Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Systematic Review Article

The Role of Herbs Supplementation in Modulating Injury-induced Inflammatory Response in Skeletal Muscle: A Systematic Review

Author(s): Gusti Ayu Sinta Deasy Andani, Ronny Lesmana* and Yuni Susanti Pratiwi

Volume 12, Issue 7, 2022

Published on: 18 July, 2022

Article ID: e180322202383 Pages: 11

DOI: 10.2174/2210315512666220318111548

Price: $65

Abstract

Introduction: One of the most frequent sports-relatedinjuries, skeletal muscle injury requires special concern considering its great implication for athletes. Inflammation is a key component of muscle repair once it has been damaged. However, failure to relieve an increased inflammatory response disrupts the healing process and results in muscle atrophy. Current treatment for muscle injury has not given promising outcomes for muscle regeneration. Moreover, the administration of NSAIDs has many negative effects on muscle healing. Various approaches have been attempted in the search for the best treatment for muscle injuries, including the use of herbs.

Objective: This paper aims to review some advantages of herbal supplementation to optimize muscle healing through various mechanisms related to inflammation.

Methods: This study was conducted based on some references from PubMed and Google Scholar analyzed by applying PRISMA protocol to conclude.

Results and Discussion: We surveyed several herbs that have been previously studied for their constituents and bioactivity in modulating inflammatory response. Crocus sativus L. (Saffron) has been proven to reduce ROS production and inhibit COX activity equal to diclofenac. Curcuma longa and nutmeg also provide anti-inflammatory effects by decreasing inflammatory mediators, such as IL-1, IL-6, and TNF-α. Curcuma longa and Radix astragali have been demonstrated to inhibit NF-κB, resulting in a reduction in inflammatory response. In addition, nutmeg, tea polyphenol, and astaxanthin are also beneficial in supporting muscle regeneration and preventing muscle atrophy.

Conclusion: Some herbs are potentially beneficial to optimize the healing process of muscle injury by modulating inflammatory mediators’ expression and promoting muscle regeneration.

Keywords: Herbs, skeletal muscle injury, inflammation, antioxidant, anti-inflammatory, cytokines.

Graphical Abstract

[1]
Baoge, L.; Van Den Steen, E.; Rimbaut, S.; Philips, N.; Witvrouw, E.; Almqvist, K.F.; Vanderstraeten, G.; Vanden, B.L. Treatment of skel-etal muscle injury: A review. ISRN Orthop., 2012, 2012, 689012.
[http://dx.doi.org/10.5402/2012/689012] [PMID: 24977084]
[2]
Järvinen, T.A.; Järvinen, T.L.N.; Kääriäinen, M.; Kalimo, H.; Järvinen, M. Muscle injuries: Biology and treatment. Am. J. Sports Med., 2005, 33(5), 745-764.
[http://dx.doi.org/10.1177/0363546505274714] [PMID: 15851777]
[3]
Smith, C.; Kruger, M.J.; Smith, R.M.; Myburgh, K.H. The inflammatory response to skeletal muscle injury: Illuminating complexities. Sports Med., 2008, 38(11), 947-969.
[http://dx.doi.org/10.2165/00007256-200838110-00005] [PMID: 18937524]
[4]
Morelli, K.M.; Brown, L.B.; Warren, G.L. Effect of NSAIDs on recovery from acute skeletal muscle injury a systematic review and meta-analysis. Am. J. Sports Med., 2017, 1, 1-10.
[PMID: 28355084]
[5]
Howard, E.E.; Pasiakos, S.M.; Blesso, C.N.; Fussell, M.A.; Rodriguez, N.R. Divergent roles of inflammation in skeletal muscle recovery from injury. Front. Physiol., 2020, 11, 87.
[http://dx.doi.org/10.3389/fphys.2020.00087] [PMID: 32116792]
[6]
Ma, W.; Xu, T.; Wang, Y.; Wu, C.; Wang, L.; Yang, X.; Sun, H. The role of inflammatory factors in skeletal muscle injury. Biotarget, 2018, 2(7), 21037.
[http://dx.doi.org/10.21037/biotarget.2018.04.01]
[7]
Chazaud, B. Inflammation and skeletal muscle regeneration: Leave it to the macrophages! Trends Immunol., 2020, 41(6), 481-492.
[http://dx.doi.org/10.1016/j.it.2020.04.006] [PMID: 32362490]
[8]
Tidball, J.G. Inflammatory processes in muscle injury and repair. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2005, 288(2), 345-353.
[http://dx.doi.org/10.1152/ajpregu.00454.2004]
[9]
Liao, C.; Lin, L.; Yu, T.; Hsu, C.; Pang, J.S.; Tsai, W. Ibuprofen inhibited migration of skeletal muscle cells in association with downregu-lation of p130cas and CrkII expressions. Skelet. Muscle J., 2019, 9(1), 23.
[10]
Urso, M.L. Anti-inflammatory interventions and skeletal muscle injury: Benefit or detriment? J. Appl. Physiol., 2013, 115(6), 920-928.
[http://dx.doi.org/10.1152/japplphysiol.00036.2013] [PMID: 23539314]
[11]
Woerdenbag, H.J.; Kayser, O. Jamu: Indonesian traditional herbal medicine towards rational phytopharmacological use. Perspect Med., 2014, 4(2), 51-73.
[http://dx.doi.org/10.1016/j.hermed.2014.01.002]
[12]
Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[13]
Chaudhury, R.R.; Rafei, U.M. Traditional Medicine in Asia; World Health Organization, 1992. Available from: http://apps.who.int/iris/bitstream/handle/10665/206025/B0104.pdf;j sessionid=
[14]
Nassar, R.; Eid, S.; Chahine, R.; Chabi, B.; Bonnieu, A.; Sabban, M.E.; Najjar, F.; Hamade, A. Antioxidant effects of lebanese Crocus sa-tivus L. and its main components, crocin and safranal, on human skeletal muscle cells. Eur. J. Integr. Med., 2020, 40, 1-29.
[http://dx.doi.org/10.1016/j.eujim.2020.101250]
[15]
Cardone, L.; Castronuovo, D.; Perniola, M.; Cicco, N.; Candido, V. Saffron (Crocus sativus L.), the king of spices: An overview. Sci. Hortic. (Amsterdam), 2020, 272, 1-13.
[http://dx.doi.org/10.1016/j.scienta.2020.109560]
[16]
National Library of Medicine. Specialized information services: Compound summary crocin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5281233
[17]
National Library of Medicine. Specialized information services: Compound summary crocetin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/5281232
[18]
National Library of Medicine. Specialized information services: Compound summary safranal. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/61041
[19]
Cerdá-Bernad, D.; Valero-Cases, E.; Pastor, J.J.; Frutos, M.J. Saffron bioactives crocin, crocetin and safranal: Effect on oxidative stress and mechanisms of action. Crit. Rev. Food Sci. Nutr., 2020, 24, 1-18.
[http://dx.doi.org/10.1080/10408398.2020.1864279] [PMID: 33356506]
[20]
Tamaddonfard, E.; Farshid, A.A.; Eghdami, K.; Samadi, F.; Erfanparast, A. Comparison of the effects of crocin, safranal and diclofenac on local inflammation and inflammatory pain responses induced by carrageenan in rats. Pharmacol. Rep., 2013, 65(5), 1272-1280.
[http://dx.doi.org/10.1016/S1734-1140(13)71485-3] [PMID: 24399723]
[21]
Khan, A.; Muhamad, N.A.; Ismail, H.; Nasir, A.; Khalil, A.A.K.; Anwar, Y.; Khan, Z.; Ali, A.; Taha, R.M.; Al-Shara, B.; Latif, S.; Mirza, B.; Fadladdin, Y.A.J.; Zeid, I.M.A.; Al-Thobaiti, S.A. Potential nutraceutical benefits of in vivo grown saffron (Crocus sativus L.) as anal-gesic, anti-inflammatory, anticoagulant, and antidepressant in mice. Plants, 2020, 9(11), 1-17.
[http://dx.doi.org/10.3390/plants9111414] [PMID: 33105854]
[22]
He, Y.; Yue, Y.; Zheng, X.; Zhang, K.; Chen, S.; Du, Z. Curcumin, inflammation, and chronic diseases: How are they linked? Molecules, 2015, 20(5), 9183-9213.
[http://dx.doi.org/10.3390/molecules20059183] [PMID: 26007179]
[23]
Basham, S.A.; Waldman, H.S.; Krings, B.M.; Lamberth, J. Effect of curcumin supplementation on exercise-induced oxidative stress, in-flammation, muscle damage, and muscle soreness. J. Diet. Suppl., 2020, 17(4), 401-414.
[24]
Lazaro, D.F.; Ayuso, J.M.; Calvo, J.S.; Martinez, A.C.; Garcia, A.C.; Lazaro, C.I.F. Modulation of exercise-induced muscle damage, in-flammation, and oxidative markers by curcumin supplementation in a physically active population: A systematic review. Nutriens, 2020, 12(501), 1-20.
[25]
Kazemi-Darabadi, S.; Nayebzadeh, R.; Shahbazfar, A.A.; Kazemi-Darabadi, F.; Fathi, E. Curcumin and nanocurcumin oral supplementa-tion improve muscle healing in a rat model of surgical muscle laceration. Bull. Emerg. Trauma, 2019, 7(3), 292-299.
[http://dx.doi.org/10.29252/beat-0703013] [PMID: 31392230]
[26]
Davis, J.M.; Murphy, E.A.; Carmichael, M.D.; Zielinski, M.R.; Groschwitz, C.M.; Brown, A.S.; Gangemi, J.D.; Ghaffar, A.; Mayer, E.P. Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2007, 292(6), R2168-R2173.
[http://dx.doi.org/10.1152/ajpregu.00858.2006] [PMID: 17332159]
[27]
Muchtaridi; Subarnas, A.; Apriyantono, A.; Mustarichie, R. Identification of compounds in the essential oil of nutmeg seeds (Myristica fragrans Houtt.) that inhibit locomotor activity in mice. Int. J. Mol. Sci., 2010, 11(11), 4771-4781.
[http://dx.doi.org/10.3390/ijms11114771] [PMID: 21151471]
[28]
Zhang, C.R.; Jayashre, E.; Kumar, P.S.; Nair, M.G. Antioxidant and antiinflammatory compounds in nutmeg (Myristica fragrans) pericarp as determined by in vitro assays. Nat. Prod. Commun., 2015, 10(8), 1399-1402.
[http://dx.doi.org/10.1177/1934578X1501000822] [PMID: 26434127]
[29]
Abourashed, E.A.; El-Alfy, A.T. Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg (Myristica fragrans Houtt.). Phytochem. Rev., 2016, 15(6), 1035-1056.
[http://dx.doi.org/10.1007/s11101-016-9469-x] [PMID: 28082856]
[30]
Zhang, W.K.; Tao, S.S.; Li, T.T.; Li, Y.S.; Li, X.J.; Tang, H.B.; Cong, R.H.; Ma, F.L.; Wan, C.J. Nutmeg oil alleviates chronic inflammatory pain through inhibition of COX-2 expression and substance P release in vivo. Food Nutr. Res., 2016, 60(1), 30849.
[http://dx.doi.org/10.3402/fnr.v60.30849] [PMID: 27121041]
[31]
de Cássia da Silveira, E. Sá, R.; Andrade, L.N.; Dos Reis Barreto de Oliveira, R.; de Sousa, D.P. A review on anti-inflammatory activity of phenylpropanoids found in essential oils. Molecules, 2014, 19(2), 1459-1480.
[http://dx.doi.org/10.3390/molecules19021459] [PMID: 24473208]
[32]
Korkina, L.G. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol., 2007, 53(1), 15-25.
[PMID: 17519109]
[33]
Gao, J.; Liu, Z.J.; Chen, T.; Zhao, D.; Gao, J.; Liu, Z.J. Pharmaceutical properties of calycosin, the major bioactive isoflavonoid in the dry root extract of Radix astragali. Pharm. Biol., 2014, 52(9), 1217-1222.
[http://dx.doi.org/10.3109/13880209.2013.879188] [PMID: 24635389]
[34]
Huang, J.; Yin, L.; Dong, L.; Quan, H.; Chen, R.; Hua, S.; Ma, J.; Guo, D.; Fu, X. Quality evaluation for Radix astragali based on finger-print, indicative components selection and QAMS. Biomed. Chromatogr., 2018, 32(11), e4343.
[http://dx.doi.org/10.1002/bmc.4343] [PMID: 30003570]
[35]
Chen, W.; Zhang, Y.Y.; Wang, Z.; Luo, X.H.; Sun, W.C.; Wang, H.B. Phenolic derivatives from Radix astragali and their anti-inflammatory activities. Nat. Prod. Commun., 2014, 9(11), 1577-1580.
[http://dx.doi.org/10.1177/1934578X1400901112] [PMID: 25532285]
[36]
Adesso, S.; Russo, R.; Quaroni, A.; Autore, G.; Marzocco, S. Astragalus membranaceus extract attenuates inflammation and oxidative stress in intestinal epithelial cells via NF-κB activation and Nrf2 response. Int. J. Mol. Sci., 2018, 19(3), 1-14.
[http://dx.doi.org/10.3390/ijms19030800] [PMID: 29534459]
[37]
Hoo, R.L.; Wong, J.Y.; Qiao, C.; Xu, A.; Xu, H.; Lam, K.S. The effective fraction isolated from Radix astragali alleviates glucose intoler-ance, insulin resistance and hypertriglyceridemia in db/db diabetic mice through its anti-inflammatory activity. Nutr. Metab. (Lond.), 2010, 7(1), 67.
[http://dx.doi.org/10.1186/1743-7075-7-67] [PMID: 20735814]
[38]
Xu, Y.; Feng, L.; Wang, S.; Zhu, Q.; Zheng, Z.; Xiang, P.; He, B.; Tang, D. Calycosin protects HUVECs from advanced glycation end products-induced macrophage infiltration. J. Ethnopharmacol., 2011, 137(1), 359-370.
[http://dx.doi.org/10.1016/j.jep.2011.05.041] [PMID: 21669275]
[39]
Yan, Z.; Zhong, Y.; Duan, Y.; Chen, Q.; Li, F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim. Nutr., 2020, 6(2), 115-123.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[40]
Oz, H.S. Chronic inflammatory diseases and green tea polyphenols. Nutrients, 2017, 9(6), 1-14.
[http://dx.doi.org/10.3390/nu9060660] [PMID: 28587181]
[41]
Peluso, I.; Serafini, M. Antioxidants from black and green tea: From dietary modulation of oxidative stress to pharmacological mecha-nisms. Br. J. Pharmacol., 2017, 174(11), 1195-1208.
[http://dx.doi.org/10.1111/bph.13649] [PMID: 27747873]
[42]
Chen, B.T.; Li, W.X.; He, R.R.; Li, Y.F.; Tsoi, B.; Zhai, Y.J.; Kurihara, H. Anti-inflammatory effects of a polyphenols-rich extract from tea (Camellia sinensis) flowers in acute and chronic mice models. Oxid. Med. Cell. Longev., 2012, 2012, 537923.
[http://dx.doi.org/10.1155/2012/537923] [PMID: 22900128]
[43]
Smith, T.J. Green tea polyphenols in drug discovery - a success or failure? Expert Opin. Drug Discov., 2011, 6(6), 589-595.
[http://dx.doi.org/10.1517/17460441.2011.570750] [PMID: 21731575]
[44]
Wang, D.; Zhang, M.; Wang, T.; Cai, M.; Qian, F.; Sun, Y.; Wang, Y. Green tea polyphenols prevent lipopolysaccharide-induced inflam-matory liver injury in mice by inhibiting NLRP3 inflammasome activation. Food Funct., 2019, 10(7), 3898-3908.
[http://dx.doi.org/10.1039/C9FO00572B] [PMID: 31187838]
[45]
Dwyer, J.T.; Peterson, J. Tea and flavonoids: Where we are, where to go next. Am. J. Clin. Nutr., 2013, 98(6)(Suppl.), 1611S-1618S.
[http://dx.doi.org/10.3945/ajcn.113.059584] [PMID: 24172298]
[46]
Nakagawa, K.; Kiko, T.; Miyazawa, T.; Carpentero Burdeos, G.; Kimura, F.; Satoh, A.; Miyazawa, T. Antioxidant effect of astaxanthin on phospholipid peroxidation in human erythrocytes. Br. J. Nutr., 2011, 105(11), 1563-1571.
[http://dx.doi.org/10.1017/S0007114510005398] [PMID: 21276280]
[47]
Chang, M.X.; Xiong, F. Molecules astaxanthin and its effects in inflammatory responses and inflammation-associated diseases: Recent advances and future directions. Molecules, 2020, 25(22), 5342.
[48]
Farruggia, C.; Kim, M.B.; Bae, M.; Lee, Y.; Pham, T.X.; Yang, Y.; Han, M.J.; Park, Y.K.; Lee, J.Y. Astaxanthin exerts anti-inflammatory and antioxidant effects in macrophages in NRF2-dependent and independent manners. J. Nutr. Biochem., 2018, 62, 202-209.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.005] [PMID: 30308382]
[49]
Yang, W.; Hu, P. Skeletal muscle regeneration is modulated by inflammation. J. Orthop. Translat., 2018, 13, 25-32.
[http://dx.doi.org/10.1016/j.jot.2018.01.002] [PMID: 29662788]
[50]
Forcina, L.; Cosentino, M.; Musarò, A. Mechanisms regulating muscle regeneration: Insights into the interrelated and time-dependent phases of tissue healing. Cells, 2020, 9(5), 1-28.
[http://dx.doi.org/10.3390/cells9051297] [PMID: 32456017]
[51]
Gehlert, S.; Jacko, D. The role of the immune system in response to muscle damage. Ger. J. Sports Med., 2019, 70, 242-249.
[http://dx.doi.org/10.5960/dzsm.2019.390]
[52]
Merrick, M.A. Secondary injury after musculoskeletal trauma: A review and update. J. Athl. Train., 2002, 37(2), 209-217.
[PMID: 16558673]
[53]
Muñoz-Cánoves, P.; Scheele, C.; Pedersen, B.K.; Serrano, A.L. Interleukin-6 myokine signaling in skeletal muscle: A double-edged sword? FEBS J., 2013, 280(17), 4131-4148.
[http://dx.doi.org/10.1111/febs.12338] [PMID: 23663276]
[54]
Ono, T.; Takada, S.; Kinugawa, S.; Tsutsui, H. Curcumin ameliorates skeletal muscle atrophy in type 1 diabetic mice by inhibiting protein ubiquitination. Exp. Physiol., 2015, 100(9), 1052-1063.
[http://dx.doi.org/10.1113/EP085049] [PMID: 25998196]
[55]
Pratiwi, Y.S.; Lesmana, R.; Goenawan, H.; Sylviana, N.; Setiawan, I.; Tarawan, V.M. Nutmeg extract increases skeletal muscle mass in aging rats partly via IGF1-AKT-mTOR pathway and inhibition of autophagy. In: Evid.-Based Complement. Altern. Med; , 2018; 2018, pp. 1-9.
[56]
Nakazawa, H.; Chang, K.; Shinozaki, S.; Yasukawa, T.; Ishimaru, K.; Yasuhara, S.; Yu, Y.M.; Martyn, J.A.; Tompkins, R.G.; Shimokado, K.; Kaneki, M. iNOS as a driver of inflammation and apoptosis in mouse skeletal muscle after burn injury: Possible involvement of sirt1 S-nitrosylation-mediated acetylation of p65 NF- κ B and p53. PLoS One, 2017, 12(1), 1-18.
[http://dx.doi.org/10.1371/journal.pone.0170391]
[57]
Aoki, Y.; Ozawa, T.; Numata, O.; Takemasa, T. High-molecular-weight polyphenol-rich fraction of black tea does not prevent atrophy by unloading, but promotes soleus muscle mass recovery from atrophy in mice. Nutrients, 2019, 11(9), 1-12.
[http://dx.doi.org/10.3390/nu11092131] [PMID: 31500089]
[58]
Shibaguchi, T.; Yamaguchi, Y.; Miyaji, N.; Yoshihara, T.; Naito, H.; Goto, K.; Ohmori, D.; Yoshioka, T.; Sugiura, T. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats. Physiol. Rep., 2016, 4(15), 1-8.
[http://dx.doi.org/10.14814/phy2.12885] [PMID: 27482075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy