Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

miRNAs in SARS-CoV-2 Infection: An Update

Author(s): Asim Azhar*, Wajihul Hasan Khan, Khaled Al-Hosaini and Mohammad Amjad Kamal

Volume 23, Issue 4, 2022

Published on: 13 May, 2022

Page: [283 - 298] Pages: 16

DOI: 10.2174/1389200223666220321102824

Price: $65

Abstract

Coronavirus disease-2019 (COVID-19) is a highly infectious disease caused by newly discovered severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the inception of SARS-CoV-2 in Wuhan, China, the virus has traveled more than 200 countries globally. The role of SARS-CoV-2 in COVID-19 has been thoroughly investigated and reviewed in the last 22 months or so; however, a comprehensive outline of miRNAs in SARS-CoV- 2 infection is still missing.

The genetic material of SARS-CoV-2 is a single-stranded RNA molecule nearly 29 kb in size. RNA is composed of numerous sub-constituents RNA is found in the cells in a number of forms. including microRNAs (miRNAs). miRNAs play an essential role in biological processes like apoptosis, cellular metabolism, cell death, cell movement, oncogenesis, intracellular signaling, immunity, and infection. Lately, miRNAs have been involved in SARS-CoV-2 infection, though the clear demonstration of miRNAs in the SARS-CoV-2 infection is not fully elucidated. The present review article summarizes recent findings of miRNAs associated with SARS-CoV-2 infection. We presented various facets of miRNAs. miRNAs as the protagonists in viral infection, the occurrence of miRNA in cellular receptors, expression of miRNAs in multiple diseases, miRNA as a biomarker, and miRNA as a therapeutic tool have been discussed in detail. We also presented the vaccine status available in various countries.

Keywords: Coronavirus, COVID-19, infection, miRNA, SARS-CoV-2, acute respiratory syndrome.

[1]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[2]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
COVID-19 Map. Johns Hopkins coronavirus resource center., Available from: https://coronavirus.jhu.edu/map.html Accessed on 2022 Jan 13.
[4]
Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed., 2020, 91(1), 157-160.
[PMID: 32191675]
[5]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Im-plications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[6]
Nakagawa, S.; Miyazawa, T. Genome evolution of SARS-CoV-2 and its virological characteristics. Inflamm. Regen., 2020, 40(1), 17.
[http://dx.doi.org/10.1186/s41232-020-00126-7] [PMID: 32834891]
[7]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[8]
Azhar, A.; Al-hosaini, K.; Khan, P.A.; Oanz, A.M.; Zia, Q.; Banawas, S. Promiscuous biological features of newly emerged SARS-CoV-2 facilitate its unrestrained outbreak: An update. Coronaviruses, 2021, 2(10), e170821191027.
[http://dx.doi.org/10.2174/2666796702666210202125638]
[9]
Xiong, X.; Qu, K.; Ciazynska, K.A.; Hosmillo, M.; Carter, A.P.; Ebrahimi, S.; Ke, Z.; Scheres, S.H.W.; Bergamaschi, L.; Grice, G.L.; Zhang, Y.; Nathan, J.A.; Baker, S.; James, L.C.; Baxendale, H.E.; Goodfellow, I.; Doffinger, R.; Briggs, J.A.G. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol., 2020, 27(10), 934-941.
[http://dx.doi.org/10.1038/s41594-020-0478-5] [PMID: 32737467]
[10]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[11]
Yuan, Y.; Cao, D.; Zhang, Y.; Ma, J.; Qi, J.; Wang, Q.; Lu, G.; Wu, Y.; Yan, J.; Shi, Y.; Zhang, X.; Gao, G.F. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat. Commun., 2017, 8(1), 15092.
[http://dx.doi.org/10.1038/ncomms15092] [PMID: 28393837]
[12]
Gui, M.; Song, W.; Zhou, H.; Xu, J.; Chen, S.; Xiang, Y.; Wang, X. Cryo-electron microscopy structures of the SARS-CoV spike glycopro-tein reveal a prerequisite conformational state for receptor binding. Cell Res., 2017, 27(1), 119-129.
[http://dx.doi.org/10.1038/cr.2016.152] [PMID: 28008928]
[13]
Lu, S.; Ye, Q.; Singh, D.; Cao, Y.; Diedrich, J.K.; Yates, J.R., III; Villa, E.; Cleveland, D.W.; Corbett, K.D. The SARS-CoV-2 nucleocapsid phosphoprotein forms mutually exclusive condensates with RNA and the membrane-associated M protein. Nat. Commun., 2021, 12(1), 502.
[http://dx.doi.org/10.1038/s41467-020-20768-y] [PMID: 33479198]
[14]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[15]
Ratti, M.; Lampis, A.; Ghidini, M.; Salati, M.; Mirchev, M.B.; Valeri, N.; Hahne, J.C. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) as new tools for cancer therapy: First steps from bench to bedside. Target. Oncol., 2020, 15(3), 261-278.
[http://dx.doi.org/10.1007/s11523-020-00717-x] [PMID: 32451752]
[16]
Hum, C.; Loiselle, J.; Ahmed, N.; Shaw, T.A.; Toudic, C.; Pezacki, J.P. MicroRNA mimics or inhibitors as antiviral therapeutic approaches against COVID-19. Drugs, 2021, 81(5), 517-531.
[http://dx.doi.org/10.1007/s40265-021-01474-5] [PMID: 33638807]
[17]
El-Nabi, S.H.; Elhiti, M.; El-Sheekh, M. A new approach for COVID-19 treatment by micro-RNA. Med. Hypotheses, 2020, 143, 110203.
[http://dx.doi.org/10.1016/j.mehy.2020.110203] [PMID: 33017912]
[18]
Gasparello, J.; Finotti, A.; Gambari, R. Tackling the COVID-19 “cytokine storm” with microRNA mimics directly targeting the 3'UTR of pro-inflammatory mRNAs. Med. Hypotheses, 2021, 146, 110415.
[http://dx.doi.org/10.1016/j.mehy.2020.110415] [PMID: 33422363]
[19]
Farr, R.J.; Rootes, C.L.; Rowntree, L.C.; Nguyen, T.H.O.; Hensen, L.; Kedzierski, L.; Cheng, A.C.; Kedzierska, K.; Au, G.G.; Marsh, G.A.; Vasan, S.S.; Foo, C.H.; Cowled, C.; Stewart, C.R. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog., 2021, 17(7), e1009759.
[http://dx.doi.org/10.1371/journal.ppat.1009759] [PMID: 34320031]
[20]
Barbu, M.G.; Condrat, C.E.; Thompson, D.C.; Bugnar, O.L.; Cretoiu, D.; Toader, O.D.; Suciu, N.; Voinea, S.C. MicroRNA Involvement in signaling pathways during viral infection. Front. Cell Dev. Biol., 2020, 8, 143.
[http://dx.doi.org/10.3389/fcell.2020.00143] [PMID: 32211411]
[21]
Demongeot, J.; Seligmann, H. SARS-CoV-2 and miRNA-like inhibition power. Med. Hypotheses, 2020, 144, 110245.
[http://dx.doi.org/10.1016/j.mehy.2020.110245] [PMID: 33254550]
[22]
Siordia, J.A. Jr Epidemiology and clinical features of COVID-19: A review of current literature. J. Clin. Virol., 2020, 127, 104357.
[http://dx.doi.org/10.1016/j.jcv.2020.104357] [PMID: 32305884]
[23]
Woods, J.A.; Hutchinson, N.T.; Powers, S.K.; Roberts, W.O.; Gomez-Cabrera, M.C.; Radak, Z.; Berkes, I.; Boros, A.; Boldogh, I.; Leeu-wenburgh, C.; Coelho-Júnior, H.J.; Marzetti, E.; Cheng, Y.; Liu, J.; Durstine, J.L.; Sun, J.; Ji, L.L. The COVID-19 pandemic and physical activity. Sports Med. Health Sci., 2020, 2(2), 55-64.
[http://dx.doi.org/10.1016/j.smhs.2020.05.006] [PMID: 34189484]
[24]
AlAjmi, M.F.; Azhar, A.; Owais, M.; Rashid, S.; Hasan, S.; Hussain, A.; Rehman, M.T. Antiviral potential of some novel structural analogs of standard drugs repurposed for the treatment of COVID-19. J. Biomol. Struct. Dyn., 2021, 39(17), 6676-6688.
[http://dx.doi.org/10.1080/07391102.2020.1799865] [PMID: 32729392]
[25]
Borse, S.; Joshi, M.; Saggam, A.; Bhat, V.; Walia, S.; Marathe, A.; Sagar, S.; Chavan-Gautam, P.; Girme, A.; Hingorani, L.; Tillu, G. Ayur-veda botanicals in COVID-19 management: An in silico multi-target approach. PLoS One, 2021, 16(6), e0248479.
[http://dx.doi.org/10.1371/journal.pone.0248479] [PMID: 34115763]
[26]
AlAjmi, M.; Azhar, A.; Hasan, S.; Alshabr, A.; Hussain, A.; Rehman, T. Identification of natural compounds (proanthocyanidin and rhapontin) as high-affinity inhibitor of SARS-CoV-2 Mpro and PLpro using computational strategies. Arch. Med. Sci., 2021.
[http://dx.doi.org/10.5114/aoms/133706]
[27]
Facciolà, A.; Laganà, P.; Caruso, G. The COVID-19 pandemic and its implications on the environment. Environ. Res., 2021, 201, 111648.
[http://dx.doi.org/10.1016/j.envres.2021.111648] [PMID: 34242676]
[28]
Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ., 2020, 728, 138813.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138813] [PMID: 32334159]
[29]
Jackson, C.B.; Farzan, M.; Chen, B.; Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol., 2022, 23(1), 3-20.
[PMID: 34611326]
[30]
Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ, 2020, 371, m3862.
[http://dx.doi.org/10.1136/bmj.m3862] [PMID: 33097561]
[31]
Mirzaei, R.; Mahdavi, F.; Badrzadeh, F.; Hosseini-Fard, S.R.; Heidary, M.; Jeda, A.S.; Mohammadi, T.; Roshani, M.; Yousefimashouf, R.; Keyvani, H.; Darvishmotevalli, M.; Sani, M.Z.; Karampoor, S. The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Int. Immunopharmacol., 2021, 90, 107204.
[http://dx.doi.org/10.1016/j.intimp.2020.107204] [PMID: 33221169]
[32]
López, P.; Girardi, E.; Pfeffer, S. Importance of cellular microRNAs in the regulation of viral infections. Med. Sci. (Paris), 2019, 35(8-9), 667-673.
[PMID: 31532379]
[33]
Khan, A.A-K.; Sany, R.U.; Islam, S.; Islam, A.B.M.K. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Front. Genet., 2020, 11, 765.
[http://dx.doi.org/10.3389/fgene.2020.00765] [PMID: 32765592]
[34]
Trobaugh, D.W.; Gardner, C.L.; Sun, C.; Haddow, A.D.; Wang, E.; Chapnik, E.; Mildner, A.; Weaver, S.C.; Ryman, K.D.; Klimstra, W.B. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature, 2014, 506(7487), 245-248.
[http://dx.doi.org/10.1038/nature12869] [PMID: 24352241]
[35]
Scheel, T.K.H.; Luna, J.M.; Liniger, M.; Nishiuchi, E.; Rozen-Gagnon, K.; Shlomai, A.; Auray, G.; Gerber, M.; Fak, J.; Keller, I.; Brug-gmann, R.; Darnell, R.B.; Ruggli, N.; Rice, C.M. A broad RNA virus survey reveals both mIRNA dependence and functional sequestration. Cell Host Microbe, 2016, 19(3), 409-423.
[http://dx.doi.org/10.1016/j.chom.2016.02.007] [PMID: 26962949]
[36]
Fu, Z.; Wang, J.; Wang, Z.; Sun, Y.; Wu, J.; Zhang, Y.; Liu, X.; Zhou, Z.; Zhou, L.; Zhang, C.Y.; Yi, Y.; Xia, X.; Wang, L.; Chen, X. A virus-derived microRNA-like small RNA serves as a serum biomarker to prioritize the COVID-19 patients at high risk of developing se-vere disease. Cell Discov., 2021, 7(1), 48.
[http://dx.doi.org/10.1038/s41421-021-00289-8] [PMID: 34226530]
[37]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[38]
Wightman, B.; Ha, I.; Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern for-mation in C. elegans. Cell, 1993, 75(5), 855-862.
[http://dx.doi.org/10.1016/0092-8674(93)90530-4] [PMID: 8252622]
[39]
Reinhart, B.J.; Slack, F.J.; Basson, M.; Pasquinelli, A.E.; Bettinger, J.C.; Rougvie, A.E.; Horvitz, H.R.; Ruvkun, G. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000, 403(6772), 901-906.
[http://dx.doi.org/10.1038/35002607] [PMID: 10706289]
[40]
Slack, F.J.; Basson, M.; Liu, Z.; Ambros, V.; Horvitz, H.R.; Ruvkun, G. The lin-41 RBCC gene acts in the C. elegans heterochronic path-way between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell, 2000, 5(4), 659-669.
[http://dx.doi.org/10.1016/S1097-2765(00)80245-2] [PMID: 10882102]
[41]
Pasquinelli, A.E.; Reinhart, B.J.; Slack, F.; Martindale, M.Q.; Kuroda, M.I.; Maller, B.; Hayward, D.C.; Ball, E.E.; Degnan, B.; Müller, P.; Spring, J.; Srinivasan, A.; Fishman, M.; Finnerty, J.; Corbo, J.; Levine, M.; Leahy, P.; Davidson, E.; Ruvkun, G. Conservation of the se-quence and temporal expression of let-7 heterochronic regulatory RNA. Nature, 2000, 408(6808), 86-89.
[http://dx.doi.org/10.1038/35040556] [PMID: 11081512]
[42]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[43]
Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol., 2009, 7(6), 439-450.
[http://dx.doi.org/10.1038/nrmicro2147] [PMID: 19430490]
[44]
Zhang, Q.; Xiang, R.; Huo, S.; Zhou, Y.; Jiang, S.; Wang, Q.; Yu, F. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduct. Target. Ther., 2021, 6(1), 233.
[http://dx.doi.org/10.1038/s41392-021-00653-w] [PMID: 34117216]
[45]
Gomes, C.P.; Fernandes, D.E.; Casimiro, F.; da Mata, G.F.; Passos, M.T.; Varela, P.; Mastroianni-Kirsztajn, G.; Pesquero, J.B. Cathepsin L in COVID-19: From pharmacological evidences to genetics. Front. Cell. Infect. Microbiol., 2020, 10, 589505.
[http://dx.doi.org/10.3389/fcimb.2020.589505] [PMID: 33364201]
[46]
Wu, H-Y.; Brian, D.A. Subgenomic messenger RNA amplification in coronaviruses. Proc. Natl. Acad. Sci. USA, 2010, 107(27), 12257-12262.
[http://dx.doi.org/10.1073/pnas.1000378107] [PMID: 20562343]
[47]
Cullen, B.R. Transcription and processing of human microRNA precursors. Mol. Cell, 2004, 16(6), 861-865.
[http://dx.doi.org/10.1016/j.molcel.2004.12.002] [PMID: 15610730]
[48]
Zeng, Y.; Cullen, B.R. Efficient processing of primary microRNA hairpins by Drosha requires flanking nonstructured RNA sequences. J. Biol. Chem., 2005, 280(30), 27595-27603.
[http://dx.doi.org/10.1074/jbc.M504714200] [PMID: 15932881]
[49]
Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the dicer com-plex to Ago2 for microRNA processing and gene silencing. Nature, 2005, 436(7051), 740-744.
[http://dx.doi.org/10.1038/nature03868] [PMID: 15973356]
[50]
Hutvágner, G.; McLachlan, J.; Pasquinelli, A.E.; Bálint, E.; Tuschl, T.; Zamore, P.D. A cellular function for the RNA-interference enzyme dicer in the maturation of the let-7 small temporal RNA. Science, 2001, 293(5531), 834-838.
[http://dx.doi.org/10.1126/science.1062961] [PMID: 11452083]
[51]
Henzinger, H.; Barth, D.A.; Klec, C.; Pichler, M. Non-Coding RNAs and SARS-related coronaviruses. Viruses, 2020, 12(12), E1374.
[http://dx.doi.org/10.3390/v12121374] [PMID: 33271762]
[52]
Singaravelu, R.; Nasheri, N.; Sherratt, A.; Pezacki, J.P. Systems biology methods help develop a better understanding of hepatitis C virus-induced liver injury. Hepatology, 2012, 56(1), 1-4.
[http://dx.doi.org/10.1002/hep.25727] [PMID: 22430896]
[53]
Singaravelu, R.; Chen, R.; Lyn, R.K.; Jones, D.M.; O’Hara, S.; Rouleau, Y.; Cheng, J.; Srinivasan, P.; Nasheri, N.; Russell, R.S.; Tyrrell, D.L.; Pezacki, J.P. Hepatitis C virus induced up-regulation of microRNA-27: A novel mechanism for hepatic steatosis. Hepatology, 2014, 59(1), 98-108.
[http://dx.doi.org/10.1002/hep.26634] [PMID: 23897856]
[54]
Yin, Q.; McBride, J.; Fewell, C.; Lacey, M.; Wang, X.; Lin, Z.; Cameron, J.; Flemington, E.K. MicroRNA-155 is an epstein-barr virus-induced gene that modulates epstein-barr virus-regulated gene expression pathways. J. Virol., 2008, 82(11), 5295-5306.
[http://dx.doi.org/10.1128/JVI.02380-07] [PMID: 18367535]
[55]
Girardi, E.; López, P.; Pfeffer, S. On the importance of host MicroRNAs during viral infection. Front. Genet., 2018, 9, 439.
[http://dx.doi.org/10.3389/fgene.2018.00439] [PMID: 30333857]
[56]
McCaskill, J.L.; Ressel, S.; Alber, A.; Redford, J.; Power, U.F.; Schwarze, J.; Dutia, B.M.; Buck, A.H. Broad-spectrum inhibition of res-piratory virus infection by MicroRNA mimics targeting p38 MAPK signaling. Mol. Ther. Nucleic Acids, 2017, 7, 256-266.
[http://dx.doi.org/10.1016/j.omtn.2017.03.008] [PMID: 28624201]
[57]
Luig, C.; Köther, K.; Dudek, S.E.; Gaestel, M.; Hiscott, J.; Wixler, V.; Ludwig, S. MAP kinase-activated protein kinases 2 and 3 are re-quired for influenza A virus propagation and act via inhibition of PKR. FASEB J., 2010, 24(10), 4068-4077.
[http://dx.doi.org/10.1096/fj.10-158766] [PMID: 20484669]
[58]
Marchant, D.; Singhera, G.K.; Utokaparch, S.; Hackett, T.L.; Boyd, J.H.; Luo, Z.; Si, X.; Dorscheid, D.R.; McManus, B.M.; Hegele, R.G. Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. J. Virol., 2010, 84(21), 11359-11373.
[http://dx.doi.org/10.1128/JVI.00804-10] [PMID: 20702616]
[59]
Ameling, S.; Kacprowski, T.; Chilukoti, R.K.; Malsch, C.; Liebscher, V.; Suhre, K.; Pietzner, M.; Friedrich, N.; Homuth, G.; Hammer, E.; Völker, U. Associations of circulating plasma microRNAs with age, body mass index and sex in a population-based study. BMC Med. Genomics, 2015, 8(1), 61.
[http://dx.doi.org/10.1186/s12920-015-0136-7] [PMID: 26462558]
[60]
Hewel, C.; Kaiser, J.; Wierczeiko, A.; Linke, J.; Reinhardt, C.; Endres, K.; Gerber, S. Common miRNA Patterns of Alzheimer’s Disease and Parkinson’s disease and their putative impact on commensal gut microbiota. Front. Neurosci., 2019, 13, 113.
[http://dx.doi.org/10.3389/fnins.2019.00113] [PMID: 30890906]
[61]
Nigi, L.; Grieco, G.E.; Ventriglia, G.; Brusco, N.; Mancarella, F.; Formichi, C.; Dotta, F.; Sebastiani, G. MicroRNAs as regulators of insulin signaling: Research updates and potential therapeutic perspectives in type 2 diabetes. Int. J. Mol. Sci., 2018, 19(12), E3705.
[http://dx.doi.org/10.3390/ijms19123705] [PMID: 30469501]
[62]
Daoud, A.Z.; Mulholland, E.J.; Cole, G.; McCarthy, H.O. MicroRNAs in pancreatic cancer: Biomarkers, prognostic, and therapeutic modu-lators. BMC Cancer, 2019, 19(1), 1130.
[http://dx.doi.org/10.1186/s12885-019-6284-y] [PMID: 31752758]
[63]
Guterres, A.; de Azeredo Lima, C.H.; Miranda, R.L.; Gadelha, M.R. What is the potential function of microRNAs as biomarkers and thera-peutic targets in COVID-19? Infect. Genet. Evol., 2020, 85, 104417.
[http://dx.doi.org/10.1016/j.meegid.2020.104417] [PMID: 32526370]
[64]
Li, C.; Hu, X.; Li, L.; Li, J-H. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J. Clin. Lab. Anal., 2020, 34(10), e23590.
[http://dx.doi.org/10.1002/jcla.23590] [PMID: 32960473]
[65]
Tang, H.; Gao, Y.; Li, Z.; Miao, Y.; Huang, Z.; Liu, X.; Xie, L.; Li, H.; Wen, W.; Zheng, Y.; Su, W. The noncoding and coding transcrip-tional landscape of the peripheral immune response in patients with COVID-19. Clin. Transl. Med., 2020, 10(6), e200.
[http://dx.doi.org/10.1002/ctm2.200] [PMID: 33135345]
[66]
Boldin, M.P.; Taganov, K.D.; Rao, D.S.; Yang, L.; Zhao, J.L.; Kalwani, M.; Garcia-Flores, Y.; Luong, M.; Devrekanli, A.; Xu, J.; Sun, G.; Tay, J.; Linsley, P.S.; Baltimore, D. miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. J. Exp. Med., 2011, 208(6), 1189-1201.
[http://dx.doi.org/10.1084/jem.20101823] [PMID: 21555486]
[67]
Saha, A.; Bhagyawant, S.S.; Parida, M.; Dash, P.K. Vector-delivered artificial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res., 2016, 134, 42-49.
[http://dx.doi.org/10.1016/j.antiviral.2016.08.019] [PMID: 27565991]
[68]
Roviello, V.; Musumeci, D.; Mokhir, A.; Roviello, G.N. Evidence of protein binding by a nucleopeptide based on a thyminedecorated L-diaminopropanoic acid through CD and in silico studies. Curr. Med. Chem., 2021, 28(24), 5004-5015.
[http://dx.doi.org/10.2174/0929867328666210201152326] [PMID: 33593247]
[69]
Kaur, T.; Kapila, S.; Kapila, R.; Kumar, S.; Upadhyay, D.; Kaur, M.; Sharma, C. Tmprss2 specific miRNAs as promising regulators for SARS-CoV-2 entry checkpoint. Virus Res., 2021, 294, 198275.
[http://dx.doi.org/10.1016/j.virusres.2020.198275] [PMID: 33359190]
[70]
Saçar Demirci, M.D.; Adan, A. Computational analysis of microRNA-mediated interactions in SARS-CoV-2 infection. PeerJ, 2020, 8, e9369.
[http://dx.doi.org/10.7717/peerj.9369] [PMID: 32547891]
[71]
Głobińska, A.; Pawełczyk, M.; Kowalski, M.L. MicroRNAs and the immune response to respiratory virus infections. Expert Rev. Clin. Immunol., 2014, 10(7), 963-971.
[http://dx.doi.org/10.1586/1744666X.2014.913482] [PMID: 24784476]
[72]
Zhou, T.; Garcia, J.G.N.; Zhang, W. Integrating microRNAs into a system biology approach to acute lung injury. Transl. Res., 2011, 157(4), 180-190.
[http://dx.doi.org/10.1016/j.trsl.2011.01.010] [PMID: 21420028]
[73]
Riess, M.; Fuchs, N.V.; Idica, A.; Hamdorf, M.; Flory, E.; Pedersen, I.M.; König, R. Interferons induce expression of SAMHD1 in mono-cytes through down-regulation of miR-181a and miR-30a. J. Biol. Chem., 2017, 292(1), 264-277.
[http://dx.doi.org/10.1074/jbc.M116.752584] [PMID: 27909056]
[74]
Jiang, S.; Li, C.; Olive, V.; Lykken, E.; Feng, F.; Sevilla, J.; Wan, Y.; He, L.; Li, Q.J. Molecular dissection of the miR-17-92 cluster’s criti-cal dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood, 2011, 118(20), 5487-5497.
[http://dx.doi.org/10.1182/blood-2011-05-355644] [PMID: 21972292]
[75]
Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. MicroRNAs: Small RNAs with big effects. Transplantation, 2010, 90(2), 105-112.
[http://dx.doi.org/10.1097/TP.0b013e3181e913c2] [PMID: 20574417]
[76]
Sonkoly, E.; Ståhle, M.; Pivarcsi, A. MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflam-mation. Semin. Cancer Biol., 2008, 18(2), 131-140.
[http://dx.doi.org/10.1016/j.semcancer.2008.01.005] [PMID: 18291670]
[77]
Li, Q-J.; Chau, J.; Ebert, P.J.R.; Sylvester, G.; Min, H.; Liu, G.; Braich, R.; Manoharan, M.; Soutschek, J.; Skare, P.; Klein, L.O.; Davis, M.M.; Chen, C.Z. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 2007, 129(1), 147-161.
[http://dx.doi.org/10.1016/j.cell.2007.03.008] [PMID: 17382377]
[78]
Wang, C.; Chen, T.; Zhang, J.; Yang, M.; Li, N.; Xu, X.; Cao, X. The E3 ubiquitin ligase Nrdp1 ‘preferentially’ promotes TLR-mediated production of type I interferon. Nat. Immunol., 2009, 10(7), 744-752.
[http://dx.doi.org/10.1038/ni.1742] [PMID: 19483718]
[79]
An, H.; Hou, J.; Zhou, J.; Zhao, W.; Xu, H.; Zheng, Y.; Yu, Y.; Liu, S.; Cao, X. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat. Immunol., 2008, 9(5), 542-550.
[http://dx.doi.org/10.1038/ni.1604] [PMID: 18391954]
[80]
Yang, P.; An, H.; Liu, X.; Wen, M.; Zheng, Y.; Rui, Y.; Cao, X. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a beta-catenin-dependent pathway. Nat. Immunol., 2010, 11(6), 487-494.
[http://dx.doi.org/10.1038/ni.1876] [PMID: 20453844]
[81]
Pedersen, I.M.; Cheng, G.; Wieland, S.; Volinia, S.; Croce, C.M.; Chisari, F.V.; David, M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 2007, 449(7164), 919-922.
[http://dx.doi.org/10.1038/nature06205] [PMID: 17943132]
[82]
Sodroski, C.; Lowey, B.; Hertz, L.; Jake Liang, T.; Li, Q. MicroRNA-135a modulates hepatitis C virus genome replication through down-regulation of host antiviral factors. Virol. Sin., 2019, 34(2), 197-210.
[http://dx.doi.org/10.1007/s12250-018-0055-9] [PMID: 30456659]
[83]
Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.M.; Mhlanga, M.M.; Mulder, W.J.M.; Riksen, N.P.; Schlitzer, A.; Schultze, J.L.; Stabell Benn, C.; Sun, J.C.; Xavier, R.J.; Latz, E. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol., 2020, 20(6), 375-388.
[http://dx.doi.org/10.1038/s41577-020-0285-6] [PMID: 32132681]
[84]
Azhar, A.; Hassan, N.; Singh, M.; Al-Hosaini, K.; Kamal, M.A. Synopsis of pharmotechnological approaches in diagnostic and manage-ment strategies for fighting against COVID-19. Curr. Pharm. Des., 2021, 27(39), 4086-4099.
[http://dx.doi.org/10.2174/1381612827666210715154004] [PMID: 34269664]
[85]
Chauhan, N.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. COVID-19: Fighting the invisible enemy with microRNAs. Expert Rev. Anti Infect. Ther., 2021, 19(2), 137-145.
[http://dx.doi.org/10.1080/14787210.2020.1812385] [PMID: 32814446]
[86]
Arora, S.; Singh, P.; Dohare, R.; Jha, R.; Ali Syed, M. Unravelling host-pathogen interactions: CeRNA network in SARS-CoV-2 infection (COVID-19). Gene, 2020, 762, 145057.
[http://dx.doi.org/10.1016/j.gene.2020.145057] [PMID: 32805314]
[87]
Liu, Z.; Wang, J.; Xu, Y.; Guo, M.; Mi, K.; Xu, R. Implications of the virus-encoded miRNA and host miRNA in the pathogenicity of SARS-CoV-2. ArXiv200404874 Q-Bio 2020.
[88]
Sardar, R.; Satish, D.; Birla, S.; Gupta, D. Integrative analyses of SARS-CoV-2 genomes from different geographical locations reveal unique features potentially consequential to host-virus interaction, pathogenesis and clues for novel therapies. Heliyon, 2020, 6(9), e04658.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04658] [PMID: 32844125]
[89]
Hosseini Rad Sm, A.; McLellan, A.D. Implications of SARS-CoV-2 mutations for genomic RNA structure and host microRNA targeting. Int. J. Mol. Sci., 2020, 21(13), 4807.
[http://dx.doi.org/10.3390/ijms21134807] [PMID: 32645951]
[90]
Arisan, E.D.; Dart, A.; Grant, G.H.; Arisan, S.; Cuhadaroglu, S.; Lange, S.; Uysal-Onganer, P. The prediction of miRNAs in SARS-CoV-2 genomes: Hsa-miR databases identify 7 key miRs linked to host responses and virus pathogenicity-related KEGG pathways significant for comorbidities. Viruses, 2020, 12(6), 614.
[http://dx.doi.org/10.3390/v12060614] [PMID: 32512929]
[91]
Nersisyan, S.; Engibaryan, N.; Gorbonos, A.; Kirdey, K.; Makhonin, A.; Tonevitsky, A. Potential role of cellular miRNAs in coronavirus-host interplay. PeerJ, 2020, 8, e9994.
[http://dx.doi.org/10.7717/peerj.9994] [PMID: 32983652]
[92]
Fulzele, S.; Sahay, B.; Yusufu, I.; Lee, T.J.; Sharma, A.; Kolhe, R.; Isales, C.M. COVID-19 virulence in aged patients might be impacted by the host cellular MicroRNAs abundance/profile. Aging Dis., 2020, 11(3), 509-522.
[http://dx.doi.org/10.14336/AD.2020.0428] [PMID: 32489698]
[93]
Mishra, P.K.; Tandon, R.; Byrareddy, S.N. Diabetes and COVID-19 risk: An miRNA perspective. Am. J. Physiol. Heart Circ. Physiol., 2020, 319(3), H604-H609.
[http://dx.doi.org/10.1152/ajpheart.00489.2020] [PMID: 32762561]
[94]
Chow, J.T-S.; Salmena, L. Prediction and analysis of SARS-CoV-2-targeting microRNA in human lung epithelium. Genes (Basel), 2020, 11(9), 1002.
[http://dx.doi.org/10.3390/genes11091002] [PMID: 32858958]
[95]
Li, J.; Dong, X.; Wang, Z.; Wu, J. MicroRNA-1 in cardiac diseases and cancers. Korean J. Physiol. Pharmacol., 2014, 18(5), 359-363.
[http://dx.doi.org/10.4196/kjpp.2014.18.5.359] [PMID: 25352753]
[96]
Shang, Q.; Shen, G.; Chen, G.; Zhang, Z.; Yu, X.; Zhao, W.; Zhang, P.; Chen, H.; Tang, K.; Yu, F.; Tang, J.; Liang, D.; Jiang, X.; Ren, H. The emerging role of miR-128 in musculoskeletal diseases. J. Cell. Physiol., 2021, 236(6), 4231-4243.
[http://dx.doi.org/10.1002/jcp.30179] [PMID: 33241566]
[97]
Lai, F.W.; Stephenson, K.B.; Mahony, J.; Lichty, B.D. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation. J. Virol., 2014, 88(1), 54-65.
[http://dx.doi.org/10.1128/JVI.02678-13] [PMID: 24109243]
[98]
Sabbatinelli, J.; Giuliani, A.; Matacchione, G.; Latini, S.; Laprovitera, N.; Pomponio, G.; Ferrarini, A.; Svegliati Baroni, S.; Pavani, M.; Moretti, M.; Gabrielli, A.; Procopio, A.D.; Ferracin, M.; Bonafè, M.; Olivieri, F. Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech. Ageing Dev., 2021, 193, 111413.
[http://dx.doi.org/10.1016/j.mad.2020.111413] [PMID: 33307107]
[99]
Giuliani, A.; Gaetani, S.; Sorgentoni, G.; Agarbati, S.; Laggetta, M.; Matacchione, G.; Gobbi, M.; Rossi, T.; Galeazzi, R.; Piccinini, G.; Pel-liccioni, G.; Bonfigli, A.R.; Procopio, A.D.; Albertini, M.C.; Sabbatinelli, J.; Olivieri, F.; Fazioli, F. Circulating inflamma-miRs as potential biomarkers of cognitive impairment in patients affected by Alzheimer’s disease. Front. Aging Neurosci., 2021, 13, 647015.
[http://dx.doi.org/10.3389/fnagi.2021.647015] [PMID: 33776746]
[100]
Gambardella, J.; Sardu, C.; Morelli, M.B.; Messina, V.; Castellanos, V.; Marfella, R. Exosomal microRNAs drive thrombosis in COVID-19. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.16.20133256]
[101]
Delrue, M.; Siguret, V.; Neuwirth, M.; Joly, B.; Beranger, N.; Sène, D.; Chousterman, B.G.; Voicu, S.; Bonnin, P.; Mégarbane, B.; Stépa-nian, A. von Willebrand factor/ADAMTS13 axis and venous thromboembolism in moderate-to-severe COVID-19 patients. Br. J. Haematol., 2021, 192(6), 1097-1100.
[http://dx.doi.org/10.1111/bjh.17216] [PMID: 33368196]
[102]
Lu, D.; Chatterjee, S.; Xiao, K.; Riedel, I.; Wang, Y.; Foo, R.; Bär, C.; Thum, T. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J. Mol. Cell. Cardiol., 2020, 148, 46-49.
[http://dx.doi.org/10.1016/j.yjmcc.2020.08.017] [PMID: 32891636]
[103]
Gonzalo-Calvo, D.D.; Benítez, I.D.; Pinilla, L.; Carratalá, A.; Moncusí-Moix, A.; Gort-Paniello, C.; Molinero, M.; González, J.; Torres, G.; Bernal, M.; Pico, S.; Almansa, R.; Jorge, N.; Ortega, A.; Bustamante-Munguira, E.; Gómez, J.M.; González-Rivera, M.; Micheloud, D.; Ryan, P.; Martinez, A. Circulating microRNA profiles predict the severity of COVID-19 in hospitalized patients. Transl. Res., 2021, 236, 147-159.
[PMID: 34048985]
[104]
Reis, P.P.; Drigo, S.A.; Carvalho, R.F.; Lopez Lapa, R.M.; Felix, T.F.; Patel, D.; Cheng, D.; Pintilie, M.; Liu, G.; Tsao, M.S. Circulating miR-16-5p, miR-92a-3p, and miR-451a in plasma from lung cancer patients: Potential application in early detection and a regulatory role in tumorigenesis pathways. Cancers (Basel), 2020, 12(8), 2071.
[http://dx.doi.org/10.3390/cancers12082071] [PMID: 32726984]
[105]
Liu, Q.; Du, J.; Yu, X.; Xu, J.; Huang, F.; Li, X.; Zhang, C.; Li, X.; Chang, J.; Shang, D.; Zhao, Y.; Tian, M.; Lu, H.; Xu, J.; Li, C.; Zhu, H.; Jin, N.; Jiang, C. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov., 2017, 3(1), 17021.
[http://dx.doi.org/10.1038/celldisc.2017.21] [PMID: 28690868]
[106]
Bertolazzi, G.; Cipollina, C.; Benos, P.V.; Tumminello, M.; Coronnello, C. miR-1207-5p can contribute to dysregulation of inflammatory response in COVID-19 via targeting SARS-CoV-2 RNA. Front. Cell. Infect. Microbiol., 2020, 10, 586592.
[http://dx.doi.org/10.3389/fcimb.2020.586592] [PMID: 33194826]
[107]
Huang, K-H.; Lan, Y-T.; Fang, W-L.; Chen, J-H.; Lo, S-S.; Li, A.F-Y.; Chiou, S.H.; Wu, C.W.; Shyr, Y.M. The correlation between miRNA and lymph node metastasis in gastric cancer. BioMed Res. Int., 2015, 2015, 543163.
[http://dx.doi.org/10.1155/2015/543163] [PMID: 25688358]
[108]
Ge, X.; Li, W.; Huang, S.; Yin, Z.; Yang, M.; Han, Z.; Han, Z.; Chen, F.; Wang, H.; Lei, P.; Zhang, J. Increased miR-21-3p in injured brain microvascular endothelial cells after traumatic brain injury aggravates blood-brain barrier damage by promoting cellular apoptosis and in-flammation through targeting MAT2B. J. Neurotrauma, 2019, 36(8), 1291-1305.
[http://dx.doi.org/10.1089/neu.2018.5728] [PMID: 29695199]
[109]
Lawrie, C.H.; Gal, S.; Dunlop, H.M.; Pushkaran, B.; Liggins, A.P.; Pulford, K.; Banham, A.H.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; Hatton, C.S.; Harris, A.L. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lym-phoma. Br. J. Haematol., 2008, 141(5), 672-675.
[http://dx.doi.org/10.1111/j.1365-2141.2008.07077.x] [PMID: 18318758]
[110]
Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; Li, Q.; Li, X.; Wang, W.; Zhang, Y.; Wang, J.; Jiang, X.; Xiang, Y.; Xu, C.; Zheng, P.; Zhang, J.; Li, R.; Zhang, H.; Shang, X.; Gong, T.; Ning, G.; Wang, J.; Zen, K.; Zhang, J.; Zhang, C.Y. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res., 2008, 18(10), 997-1006.
[http://dx.doi.org/10.1038/cr.2008.282] [PMID: 18766170]
[111]
Wang, C.; Yang, S.; Sun, G.; Tang, X.; Lu, S.; Neyrolles, O.; Gao, Q. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One, 2011, 6(10), e25832.
[http://dx.doi.org/10.1371/journal.pone.0025832] [PMID: 22003408]
[112]
Garg, A.; Seeliger, B.; Derda, A.A.; Xiao, K.; Gietz, A.; Scherf, K.; Sonnenschein, K.; Pink, I.; Hoeper, M.M.; Welte, T.; Bauersachs, J.; David, S.; Bär, C.; Thum, T. Circulating cardiovascular microRNAs in critically ill COVID-19 patients. Eur. J. Heart Fail., 2021, 23(3), 468-475.
[http://dx.doi.org/10.1002/ejhf.2096] [PMID: 33421274]
[113]
Xu, W.; Jiang, X.; Huang, L. RNA Interference Technology. In: Comprehensive Biotechnology; Elsevier, 2019; pp. 560-575.
[http://dx.doi.org/10.1016/B978-0-444-64046-8.00282-2]
[114]
Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci., 2016, 17(10), 1712.
[http://dx.doi.org/10.3390/ijms17101712] [PMID: 27754357]
[115]
Friedman, R.C.; Farh, K.K-H.; Burge, C.B.; Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res., 2009, 19(1), 92-105.
[http://dx.doi.org/10.1101/gr.082701.108] [PMID: 18955434]
[116]
Plotnikova, O.; Baranova, A.; Skoblov, M. Comprehensive analysis of human microRNA-mRNA interactome. Front. Genet., 2019, 10, 933.
[http://dx.doi.org/10.3389/fgene.2019.00933] [PMID: 31649721]
[117]
Schmidt, M.F. Drug target miRNAs: Chances and challenges. Trends Biotechnol., 2014, 32(11), 578-585.
[http://dx.doi.org/10.1016/j.tibtech.2014.09.002] [PMID: 25304465]
[118]
Seto, A.G.; Beatty, X.; Lynch, J.M.; Hermreck, M.; Tetzlaff, M.; Duvic, M.; Jackson, A.L. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br. J. Haematol., 2018, 183(3), 428-444.
[http://dx.doi.org/10.1111/bjh.15547] [PMID: 30125933]
[119]
Janssen, H.L.A.; Reesink, H.W.; Lawitz, E.J.; Zeuzem, S.; Rodriguez-Torres, M.; Patel, K.; van der Meer, A.J.; Patick, A.K.; Chen, A.; Zhou, Y.; Persson, R.; King, B.D.; Kauppinen, S.; Levin, A.A.; Hodges, M.R. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med., 2013, 368(18), 1685-1694.
[http://dx.doi.org/10.1056/NEJMoa1209026] [PMID: 23534542]
[120]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S-S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2020, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[121]
Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liver-specific Mi-croRNA. Science, 2005, 309(5740), 1577-1581.
[http://dx.doi.org/10.1126/science.1113329] [PMID: 16141076]
[122]
U.S. Food and Drug. Comirnaty and Pfizer-BioNTech COVID-19 Vaccine. Available from: https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine
[123]
WHO. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. Available from: https://extranet.who.int/pqweb/sites/default/files/documents/Status_COVID_VAX_20Oct2021.pdf
[124]
Walsh, E.E. Frenck, R.W., Jr; Falsey, A.R.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Mulligan, M.J.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P.Y.; Türeci, Ö.; Tompkins, K.R.; Lyke, K.E.; Raabe, V.; Dormitzer, P.R.; Jansen, K.U.; Şahin, U.; Gruber, W.C. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N. Engl. J. Med., 2020, 383(25), 2439-2450.
[http://dx.doi.org/10.1056/NEJMoa2027906] [PMID: 33053279]
[125]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. Anti-coronavirus vaccines: Past investigations on SARS-CoV-1 and MERS-CoV, the approved vaccines from BioNTech/Pfizer, Moderna, Oxford/AstraZeneca and others under development against SARS-CoV-2 infection. Curr. Med. Chem., 2022, 29(1), 4-18.
[PMID: 34355678]
[126]
Study to Describe the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates against COVID-19 in Healthy Individuals. Available from: https://clinicaltrials.gov/ct2/show/NCT04368728
[127]
Pfizer Says Experimental COVID-19 Vaccine Is More Than 90% Effective. Available from: https://www.npr.org/sections/health-shots/2020/11/09/933006651/pfizer-says-experimental-covid-19-vaccine-is-more-than-90-effective
[128]
Folegatti, P.M.; Ewer, K.J.; Aley, P.K.; Angus, B.; Becker, S.; Belij-Rammerstorfer, S.; Bellamy, D.; Bibi, S.; Bittaye, M.; Clutterbuck, E.A.; Dold, C.; Faust, S.N.; Finn, A.; Flaxman, A.L.; Hallis, B.; Heath, P.; Jenkin, D.; Lazarus, R.; Makinson, R.; Minassian, A.M.; Pollock, K.M.; Ramasamy, M.; Robinson, H.; Snape, M.; Tarrant, R.; Voysey, M.; Green, C.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pollard, A.J.; Aboagye, J.; Adams, K.; Ali, A.; Allen, E.; Allison, J.L.; Anslow, R.; Arbe-Barnes, E.H.; Babbage, G.; Baillie, K.; Baker, M.; Baker, N.; Baker, P.; Baleanu, I.; Ballaminut, J.; Barnes, E.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beckley, R.; Berrie, E.; Berry, L.; Beveridge, A.; Bewley, K.R.; Bijker, E.M.; Bingham, T.; Blackwell, L.; Blundell, C.L.; Bolam, E.; Boland, E.; Borthwick, N.; Bower, T.; Boyd, A.; Brenner, T.; Bright, P.D.; Brown-O’Sullivan, C.; Brunt, E.; Burbage, J.; Burge, S.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Cal-vert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Carr, M.; Carroll, M.W.; Carter, V.; Cathie, K.; Challis, R.J.; Charlton, S.; Chelysheva, I.; Cho, J-S.; Cicconi, P.; Cifuentes, L.; Clark, H.; Clark, E.; Cole, T.; Colin-Jones, R.; Conlon, C.P.; Cook, A.; Coombes, N.S.; Cooper, R.; Cosgrove, C.A.; Coy, K.; Crocker, W.E.M.; Cunningham, C.J.; Damratoski, B.E.; Dando, L.; Datoo, M.S.; Davies, H.; De Graaf, H.; De-missie, T.; Di Maso, C.; Dietrich, I.; Dong, T.; Donnellan, F.R.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Drury, R.E.; Dunachie, S.J.; Edwards, N.J.; Edwards, F.D.L.; Edwards, C.J.; Elias, S.C.; Elmore, M.J.; Emary, K.R.W.; English, M.R.; Fagerbrink, S.; Felle, S.; Feng, S.; Field, S.; Fixmer, C.; Fletcher, C.; Ford, K.J.; Fowler, J.; Fox, P.; Francis, E.; Frater, J.; Furze, J.; Fuskova, M.; Galiza, E.; Gbesemete, D.; Gilbride, C.; Godwin, K.; Gorini, G.; Goulston, L.; Grabau, C.; Gracie, L.; Gray, Z.; Guthrie, L.B.; Hackett, M.; Halwe, S.; Hamilton, E.; Hamlyn, J.; Hanumunthadu, B.; Harding, I.; Harris, S.A.; Harris, A.; Harrison, D.; Harrison, C.; Hart, T.C.; Haskell, L.; Hawkins, S.; Head, I.; Henry, J.A.; Hill, J.; Hodgson, S.H.C.; Hou, M.M.; Howe, E.; Howell, N.; Hutlin, C.; Ikram, S.; Isitt, C.; Iveson, P.; Jackson, S.; Jackson, F.; James, S.W.; Jenkins, M.; Jones, E.; Jones, K.; Jones, C.E.; Jones, B.; Kailath, R.; Karampatsas, K.; Keen, J.; Kelly, S.; Kelly, D.; Kerr, D.; Kerridge, S.; Khan, L.; Khan, U.; Killen, A.; Kinch, J.; King, T.B.; King, L.; King, J.; Kingham-Page, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Kupke, A.; Larkworthy, C.W.; Larwood, J.P.J.; Laskey, A.; Lawrie, A.M.; Lee, A.; Ngan Lee, K.Y.; Lees, E.A.; Legge, H.; Lelliott, A.; Lemm, N-M.; Lias, A.M.; Linder, A.; Lipworth, S.; Liu, X.; Liu, S.; Lopez Ramon, R.; Lwin, M.; Mabesa, F.; Madhavan, M.; Mallett, G.; Mansatta, K.; Marcal, I.; Marinou, S.; Marlow, E.; Marshall, J.L.; Martin, J.; McEwan, J.; McInroy, L.; Meddaugh, G.; Mentzer, A.J.; Mirtorabi, N.; Moore, M.; Moran, E.; Morey, E.; Morgan, V.; Morris, S.J.; Morri-son, H.; Morshead, G.; Morter, R.; Mujadidi, Y.F.; Muller, J.; Munera-Huertas, T.; Munro, C.; Munro, A.; Murphy, S.; Munster, V.J.; Mweu, P.; Noé, A.; Nugent, F.L.; Nuthall, E.; O’Brien, K.; O’Connor, D.; Oguti, B.; Oliver, J.L.; Oliveira, C.; O’Reilly, P.J.; Osborn, M.; Osborne, P.; Owen, C.; Owens, D.; Owino, N.; Pacurar, M.; Parker, K.; Parracho, H.; Patrick-Smith, M.; Payne, V.; Pearce, J.; Peng, Y.; Peralta Alvarez, M.P.; Perring, J.; Pfafferott, K.; Pipini, D.; Plested, E.; Pluess-Hall, H.; Pollock, K.; Poulton, I.; Presland, L.; Provstgaard-Morys, S.; Pulido, D.; Radia, K.; Ramos Lopez, F.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rhead, S.; Riddell, A.; Ritchie, A.J.; Roberts, H.; Robson, J.; Roche, S.; Rohde, C.; Rollier, C.S.; Romani, R.; Rudiansyah, I.; Saich, S.; Sajjad, S.; Salvador, S.; Sanchez Riera, L.; Sanders, H.; Sanders, K.; Sapaun, S.; Sayce, C.; Schofield, E.; Screaton, G.; Selby, B.; Semple, C.; Sharpe, H.R.; Shaik, I.; Shea, A.; Shelton, H.; Silk, S.; Silva-Reyes, L.; Skelly, D.T.; Smee, H.; Smith, C.C.; Smith, D.J.; Song, R.; Spencer, A.J.; Stafford, E.; Steele, A.; Stefanova, E.; Stockdale, L.; Szigeti, A.; Tahiri-Alaoui, A.; Tait, M.; Talbot, H.; Tanner, R.; Taylor, I.J.; Taylor, V.; Te Water Naude, R.; Thakur, N.; Themistocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, T.M.; Thompson, A.; Thomson-Hill, S.; Tomlins, J.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.A.; Truby, A.; Turkentine, K.; Turner, C.; Turner, N.; Turner, S.; Tuthill, T.; Ulaszewska, M.; Varughese, R.; Van Doremalen, N.; Veighey, K.; Verheul, M.K.; Vichos, I.; Vitale, E.; Walker, L.; Watson, M.E.E.; Welham, B.; Wheat, J.; White, C.; White, R.; Worth, A.T.; Wright, D.; Wright, S.; Yao, X.L.; Yau, Y. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet, 2020, 396(10249), 467-478.
[http://dx.doi.org/10.1016/S0140-6736(20)31604-4] [PMID: 32702298]
[129]
Mendonça, S.A.; Lorincz, R.; Boucher, P.; Curiel, D.T. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. NPJ Vaccines, 2021, 6(1), 97.
[http://dx.doi.org/10.1038/s41541-021-00356-x] [PMID: 34354082]
[131]
El Sahly, H.M.; Baden, L.R.; Essink, B.; Doblecki-Lewis, S.; Martin, J.M.; Anderson, E.J.; Campbell, T.B.; Clark, J.; Jackson, L.A.; Fichtenbaum, C.J.; Zervos, M.; Rankin, B.; Eder, F.; Feldman, G.; Kennelly, C.; Han-Conrad, L.; Levin, M.; Neuzil, K.M.; Corey, L.; Gil-bert, P.; Janes, H.; Follmann, D.; Marovich, M.; Polakowski, L.; Mascola, J.R.; Ledgerwood, J.E.; Graham, B.S.; August, A.; Clouting, H.; Deng, W.; Han, S.; Leav, B.; Manzo, D.; Pajon, R.; Schödel, F.; Tomassini, J.E.; Zhou, H.; Miller, J. Efficacy of the mRNA-1273 SARS-CoV-2 vaccine at completion of blinded phase. N. Engl. J. Med., 2021, 385(19), 1774-1785.
[http://dx.doi.org/10.1056/NEJMoa2113017] [PMID: 34551225]
[132]
Leiden developed Covid-19 vaccine submitted to EMA for approval. Available from: https://nltimes.nl/2021/02/16/leiden-developed-covid-19-vaccine-submitted-ema-approval
[133]
Bos, R.; Rutten, L.; van der Lubbe, J.E.M.; Bakkers, M.J.G.; Hardenberg, G.; Wegmann, F.; Zuijdgeest, D.; de Wilde, A.H.; Koornneef, A.; Verwilligen, A.; van Manen, D.; Kwaks, T.; Vogels, R.; Dalebout, T.J.; Myeni, S.K.; Kikkert, M.; Snijder, E.J.; Li, Z.; Barouch, D.H.; Vel-linga, J.; Langedijk, J.P.M.; Zahn, R.C.; Custers, J.; Schuitemaker, H. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines, 2020, 5(1), 91.
[http://dx.doi.org/10.1038/s41541-020-00243-x] [PMID: 33083026]
[134]
Mallapaty, S. China’s COVID vaccines are going global - but questions remain. Nature, 2021, 593(7858), 178-179.
[http://dx.doi.org/10.1038/d41586-021-01146-0] [PMID: 33948031]
[135]
Zhang, Y.; Zeng, G.; Pan, H.; Li, C.; Hu, Y.; Chu, K.; Han, W.; Chen, Z.; Tang, R.; Yin, W.; Chen, X.; Hu, Y.; Liu, X.; Jiang, C.; Li, J.; Yang, M.; Song, Y.; Wang, X.; Gao, Q.; Zhu, F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 2021, 21(2), 181-192.
[http://dx.doi.org/10.1016/S1473-3099(20)30843-4] [PMID: 33217362]
[136]
Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z.; Gao, H.; Ge, X.; Kan, B.; Hu, Y.; Liu, J.; Cai, F.; Jiang, D.; Yin, Y.; Qin, C.; Li, J.; Gong, X.; Lou, X.; Shi, W.; Wu, D.; Zhang, H.; Zhu, L.; Deng, W.; Li, Y.; Lu, J.; Li, C.; Wang, X.; Yin, W.; Zhang, Y.; Qin, C. Development of an inactivated vaccine candidate for SARS-CoV-2. Science, 2020, 369(6499), 77-81.
[http://dx.doi.org/10.1126/science.abc1932] [PMID: 32376603]
[137]
Covaxin: India’s homegrown Covid-19 vaccine has 78% efficacy against symptomatic infections, developer says - CNN Available from: https://edition.cnn.com/2021/07/03/india/bharat-biotech-covaxin-efficacy-intl-hnk/index.html Accessed on 2021 Nov 10.
[138]
Ella, R.; Reddy, S.; Blackwelder, W.; Potdar, V.; Yadav, P.; Sarangi, V. Efficacy, safety, and lot to lot immunogenicity of an inactivated SARS-CoV-2 vaccine (BBV152): A, double-blind, randomised, controlled phase 3 trial. medRxiv, 2021.
[http://dx.doi.org/10.1101/2021.06.30.21259439]
[139]
Polack, F.P. Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr.; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[140]
Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; Bibi, S.; Briner, C.; Cicconi, P.; Collins, A.M.; Colin-Jones, R.; Cutland, C.L.; Darton, T.C.; Dheda, K.; Duncan, C.J.A.; Emary, K.R.W.; Ewer, K.J.; Fairlie, L.; Faust, S.N.; Feng, S.; Ferreira, D.M.; Finn, A.; Goodman, A.L.; Green, C.M.; Green, C.A.; Heath, P.T.; Hill, C.; Hill, H.; Hirsch, I.; Hodgson, S.H.C.; Izu, A.; Jackson, S.; Jenkin, D.; Joe, C.C.D.; Kerridge, S.; Koen, A.; Kwatra, G.; Lazarus, R.; Lawrie, A.M.; Lelliott, A.; Libri, V.; Lillie, P.J.; Mallory, R.; Mendes, A.V.A.; Milan, E.P.; Minassian, A.M.; McGregor, A.; Morrison, H.; Muja-didi, Y.F.; Nana, A.; O’Reilly, P.J.; Padayachee, S.D.; Pittella, A.; Plested, E.; Pollock, K.M.; Ramasamy, M.N.; Rhead, S.; Schwarzbold, A.V.; Singh, N.; Smith, A.; Song, R.; Snape, M.D.; Sprinz, E.; Sutherland, R.K.; Tarrant, R.; Thomson, E.C.; Török, M.E.; Toshner, M.; Turner, D.P.J.; Vekemans, J.; Villafana, T.L.; Watson, M.E.E.; Williams, C.J.; Douglas, A.D.; Hill, A.V.S.; Lambe, T.; Gilbert, S.C.; Pol-lard, A.J.; Aban, M.; Abayomi, F.; Abeyskera, K.; Aboagye, J.; Adam, M.; Adams, K.; Adamson, J.; Adelaja, Y.A.; Adewetan, G.; Adlou, S.; Ahmed, K.; Akhalwaya, Y.; Akhalwaya, S.; Alcock, A.; Ali, A.; Allen, E.R.; Allen, L.; Almeida, T.C.D.S.C.; Alves, M.P.S.; Amorim, F.; Andritsou, F.; Anslow, R.; Appleby, M.; Arbe-Barnes, E.H.; Ariaans, M.P.; Arns, B.; Arruda, L.; Azi, P.; Azi, L.; Babbage, G.; Bailey, C.; Baker, K.F.; Baker, M.; Baker, N.; Baker, P.; Baldwin, L.; Baleanu, I.; Bandeira, D.; Bara, A.; Barbosa, M.A.S.; Barker, D.; Barlow, G.D.; Barnes, E.; Barr, A.S.; Barrett, J.R.; Barrett, J.; Bates, L.; Batten, A.; Beadon, K.; Beales, E.; Beckley, R.; Belij-Rammerstorfer, S.; Bell, J.; Bellamy, D.; Bellei, N.; Belton, S.; Berg, A.; Bermejo, L.; Berrie, E.; Berry, L.; Berzenyi, D.; Beveridge, A.; Bewley, K.R.; Bexhell, H.; Bhi-kha, S.; Bhorat, A.E.; Bhorat, Z.E.; Bijker, E.; Birch, G.; Birch, S.; Bird, A.; Bird, O.; Bisnauthsing, K.; Bittaye, M.; Blackstone, K.; Black-well, L.; Bletchly, H.; Blundell, C.L.; Blundell, S.R.; Bodalia, P.; Boettger, B.C.; Bolam, E.; Boland, E.; Bormans, D.; Borthwick, N.; Bowring, F.; Boyd, A.; Bradley, P.; Brenner, T.; Brown, P.; Brown, C.; Brown-O’Sullivan, C.; Bruce, S.; Brunt, E.; Buchan, R.; Budd, W.; Bulbulia, Y.A.; Bull, M.; Burbage, J.; Burhan, H.; Burn, A.; Buttigieg, K.R.; Byard, N.; Cabera Puig, I.; Calderon, G.; Calvert, A.; Camara, S.; Cao, M.; Cappuccini, F.; Cardoso, J.R.; Carr, M.; Carroll, M.W.; Carson-Stevens, A.; Carvalho, Y.M.; Carvalho, J.A.M.; Casey, H.R.; Cashen, P.; Castro, T.; Castro, L.C.; Cathie, K.; Cavey, A.; Cerbino-Neto, J.; Chadwick, J.; Chapman, D.; Charlton, S.; Chelysheva, I.; Chester, O.; Chita, S.; Cho, J-S.; Cifuentes, L.; Clark, E.; Clark, M.; Clarke, A.; Clutterbuck, E.A.; Collins, S.L.K.; Conlon, C.P.; Connarty, S.; Coombes, N.; Cooper, C.; Cooper, R.; Cornelissen, L.; Corrah, T.; Cosgrove, C.; Cox, T.; Crocker, W.E.M.; Crosbie, S.; Cullen, L.; Cul-len, D.; Cunha, D.R.M.F.; Cunningham, C.; Cuthbertson, F.C.; Da Guarda, S.N.F.; da Silva, L.P.; Damratoski, B.E.; Danos, Z.; Dantas, M.T.D.C.; Darroch, P.; Datoo, M.S.; Datta, C.; Davids, M.; Davies, S.L.; Davies, H.; Davis, E.; Davis, J.; Davis, J.; De Nobrega, M.M.D.; De Oliveira Kalid, L.M.; Dearlove, D.; Demissie, T.; Desai, A.; Di Marco, S.; Di Maso, C.; Dinelli, M.I.S.; Dinesh, T.; Docksey, C.; Dold, C.; Dong, T.; Donnellan, F.R.; Dos Santos, T.; dos Santos, T.G.; Dos Santos, E.P.; Douglas, N.; Downing, C.; Drake, J.; Drake-Brockman, R.; Driver, K.; Drury, R.; Dunachie, S.J.; Durham, B.S.; Dutra, L.; Easom, N.J.W.; van Eck, S.; Edwards, M.; Edwards, N.J.; El Muhanna, O.M.; Elias, S.C.; Elmore, M.; English, M.; Esmail, A.; Essack, Y.M.; Farmer, E.; Farooq, M.; Farrar, M.; Farrugia, L.; Faulkner, B.; Fedo-syuk, S.; Felle, S.; Feng, S.; Ferreira Da Silva, C.; Field, S.; Fisher, R.; Flaxman, A.; Fletcher, J.; Fofie, H.; Fok, H.; Ford, K.J.; Fowler, J.; Fraiman, P.H.A.; Francis, E.; Franco, M.M.; Frater, J.; Freire, M.S.M.; Fry, S.H.; Fudge, S.; Furze, J.; Fuskova, M.; Galian-Rubio, P.; Gali-za, E.; Garlant, H.; Gavrila, M.; Geddes, A.; Gibbons, K.A.; Gilbride, C.; Gill, H.; Glynn, S.; Godwin, K.; Gokani, K.; Goldoni, U.C.; Gon-calves, M.; Gonzalez, I.G.S.; Goodwin, J.; Goondiwala, A.; Gordon-Quayle, K.; Gorini, G.; Grab, J.; Gracie, L.; Greenland, M.; Green-wood, N.; Greffrath, J.; Groenewald, M.M.; Grossi, L.; Gupta, G.; Hackett, M.; Hallis, B.; Hamaluba, M.; Hamilton, E.; Hamlyn, J.; Ham-mersley, D.; Hanrath, A.T.; Hanumunthadu, B.; Harris, S.A.; Harris, C.; Harris, T.; Harrison, T.D.; Harrison, D.; Hart, T.C.; Hartnell, B.; Hassan, S.; Haughney, J.; Hawkins, S.; Hay, J.; Head, I.; Henry, J.; Hermosin Herrera, M.; Hettle, D.B.; Hill, J.; Hodges, G.; Horne, E.; Hou, M.M.; Houlihan, C.; Howe, E.; Howell, N.; Humphreys, J.; Humphries, H.E.; Hurley, K.; Huson, C.; Hyder-Wright, A.; Hyams, C.; Ikram, S.; Ishwarbhai, A.; Ivan, M.; Iveson, P.; Iyer, V.; Jackson, F.; De Jager, J.; Jaumdally, S.; Jeffers, H.; Jesudason, N.; Jones, B.; Jones, K.; Jones, E.; Jones, C.; Jorge, M.R.; Jose, A.; Joshi, A.; Júnior, E.A.M.S.; Kadziola, J.; Kailath, R.; Kana, F.; Karampatsas, K.; Kasanyinga, M.; Keen, J.; Kelly, E.J.; Kelly, D.M.; Kelly, D.; Kelly, S.; Kerr, D.; Kfouri, R.Á.; Khan, L.; Khozoee, B.; Kidd, S.; Killen, A.; Kinch, J.; Kinch, P.; King, L.D.W.; King, T.B.; Kingham, L.; Klenerman, P.; Knapper, F.; Knight, J.C.; Knott, D.; Koleva, S.; Lang, M.; Lang, G.; Larkworthy, C.W.; Larwood, J.P.J.; Law, R.; Lazarus, E.M.; Leach, A.; Lees, E.A.; Lemm, N-M.; Lessa, A.; Leung, S.; Li, Y.; Lias, A.M.; Liatsikos, K.; Linder, A.; Lipworth, S.; Liu, S.; Liu, X.; Lloyd, A.; Lloyd, S.; Loew, L.; Lopez Ramon, R.; Lora, L.; Lowthorpe, V.; Luz, K.; MacDonald, J.C.; MacGregor, G.; Madhavan, M.; Mainwaring, D.O.; Makambwa, E.; Makinson, R.; Malahleha, M.; Malamatsho, R.; Mallett, G.; Mansatta, K.; Maoko, T.; Mapetla, K.; Marchevsky, N.G.; Marinou, S.; Marlow, E.; Marques, G.N.; Mar-riott, P.; Marshall, R.P.; Marshall, J.L.; Martins, F.J.; Masenya, M.; Masilela, M.; Masters, S.K.; Mathew, M.; Matlebjane, H.; Matshidiso, K.; Mazur, O.; Mazzella, A.; McCaughan, H.; McEwan, J.; McGlashan, J.; McInroy, L.; McIntyre, Z.; McLenaghan, D.; McRobert, N.; McSwiggan, S.; Megson, C.; Mehdipour, S.; Meijs, W.; Mendonça, R.N.Á.; Mentzer, A.J.; Mirtorabi, N.; Mitton, C.; Mnyakeni, S.; Moghaddas, F.; Molapo, K.; Moloi, M.; Moore, M.; Moraes-Pinto, M.I.; Moran, M.; Morey, E.; Morgans, R.; Morris, S.; Morris, S.; Mor-ris, H.C.; Morselli, F.; Morshead, G.; Morter, R.; Mottal, L.; Moultrie, A.; Moya, N.; Mpelembue, M.; Msomi, S.; Mugodi, Y.; Mukho-padhyay, E.; Muller, J.; Munro, A.; Munro, C.; Murphy, S.; Mweu, P.; Myasaki, C.H.; Naik, G.; Naker, K.; Nastouli, E.; Nazir, A.; Ndlovu, B.; Neffa, F.; Njenga, C.; Noal, H.; Noé, A.; Novaes, G.; Nugent, F.L.; Nunes, G.; O’Brien, K.; O’Connor, D.; Odam, M.; Oelofse, S.; Oguti, B.; Olchawski, V.; Oldfield, N.J.; Oliveira, M.G.; Oliveira, C.; Oosthuizen, A.; O’Reilly, P.; Osborne, P.; Owen, D.R.J.; Owen, L.; Owens, D.; Owino, N.; Pacurar, M.; Paiva, B.V.B.; Palhares, E.M.F.; Palmer, S.; Parkinson, S.; Parracho, H.M.R.T.; Parsons, K.; Patel, D.; Patel, B.; Patel, F.; Patel, K.; Patrick-Smith, M.; Payne, R.O.; Peng, Y.; Penn, E.J.; Pennington, A.; Peralta Alvarez, M.P.; Perring, J.; Perry, N.; Perumal, R.; Petkar, S.; Philip, T.; Phillips, D.J.; Phillips, J.; Phohu, M.K.; Pickup, L.; Pieterse, S.; Piper, J.; Pipini, D.; Plank, M.; Du Plessis, J.; Pollard, S.; Pooley, J.; Pooran, A.; Poulton, I.; Powers, C.; Presa, F.B.; Price, D.A.; Price, V.; Primeira, M.; Proud, P.C. Provst-gaard-Morys, S.; Pueschel, S.; Pulido, D.; Quaid, S.; Rabara, R.; Radford, A.; Radia, K.; Rajapaska, D.; Rajeswaran, T.; Ramos, A.S.F.; Ramos Lopez, F.; Rampling, T.; Rand, J.; Ratcliffe, H.; Rawlinson, T.; Rea, D.; Rees, B.; Reiné, J.; Resuello-Dauti, M.; Reyes Pabon, E.; Ribiero, C.M.; Ricamara, M.; Richter, A.; Ritchie, N.; Ritchie, A.J.; Robbins, A.J.; Roberts, H.; Robinson, R.E.; Robinson, H.; Rocchetti, T.T.; Rocha, B.P.; Roche, S.; Rollier, C.; Rose, L.; Ross Russell, A.L.; Rossouw, L.; Royal, S.; Rudiansyah, I.; Ruiz, S.; Saich, S.; Sala, C.; Sale, J.; Salman, A.M.; Salvador, N.; Salvador, S.; Sampaio, M.; Samson, A.D.; Sanchez-Gonzalez, A.; Sanders, H.; Sanders, K.; Santos, E.; Santos Guerra, M.F.S.; Satti, I.; Saunders, J.E.; Saunders, C.; Sayed, A.; Schim van der Loeff, I.; Schmid, A.B.; Schofield, E.; Screaton, G.; Seddiqi, S.; Segireddy, R.R.; Senger, R.; Serrano, S.; Shah, R.; Shaik, I.; Sharpe, H.E.; Sharrocks, K.; Shaw, R.; Shea, A.; Shepherd, A.; Shepherd, J.G.; Shiham, F.; Sidhom, E.; Silk, S.E.; da Silva Moraes, A.C.; Silva-Junior, G.; Silva-Reyes, L.; Silveira, A.D.; Silveira, M.B.V.; Sinha, J.; Skelly, D.T.; Smith, D.C.; Smith, N.; Smith, H.E.; Smith, D.J.; Smith, C.C.; Soares, A.; Soares, T.; Solórzano, C.; Sorio, G.L.; Sorley, K.; Sosa-Rodriguez, T.; Souza, C.M.C.D.L.; Souza, B.S.D.F.; Souza, A.R.; Spencer, A.J.; Spina, F.; Spoors, L.; Stafford, L.; Stamford, I.; Starinskij, I.; Stein, R.; Steven, J.; Stockdale, L.; Stockwell, L.V.; Strickland, L.H.; Stuart, A.C.; Sturdy, A.; Sutton, N.; Szigeti, A.; Tahiri-Alaoui, A.; Tanner, R.; Taoushanis, C.; Tarr, A.W.; Taylor, K.; Taylor, U.; Taylor, I.J.; Taylor, J.; te Water Naude, R.; Themis-tocleous, Y.; Themistocleous, A.; Thomas, M.; Thomas, K.; Thomas, T.M.; Thombrayil, A.; Thompson, F.; Thompson, A.; Thompson, K.; Thompson, A.; Thomson, J.; Thornton-Jones, V.; Tighe, P.J.; Tinoco, L.A.; Tiongson, G.; Tladinyane, B.; Tomasicchio, M.; Tomic, A.; Tonks, S.; Towner, J.; Tran, N.; Tree, J.; Trillana, G.; Trinham, C.; Trivett, R.; Truby, A.; Tsheko, B.L.; Turabi, A.; Turner, R.; Turner, C.; Ulaszewska, M.; Underwood, B.R.; Varughese, R.; Verbart, D.; Verheul, M.; Vichos, I.; Vieira, T.; Waddington, C.S.; Walker, L.; Wal-lis, E.; Wand, M.; Warbick, D.; Wardell, T.; Warimwe, G.; Warren, S.C.; Watkins, B.; Watson, E.; Webb, S.; Webb-Bridges, A.; Webster, A.; Welch, J.; Wells, J.; West, A.; White, C.; White, R.; Williams, P.; Williams, R.L.; Winslow, R.; Woodyer, M.; Worth, A.T.; Wright, D.; Wroblewska, M.; Yao, A.; Zimmer, R.; Zizi, D.; Zuidewind, P. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet, 2021, 397(10269), 99-111.
[http://dx.doi.org/10.1016/S0140-6736(20)32661-1] [PMID: 33306989]
[141]
Baden, L.R.; El Sahly, H.M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; McGet-tigan, J.; Khetan, S.; Segall, N.; Solis, J.; Brosz, A.; Fierro, C.; Schwartz, H.; Neuzil, K.; Corey, L.; Gilbert, P.; Janes, H.; Follmann, D.; Ma-rovich, M.; Mascola, J.; Polakowski, L.; Ledgerwood, J.; Graham, B.S.; Bennett, H.; Pajon, R.; Knightly, C.; Leav, B.; Deng, W.; Zhou, H.; Han, S.; Ivarsson, M.; Miller, J.; Zaks, T. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med., 2021, 384(5), 403-416.
[http://dx.doi.org/10.1056/NEJMoa2035389] [PMID: 33378609]
[142]
Evidence Assessment: Sinopharm/BBIBP COVID-19 vaccine. Available from: https://cdn.who.int/media/docs/default-source/immunization/sage/2021/april/2_sage29apr2021_critical-evidence_sinopharm.pdf Accessed on 2021 Nov 10.
[143]
Zheng, B.; Peng, W.; Guo, M.; Huang, M.; Gu, Y.; Wang, T. Inhalable nanovaccine with biomimetic coronavirus structure to trigger muco-sal immunity of respiratory tract against COVID-19. Chem. Eng. J., 2021, 418, 129392.
[PMID: 33762883]
[144]
Höbel, S.; Aigner, A. Polyethylenimines for siRNA and miRNA delivery in vivo. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2013, 5(5), 484-501.
[http://dx.doi.org/10.1002/wnan.1228] [PMID: 23720168]
[145]
Ghini, F.; Rubolino, C.; Climent, M.; Simeone, I.; Marzi, M.J.; Nicassio, F. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat. Commun., 2018, 9(1), 3119.
[http://dx.doi.org/10.1038/s41467-018-05182-9] [PMID: 30087332]
[146]
Lam, J.K-W.; Liang, W.; Chan, H-K. Pulmonary delivery of therapeutic siRNA. Adv. Drug Deliv. Rev., 2012, 64(1), 1-15.
[http://dx.doi.org/10.1016/j.addr.2011.02.006] [PMID: 21356260]
[147]
Schlosser, K.; Taha, M.; Stewart, D.J. Systematic assessment of strategies for lung-targeted delivery of MicroRNA mimics. Theranostics, 2018, 8(5), 1213-1226.
[http://dx.doi.org/10.7150/thno.22912] [PMID: 29507615]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy