.; Owens, A.; Panegyres, P.; Perlman, S.; Preston, J.; Priller, J.; Puch, A.; Quarrell, O.; Ragosta, D.; Rialland, A.; Rickards, H.; Romoli, A.M.; Ross, C.; Rosser, A.; Rudzinska, M.; Russo, C.V.; Saft, C.; Segro, V.; Seppi, K.; Shannon, B.; Shprecher, D.; Simonin, C.; Skitt, Z.; Slawek, J.; Soliveri, P.; Sorbi, S.; Squitieri, F.; Suski, V.; Stepniak, I.; Sungmee, P.; Temirbaeva, S.; Testa, C.; Torvin-Moller, A.; Uhl, S.; Vangsted-Hansen, C.; Verny, C.; Wall, P.; Walker, F.; Wasserman, P.; Witkowski, G.; Wright, J.; Zalyalova, Z.; Zielonka, D. Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): A phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol., 2019, 18(2), 165-176.
[http://dx.doi.org/10.1016/S1474-4422(18)30391-0] [PMID: 30563778]
[116]
Abd-Elrahman, K.S.; Ferguson, S.S.G. Modulation of mTOR and CREB pathways following mGluR5 blockade contribute to improved Hun-tington’s pathology in zQ175 mice. Mol. Brain, 2019, 12(1), 35.
[http://dx.doi.org/10.1186/s13041-019-0456-1] [PMID: 30961637]
[117]
Sjögren, M.; Soylu-Kucharz, R.; Dandunna, U.; Stan, T.L.; Cavalera, M.; Sandelius, Å.; Zetterberg, H.; Björkqvist, M. Leptin deficiency reverses high metabolic state and weight loss without affecting central pathology in the R6/2 mouse model of Huntington’s disease. Neurobiol. Dis., 2019, 132, 104560.
[http://dx.doi.org/10.1016/j.nbd.2019.104560] [PMID: 31419548]
[118]
Vezzoli, E.; Caron, I.; Talpo, F.; Besusso, D.; Conforti, P.; Battaglia, E.; Sogne, E.; Falqui, A.; Petricca, L.; Verani, M.; Martufi, P.; Cari-casole, A.; Bresciani, A.; Cecchetti, O.; Rivetti di Val Cervo, P.; Sancini, G.; Riess, O.; Nguyen, H.; Seipold, L.; Saftig, P.; Biella, G.; Catta-neo, E.; Zuccato, C. Inhibiting pathologically active ADAM10 rescues synaptic and cognitive decline in Huntington’s disease. J. Clin. Invest., 2019, 129(6), 2390-2403.
[http://dx.doi.org/10.1172/JCI120616] [PMID: 31063986]
[119]
Southwell, A.L.; Franciosi, S.; Villanueva, E.B.; Xie, Y.; Winter, L.A.; Veeraraghavan, J.; Jonason, A.; Felczak, B.; Zhang, W.; Kovalik, V.; Waltl, S.; Hall, G.; Pouladi, M.A.; Smith, E.S.; Bowers, W.J.; Zauderer, M.; Hayden, M.R. Anti-semaphorin 4D immunotherapy ameliorates neuropathology and some cognitive impairment in the YAC128 mouse model of Huntington disease. Neurobiol. Dis., 2015, 76, 46-56.
[http://dx.doi.org/10.1016/j.nbd.2015.01.002] [PMID: 25662335]
[120]
Hsiao, H-Y.; Chiu, F-L.; Chen, C-M.; Wu, Y-R.; Chen, H-M.; Chen, Y-C.; Kuo, H.C.; Chern, Y. Inhibition of soluble tumor necrosis factor is therapeutic in Huntington’s disease. Hum. Mol. Genet., 2014, 23(16), 4328-4344.
[http://dx.doi.org/10.1093/hmg/ddu151] [PMID: 24698979]
[121]
Fatoba, O.; Ohtake, Y.; Itokazu, T.; Yamashita, T. Immunotherapies in Huntington’s disease and α-synucleinopathies. Front. Immunol., 2020, 11, 337.
[http://dx.doi.org/10.3389/fimmu.2020.00337] [PMID: 32161599]
[122]
Mason, S.L.; Barker, R.A. Advancing pharmacotherapy for treating Huntington’s disease: A review of the existing literature. Expert Opin. Pharmacother., 2016, 17(1), 41-52.
[http://dx.doi.org/10.1517/14656566.2016.1109630] [PMID: 26536068]
[123]
Ekman, F.K.; Ojala, D.S.; Adil, M.M.; Lopez, P.A.; Schaffer, D.V.; Gaj, T. CRISPR-Cas9-mediated genome editing increases lifespan and improves motor deficits in a Huntington’s disease mouse model. Mol. Ther. Nucleic Acids, 2019, 17, 829-839.
[http://dx.doi.org/10.1016/j.omtn.2019.07.009] [PMID: 31465962]
[124]
Tabrizi, S.J.; Ghosh, R.; Leavitt, B.R. Huntingtin lowering strategies for disease modification in Huntington’s disease. Neuron, 2019, 101(5), 801-819.
[http://dx.doi.org/10.1016/j.neuron.2019.01.039] [PMID: 30844400]
[125]
Godinho, B.M.D.C.; Malhotra, M.; O’Driscoll, C.M.; Cryan, J.F. Delivering a disease-modifying treatment for Huntington’s disease. Drug Discov. Today, 2015, 20(1), 50-64.
[http://dx.doi.org/10.1016/j.drudis.2014.09.011] [PMID: 25256777]
[126]
Zeitler, B.; Froelich, S.; Marlen, K.; Shivak, D.A.; Yu, Q.; Li, D.; Pearl, J.R.; Miller, J.C.; Zhang, L.; Paschon, D.E.; Hinkley, S.J.; Ankoudi-nova, I.; Lam, S.; Guschin, D.; Kopan, L.; Cherone, J.M.; Nguyen, H.B.; Qiao, G.; Ataei, Y.; Mendel, M.C.; Amora, R.; Surosky, R.; Laga-niere, J.; Vu, B.J.; Narayanan, A.; Sedaghat, Y.; Tillack, K.; Thiede, C.; Gärtner, A.; Kwak, S.; Bard, J.; Mrzljak, L.; Park, L.; Heikkinen, T.; Lehtimäki, K.K.; Svedberg, M.M.; Häggkvist, J.; Tari, L.; Tóth, M.; Varrone, A.; Halldin, C.; Kudwa, A.E.; Ramboz, S.; Day, M.; Kondapal-li, J.; Surmeier, D.J.; Urnov, F.D.; Gregory, P.D.; Rebar, E.J.; Muñoz-Sanjuán, I.; Zhang, H.S. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington’s disease. Nat. Med., 2019, 25(7), 1131-1142.
[http://dx.doi.org/10.1038/s41591-019-0478-3] [PMID: 31263285]
[127]
Hoffmann-La Roche. An open-label extension study to evaluate the long-term safety and tolerability of intrathecally administered RO7234292 (RG6042) in patients with Huntington’s disease Available from: http://clinicaltrials.gov2021.
[128]
Brasil, Azidus First in human study to evaluate safety of cellavita hd investigational product after intravenous application in participants with Huntington’s disease Available from: http://clinicaltrials.gov2021.
[129]
Brasil, Azidus Clinical extension study for assessing the safety and efficacy of the intravenous administration of cellavita-HD in Huntington’s disease patients who participated in the ADORE-DH study. Available from: http://clinicaltrials.gov2021.
[130]
Tabrizi, S.; Leavitt, B.; Kordasiewicz, H.; Czech, C.; Swayze, E.; Norris, D.A. Effects of IONIS-HTTRx in Patients with Early Huntington’s Disease, Results of the First HTT-Lowering Drug Trial (CT.002). Neurology, 2019, 380(24), 2307-2316.
[131]
Srinivasan, E.; Rajasekaran, R. Probing the inhibitory activity of epigallocatechin-gallate on toxic aggregates of mutant (L84F) SOD1 protein through geometry based sampling and steered molecular dynamics. J. Mol. Graph. Model., 2017, 74, 288-295.
[http://dx.doi.org/10.1016/j.jmgm.2017.04.019] [PMID: 28458007]
[132]
Srinivasan, E.; Ravikumar, S.; Venkataramanan, S.; Purohit, R.; Rajasekaran, R. Molecular mechanics and quantum chemical calculations unveil the combating effect of baicalein on human islet amyloid polypeptide aggregates. Mol. Simul., 2019, 45(18), 1538-1548.
[http://dx.doi.org/10.1080/08927022.2019.1660778]
[133]
Srinivasan, E.; Rajasekaran, R. Quantum chemical and molecular mechanics studies on the assessment of interactions between resveratrol and mutant SOD1 (G93A) protein. J. Comput. Aided Mol. Des., 2018, 32(12), 1347-1361.
[http://dx.doi.org/10.1007/s10822-018-0175-1] [PMID: 30368622]
[134]
Srinivasan, E.; Rajasekaran, R. A systematic and comprehensive review on disease-causing genes in amyotrophic lateral sclerosis. J. Mol. Neurosci., 2020, 70(11), 1742-1770.
[http://dx.doi.org/10.1007/s12031-020-01569-w] [PMID: 32415434]
[135]
Srinivasan, E.; Rajasekaran, R. Computational investigation of the human SOD1 mutant, Cys146Arg, that directs familial amyotrophic lat-eral sclerosis. Mol. Biosyst., 2017, 13(8), 1495-1503.
[http://dx.doi.org/10.1039/C7MB00106A] [PMID: 28621357]
[136]
Srinivasan, E.; Rajasekaran, R. Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. Biofactors, 2018, 44(5), 431-442.
[http://dx.doi.org/10.1002/biof.1441] [PMID: 30260512]
[137]
Yassa, N.; Masoomi, F.; Rankouhi, S.E.R.; Hadjiakhoondi, A. Chemical composition and antioxidant activity of the extract and essential oil of Rosa damascena from Iran, population of guilan. Daru, 2015, 17, 175-180.
[138]
Maher, A.R.; Maglione, M.; Bagley, S.; Suttorp, M.; Hu, J-H.; Ewing, B.; Wang, Z.; Timmer, M.; Sultzer, D.; Shekelle, P.G. Efficacy and comparative effectiveness of atypical antipsychotic medications for off-label uses in adults: A systematic review and meta-analysis. JAMA, 2011, 306(12), 1359-1369.
[http://dx.doi.org/10.1001/jama.2011.1360] [PMID: 21954480]
[139]
Wu, J.; Jeong, H.K.; Bulin, S.E.; Kwon, S.W.; Park, J.H.; Bezprozvanny, I. Ginsenosides protect striatal neurons in a cellular model of Hun-tington’s disease. J. Neurosci. Res., 2009, 87(8), 1904-1912.
[http://dx.doi.org/10.1002/jnr.22017] [PMID: 19185022]
[140]
Ali, S.K.; Hamed, A.R.; Soltan, M.M.; Hegazy, U.M.; Elgorashi, E.E.; El-Garf, I.A.; Hussein, A.A. In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of Alzheimer disease. BMC Complement. Altern. Med., 2013, 13(1), 121.
[http://dx.doi.org/10.1186/1472-6882-13-121] [PMID: 23721591]
[141]
Lagoa, R.; Lopez-Sanchez, C.; Samhan-Arias, A.K.; Gañan, C.M.; Garcia-Martinez, V.; Gutierrez-Merino, C. Kaempferol protects against rat striatal degeneration induced by 3-nitropropionic acid. J. Neurochem., 2009, 111(2), 473-487.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06331.x] [PMID: 19682208]
[142]
Binawade, Y.; Jagtap, A. Neuroprotective effect of lutein against 3-nitropropionic acid-induced Huntington’s disease-like symptoms: possi-ble behavioral, biochemical, and cellular alterations. J. Med. Food, 2013, 16(10), 934-943.
[http://dx.doi.org/10.1089/jmf.2012.2698] [PMID: 24138168]
[143]
Túnez, I.; Montilla, P.; Del Carmen Muñoz, M.; Feijóo, M.; Salcedo, M. Protective effect of melatonin on 3-nitropropionic acid-induced oxidative stress in synaptosomes in an animal model of Huntington’s disease. J. Pineal Res., 2004, 37(4), 252-256.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00163.x] [PMID: 15485551]
[144]
Kumar, P.; Kumar, A. Protective effect of rivastigmine against 3-nitropropionic acid-induced Huntington’s disease like symptoms: possible behavioural, biochemical and cellular alterations. Eur. J. Pharmacol., 2009, 615(1-3), 91-101.
[http://dx.doi.org/10.1016/j.ejphar.2009.04.058] [PMID: 19445928]
[145]
Gao, Y.; Chu, S.F.; Li, J.P.; Zhang, Z.; Yan, J.Q.; Wen, Z.L.; Xia, C.Y.; Mou, Z.; Wang, Z.Z.; He, W.B.; Guo, X.F.; Wei, G.N.; Chen, N.H. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington’s disease. Acta Pharmacol. Sin., 2015, 36(3), 311-322.
[http://dx.doi.org/10.1038/aps.2014.107] [PMID: 25640478]
[146]
Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1.
[http://dx.doi.org/10.1186/s12974-016-0779-0] [PMID: 28086917]
[147]
Pedraza-Chaverrí, J.; Reyes-Fermín, L.M.; Nolasco-Amaya, E.G.; Orozco-Ibarra, M.; Medina-Campos, O.N.; González-Cuahutencos, O.; Rivero-Cruz, I.; Mata, R. ROS scavenging capacity and neuroprotective effect of alpha-mangostin against 3-nitropropionic acid in cerebellar granule neurons. Exp. Toxicol. Pathol. Off. J. Ges. Toxikol. Pathol., 2009, 61(5), 491-501.
[http://dx.doi.org/10.1016/j.etp.2008.11.002] [PMID: 19108999]
[148]
Momtaz, S.; Memariani, Z.; El-Senduny, F.F.; Sanadgol, N.; Golab, F.; Katebi, M.; Abdolghaffari, A.H.; Farzaei, M.H.; Abdollahi, M. Tar-geting ubiquitin-proteasome pathway by natural products: novel therapeutic strategy for treatment of neurodegenerative diseases. Front. Physiol., 2020, 11, 361.
[http://dx.doi.org/10.3389/fphys.2020.00361] [PMID: 32411012]
[149]
Vanmierlo, T.; Popp, J.; Kölsch, H.; Friedrichs, S.; Jessen, F.; Stoffel-Wagner, B.; Bertsch, T.; Hartmann, T.; Maier, W.; von Bergmann, K.; Steinbusch, H.; Mulder, M.; Lütjohann, D. The plant sterol brassicasterol as additional CSF biomarker in Alzheimer’s disease. Acta Psychiatr. Scand., 2011, 124(3), 184-192.
[http://dx.doi.org/10.1111/j.1600-0447.2011.01713.x] [PMID: 21585343]
[150]
Fu, J. Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; Ross, C.A.; Duan, W. trans-(-)-&-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in mod-els of Huntington Disease. J. Biol. Chem., 2012, 287(29), 24460-24472.
[http://dx.doi.org/10.1074/jbc.M112.382226] [PMID: 22648412]
[151]
Salman, M.; Tabassum, H.; Parvez, S. Piperine mitigates behavioral impairments and provides neuroprotection against 3-nitropropinoic acid-induced Huntington disease-like symptoms. Nutr. Neurosci., 2020, 1-10.
[http://dx.doi.org/10.1080/1028415X.2020.1721645] [PMID: 32093571]
[152]
Pierzynowska, K.; Gaffke, L.; Cyske, Z. W&grzyn, G. Genistein induces degradation of mutant Huntingtin in fibroblasts from Huntington’s disease patients. Metab. Brain Dis., 2019, 34(3), 715-720.
[http://dx.doi.org/10.1007/s11011-019-00405-4] [PMID: 30850940]
[153]
Pierzynowska, K.; Gaffke, L. Ha& A.; Mantej, J.; Niedzia&ek, N.; Brokowska, J.; W&grzyn, G. Correction of Huntington’s disease pheno-type by genistein-induced autophagy in the cellular model. Neuromolecular Med., 2018, 20(1), 112-123.
[http://dx.doi.org/10.1007/s12017-018-8482-1] [PMID: 29435951]
[154]
Maher, P.; Dargusch, R.; Bodai, L.; Gerard, P.E.; Purcell, J.M.; Marsh, J.L. ERK activation by the polyphenols fisetin and resveratrol pro-vides neuroprotection in multiple models of Huntington’s disease. Hum. Mol. Genet., 2011, 20(2), 261-270.
[http://dx.doi.org/10.1093/hmg/ddq460] [PMID: 20952447]
[155]
Maher, P. Fisetin acts on multiple pathways to reduce the impact of age and disease on CNS function. Front. Biosci. (Schol. Ed.), 2015, 7, 58-82.
[http://dx.doi.org/10.2741/S425] [PMID: 25961687]
[156]
Ravula, A.R.; Teegala, S.B.; Kalakotla, S.; Pasangulapati, J.P.; Perumal, V.; Boyina, H.K. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur. J. Pharmacol., 2021, 910, 174492.
[http://dx.doi.org/10.1016/j.ejphar.2021.174492] [PMID: 34516952]
[157]
Chongtham, A.; Agrawal, N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci. Rep., 2016, 6(1), 18736.
[http://dx.doi.org/10.1038/srep18736] [PMID: 26728250]
[158]
Labanca, F.; Ullah, H.; Khan, H.; Milella, L.; Xiao, J.; Dajic-Stevanovic, Z.; Jeandet, P. Therapeutic and mechanistic effects of curcumin in Huntington’s disease. Curr. Neuropharmacol., 2021, 19(7), 1007-1018.
[http://dx.doi.org/10.2174/1570159X18666200522201123] [PMID: 32442088]
[159]
Elifani, F.; Amico, E.; Pepe, G.; Capocci, L.; Castaldo, S.; Rosa, P.; Montano, E.; Pollice, A.; Madonna, M.; Filosa, S.; Calogero, A.; Maglio-ne, V.; Crispi, S.; Di Pardo, A. Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s dis-ease. Hum. Mol. Genet., 2019, 28(23), 4012-4021.
[http://dx.doi.org/10.1093/hmg/ddz247] [PMID: 31630202]
[160]
Imran, M.; Ghorat, F.; Ul-Haq, I.; Ur-Rehman, H.; Aslam, F.; Heydari, M.; Shariati, M.A.; Okuskhanova, E.; Yessimbekov, Z.; Thiruvenga-dam, M.; Hashempur, M.H.; Rebezov, M. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 2020, 9(8), 706.
[http://dx.doi.org/10.3390/antiox9080706] [PMID: 32759751]
[161]
Chen, D.; Huang, C.; Chen, Z. A review for the pharmacological effect of lycopene in central nervous system disorders. Biomed. Pharmacother., 2019, 111, 791-801.
[http://dx.doi.org/10.1016/j.biopha.2018.12.151] [PMID: 30616078]
[162]
Cano, A.; Ettcheto, M.; Espina, M.; Auladell, C.; Folch, J.; Kühne, B.A.; Barenys, M.; Sánchez-López, E.; Souto, E.B.; García, M.L.; Turowski, P.; Camins, A. Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acid nanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine (Lond.), 2021, 16(1), 19-35.
[http://dx.doi.org/10.2217/nnm-2020-0239] [PMID: 33410329]
[163]
Debnath, K.; Shekhar, S.; Kumar, V.; Jana, N.R.; Jana, N.R. Efficient inhibition of protein aggregation, disintegration of aggregates, and low-ering of cytotoxicity by green tea polyphenol-based self-assembled polymer nanoparticles. ACS Appl. Mater. Interfaces, 2016, 8(31), 20309-20318.
[http://dx.doi.org/10.1021/acsami.6b06853] [PMID: 27427935]
[164]
Joshi, T.; Kumar, V.; Kaznacheyeva, E.V.; Jana, N.R.; Withaferin, A. Withaferin a induces heat shock response and ameliorates disease progression in a mouse model of Huntington’s disease. Mol. Neurobiol., 2021, 58(8), 3992-4006.
[http://dx.doi.org/10.1007/s12035-021-02397-8] [PMID: 33904021]
[165]
Jain, D.; Gangshettiwar, A. Combination of lycopene, quercetin and poloxamer 188 alleviates anxiety and depression in 3-nitropropionic acid-induced Huntington’s disease in rats. J. Intercult. Ethnopharmacol., 2014, 3(4), 186-191.
[http://dx.doi.org/10.5455/jice.20140903012921] [PMID: 26401371]
[166]
Park, J-E.; Lee, S-T. Im, W.S.; Chu, K.; Kim, M. Galantamine reduces striatal degeneration in 3-nitropropionic acid model of Huntington’s disease. Neurosci. Lett., 2008, 448(1), 143-147.
[http://dx.doi.org/10.1016/j.neulet.2008.10.020] [PMID: 18938211]
[167]
Petrikis, P.; Andreou, C.; Piachas, A.; Bozikas, V.P.; Karavatos, A. Treatment of Huntington’s disease with galantamine. Int. Clin. Psychopharmacol., 2004, 19(1), 49-50.
[http://dx.doi.org/10.1097/00004850-200401000-00010] [PMID: 15101572]
[168]
Chen, Y-Y.; Liu, Q-P.; An, P.; Jia, M.; Luan, X.; Tang, J-Y.; Zhang, H. Ginsenoside Rd: A promising natural neuroprotective agent. Phytomedicine, 2022, 95, 153883.
[http://dx.doi.org/10.1016/j.phymed.2021.153883] [PMID: 34952508]
[169]
Hua, K-F.; Chao, A-C.; Lin, T-Y.; Chen, W-T.; Lee, Y-C.; Hsu, W-H.; Lee, S-L.; Wang, H-M.; Yang, D-I.; Ju, T-C. Ginsenoside compound K reduces the progression of Huntington’s disease via the inhibition of oxidative stress and overactivation of the ATM/AMPK pathway. J. Ginseng Res., 2021.
[http://dx.doi.org/10.1016/j.jgr.2021.11.003]
[170]
Lee, M.; Ban, J-J.; Won, B.H. Im, W.; Kim, M. Therapeutic potential of ginsenoside Rg3 and Rf for Huntington’s disease. In Vitro Cell. Dev. Biol. Anim., 2021, 57(6), 641-648.
[http://dx.doi.org/10.1007/s11626-021-00595-1] [PMID: 34128157]
[171]
Yang, X.; Chu, S.F.; Wang, Z.Z.; Li, F.F.; Yuan, Y.H.; Chen, N.H. Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington’s disease via suppressing MAPKs and NF-&B pathways in the striatum. Acta Pharmacol. Sin., 2021, 42(9), 1409-1421.
[http://dx.doi.org/10.1038/s41401-020-00558-4] [PMID: 33214696]
[172]
Zahiruddin, S.; Basist, P.; Parveen, A.; Parveen, R.; Khan, W. Gaurav; Ahmad, S. Ashwagandha in brain disorders: A review of recent developments. J. Ethnopharmacol., 2020, 257, 112876.
[http://dx.doi.org/10.1016/j.jep.2020.112876] [PMID: 32305638]
[173]
Singh, S.; Jamwal, S.; Kumar, P. Piperine enhances the protective effect of curcumin against 3-NP induced neurotoxicity: Possible neuro-transmitters modulation mechanism. Neurochem. Res., 2015, 40(8), 1758-1766.
[http://dx.doi.org/10.1007/s11064-015-1658-2] [PMID: 26160706]
[174]
Choudhary, S.; Kumar, P.; Malik, J. Plants and phytochemicals for Huntington’s disease. Pharmacogn. Rev., 2013, 7(14), 81-91.
[http://dx.doi.org/10.4103/0973-7847.120505] [PMID: 24347915]
[175]
Kumar, P.; Kumar, A. Protective effect of hesperidin and naringin against 3-nitropropionic acid induced Huntington’s like symptoms in rats: Possible role of nitric oxide. Behav. Brain Res., 2010, 206(1), 38-46.
[http://dx.doi.org/10.1016/j.bbr.2009.08.028] [PMID: 19716383]
[176]
Kulasekaran, G.; Ganapasam, S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol. Cell. Biochem., 2015, 409(1-2), 199-211.
[http://dx.doi.org/10.1007/s11010-015-2525-9] [PMID: 26280522]
[177]
Gopinath, K.; Prakash, D.; Sudhandiran, G. Neuroprotective effect of naringin, a dietary flavonoid against 3-nitropropionic acid-induced neuronal apoptosis. Neurochem. Int., 2011, 59(7), 1066-1073.
[http://dx.doi.org/10.1016/j.neuint.2011.08.022] [PMID: 21945202]
[178]
Sandhir, R. Mehrotra, A Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim Biophys Acta BBA - Mol. Basis Dis., 2013, 1832, 421-430.
[http://dx.doi.org/10.1016/j.bbadis.2012.11.018]
[179]
Kuhad, A.; Singla, S.; Arora, V.; Chopra, K. Neuroprotective effect of sesamol and quercetin against QA induced neurotoxicity: An experi-mental paradigm of Huntington’s disease. J. Neurol. Sci., 2013, 333, e149-e150.
[http://dx.doi.org/10.1016/j.jns.2013.07.498]
[180]
Girme, A.; Saste, G.; Pawar, S.; Balasubramaniam, A.K.; Musande, K.; Darji, B.; Satti, N.K.; Verma, M.K.; Anand, R.; Singh, R.; Vish-wakarma, R.A.; Hingorani, L. Investigating 11 withanosides and withanolides by UHPLC-PDA and mass fragmentation studies from Ashwagandha (Withania somnifera). ACS Omega, 2020, 5(43), 27933-27943.
[http://dx.doi.org/10.1021/acsomega.0c03266] [PMID: 33163776]
[181]
Kumar, P.; Kumar, A. Possible neuroprotective effect of Withania somnifera root extract against 3-nitropropionic acid-induced behavioral, biochemical, and mitochondrial dysfunction in an animal model of Huntington’s disease. J. Med. Food, 2009, 12(3), 591-600.
[http://dx.doi.org/10.1089/jmf.2008.0028] [PMID: 19627208]
[182]
Ehrnhoefer, D.E.; Duennwald, M.; Markovic, P.; Wacker, J.L.; Engemann, S.; Roark, M.; Legleiter, J.; Marsh, J.L.; Thompson, L.M.; Lind-quist, S.; Muchowski, P.J.; Wanker, E.E. Green tea (-)-epigallocatechin-gallate modulates early events in Huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum. Mol. Genet., 2006, 15(18), 2743-2751.
[http://dx.doi.org/10.1093/hmg/ddl210] [PMID: 16893904]
[183]
Pasinetti, G.M.; Wang, J.; Marambaud, P.; Ferruzzi, M.; Gregor, P.; Knable, L.A.; Ho, L. Neuroprotective and metabolic effects of resvera-trol: Therapeutic implications for Huntington’s disease and other neurodegenerative disorders. Exp. Neurol., 2011, 232(1), 1-6.
[http://dx.doi.org/10.1016/j.expneurol.2011.08.014] [PMID: 21907197]
[184]
Debnath, K.; Pradhan, N.; Singh, B.K.; Jana, N.R.; Jana, N.R. Poly(trehalose) nanoparticles prevent amyloid aggregation and suppress poly-glutamine aggregation in a Huntington’s disease model mouse. ACS Appl. Mater. Interfaces, 2017, 9(28), 24126-24139.
[http://dx.doi.org/10.1021/acsami.7b06510] [PMID: 28632387]
[185]
Fernandez-Estevez, M.A.; Casarejos, M.J.; López Sendon, J.; Garcia Caldentey, J.; Ruiz, C.; Gomez, A.; Perucho, J.; de Yebenes, J.G.; Mena, M.A. Trehalose reverses cell malfunction in fibroblasts from normal and Huntington’s disease patients caused by proteosome inhi-bition. PLoS One, 2014, 9(2), e90202.
[http://dx.doi.org/10.1371/journal.pone.0090202] [PMID: 24587280]
[186]
Im, J.; Kim, S.; Jeong, Y-H.; Kim, W.; Lee, D.; Lee, W.S.; Chang, Y-T.; Kim, K-T.; Chung, S-K. Preparation and evaluation of BBB-permeable trehalose derivatives as potential therapeutic agents for Huntington’s disease. MedChemComm, 2013, 4(2), 310-316.
[http://dx.doi.org/10.1039/C2MD20112G]
[187]
Tanaka, M.; Machida, Y.; Niu, S.; Ikeda, T.; Jana, N.R.; Doi, H.; Kurosawa, M.; Nekooki, M.; Nukina, N. Trehalose alleviates polygluta-mine-mediated pathology in a mouse model of Huntington disease. Nat. Med., 2004, 10(2), 148-154.
[http://dx.doi.org/10.1038/nm985] [PMID: 14730359]
[188]
Hadaczek, P.; Stanek, L.; Ciesielska, A.; Sudhakar, V.; Samaranch, L.; Pivirotto, P.; Bringas, J.; O’Riordan, C.; Mastis, B.; San Sebastian, W.; Forsayeth, J.; Cheng, S.H.; Bankiewicz, K.S.; Shihabuddin, L.S. Widespread AAV1- and AAV2-mediated transgene expression in the nonhuman primate brain: Implications for Huntington’s disease. Mol. Ther. Methods Clin. Dev., 2016, 3, 16037.
[http://dx.doi.org/10.1038/mtm.2016.37] [PMID: 27408903]
[189]
Pfister, E.L.; Chase, K.O.; Sun, H.; Kennington, L.A.; Conroy, F.; Johnson, E.; Miller, R.; Borel, F.; Aronin, N.; Mueller, C. Safe and effi-cient silencing with a Pol II, but Not a Pol lII, promoter expressing an artificial miRNA targeting human Huntingtin. Mol. Ther. Nucleic Acids, 2017, 7, 324-334.
[http://dx.doi.org/10.1016/j.omtn.2017.04.011] [PMID: 28624208]
[190]
Dufour, B.D.; Smith, C.A.; Clark, R.L.; Walker, T.R.; McBride, J.L. Intrajugular vein delivery of AAV9-RNAi prevents neuropathological changes and weight loss in Huntington’s disease mice. Mol. Ther., 2014, 22(4), 797-810.
[http://dx.doi.org/10.1038/mt.2013.289] [PMID: 24390280]
[191]
Tabrizi, S.J.; Leavitt, B.R.; Landwehrmeyer, G.B.; Wild, E.J.; Saft, C.; Barker, R.A.; Blair, N.F.; Craufurd, D.; Priller, J.; Rickards, H.; Rosser, A.; Kordasiewicz, H.B.; Czech, C.; Swayze, E.E.; Norris, D.A.; Baumann, T.; Gerlach, I.; Schobel, S.A.; Paz, E.; Smith, A.V.; Ben-nett, C.F.; Lane, R.M. Targeting Huntingtin expression in patients with Huntington’s disease. N. Engl. J. Med., 2019, 380(24), 2307-2316.
[http://dx.doi.org/10.1056/NEJMoa1900907] [PMID: 31059641]
[192]
Connor, B. Concise review: The use of stem cells for understanding and treating Huntington’s disease. Stem Cells, 2018, 36(2), 146-160.
[http://dx.doi.org/10.1002/stem.2747] [PMID: 29178352]
[193]
Srinageshwar, B.; Petersen, R.B.; Dunbar, G.L.; Rossignol, J. Prion-like mechanisms in neurodegenerative disease: Implications for Hun-tington’s disease therapy. Stem Cells Transl. Med., 2020, 9(5), 559-566.
[http://dx.doi.org/10.1002/sctm.19-0248] [PMID: 31997581]
[194]
Pollock, K.; Dahlenburg, H.; Nelson, H.; Fink, K.D.; Cary, W.; Hendrix, K.; Annett, G.; Torrest, A.; Deng, P.; Gutierrez, J.; Nacey, C.; Pep-per, K.; Kalomoiris, S.D.; Anderson, J.; McGee, J.; Gruenloh, W.; Fury, B.; Bauer, G.; Duffy, A.; Tempkin, T.; Wheelock, V.; Nolta, J.A. Human mesenchymal stem cells genetically engineered to overexpress brain-derived neurotrophic factor improve outcomes in Huntington’s disease mouse models. Mol. Ther., 2016, 24(5), 965-977.
[http://dx.doi.org/10.1038/mt.2016.12] [PMID: 26765769]
[195]
Lee, M.; Liu, T.; Im, W.; Kim, M. Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci., 2016, 44(4), 2114-2119.
[http://dx.doi.org/10.1111/ejn.13275] [PMID: 27177616]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy