Review Article

抗抑郁治疗的一个新的范式转变:从双作用到多靶点定向配体

卷 29, 期 29, 2022

发表于: 17 May, 2022

页: [4896 - 4922] 页: 27

弟呕挨: 10.2174/0929867329666220317121551

价格: $65

conference banner
摘要

重度抑郁症是一种慢性、复发性和潜在致命的疾病,影响高达全球20%的人口。自单胺假说在60多年前提出以来,只取得了少数相关进展,从药理角度来看很少有病程改变。此外,由于新分子的负面疗效经常在研究中被报道,许多制药公司已经暂停了新的研究。幸运的是,相关的临床研究目前正在广泛进行,在大学、研究中心和其他公共和私人机构中产生了巨大的兴趣。抑郁症不再被认为是一种简单的疾病,而是一种多因素的疾病。新的研究领域正在出现,发生了范式转变,如单胺以外的多目标方法。在这篇综述中,我们总结了抗抑郁药物的发现,旨在阐明目前最先进的临床和临床前进展,以面对这一日益毁灭性的疾病。

关键词: 临床试验,抗抑郁药,选择性5-羟色胺再摄取抑制剂(SSRI),多巴胺受体,双靶点方法,多靶点方法。

[1]
Kim, J.; Cha, E.; Park, W.K.; Lee, H.Y.; Lim, S.M.; Kim, H.J.; Pae, A.N. Evaluation of anti-depressant effects of phthalazinone-based triple-acting small molecules against 5-HT2A, 5-HT2C, and the serotonin transporter. Bioorg. Med. Chem. Lett., 2020, 30(4), 126882.
[http://dx.doi.org/10.1016/j.bmcl.2019.126882] [PMID: 31889666]
[2]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[3]
Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet, 2012, 379(9820), 1045-1055.
[http://dx.doi.org/10.1016/S0140-6736(11)60602-8] [PMID: 22189047]
[4]
Sheet, D.F. World Health Organization; WHO: Geneva, Switzerland, 2020. Available from: Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Depression (Accessed on: 08 Feb 2022).
[5]
Miller, N.; Perich, T.; Meade, T. Depression, mania and self-reported creativity in bipolar disorder. Psychiatry Res., 2019, 276, 129-133.
[http://dx.doi.org/10.1016/j.psychres.2019.05.006] [PMID: 31078791]
[6]
Watters, A.J.; Carpenter, J.S.; Harris, A.W.F.; Korgaonkar, M.S.; Williams, L.M. Characterizing neurocognitive markers of familial risk for depression using multi-modal imaging, behavioral and self-report measures. J. Affect. Disord., 2019, 253, 336-342.
[http://dx.doi.org/10.1016/j.jad.2019.04.078] [PMID: 31078833]
[7]
McIntosh, A.M.; Sullivan, P.F.; Lewis, C.M. Uncovering the genetic architecture of major depression. Neuron, 2019, 102(1), 91-103.
[http://dx.doi.org/10.1016/j.neuron.2019.03.022] [PMID: 30946830]
[8]
Mei, L.; Gao, Y.; Chen, M.; Zhang, X.; Yue, W.; Zhang, D.; Yu, H. Overlapping common genetic architecture between major depressive disorders and anxiety and stress-related disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 113, 110450.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110450] [PMID: 34634379]
[9]
Coretti, S.; Rumi, F.; Cicchetti, A. The social cost of major depression. A systematic review. Rev. Eur. Stud., 2019, 11(1), 73.
[http://dx.doi.org/10.5539/res.v11n1p73]
[10]
Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S.; Anderson, W.; Dhansay, M.A.; Phillips, A.; Shurin, S.; Walport, M.; Ewart, W.; Savill, S.J.; Bordin, I.A.; Costello, E.J.; Durkin, M.; Fairburn, C.; Glass, R.I.; Hall, W.; Huang, Y.; Hyman, S.E.; Jamison, K.; Kaaya, S.; Kapur, S.; Kleinman, A.; Ogunniyi, A.; Otero-Ojeda, A.; Poo, M.M.; Ravindranath, V.; Sahakian, B.J.; Saxena, S.; Singer, P.A.; Stein, D.J. Grand challenges in global mental health. Nature, 2011, 475(7354), 27-30.
[http://dx.doi.org/10.1038/475027a] [PMID: 21734685]
[11]
Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Global. Health, 2020, 16(1), 57.
[http://dx.doi.org/10.1186/s12992-020-00589-w] [PMID: 32631403]
[12]
Bäuerle, A.; Teufel, M.; Musche, V.; Weismüller, B.; Kohler, H.; Hetkamp, M.; Dörrie, N.; Schweda, A.; Skoda, E.M. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: A cross-sectional study in Germany. J. Public Health, 2020, 42(4), 672-678.
[http://dx.doi.org/10.1093/pubmed/fdaa106] [PMID: 32657323]
[13]
Chew, N.W.; Lee, G.K.; Tan, B.Y.; Jing, M.; Goh, Y.; Ngiam, N.J.; Yeo, L.L.; Ahmad, A.; Ahmed, K.F.; Napolean, S.G.; Sharma, A.K.; Komalkumar, R.N.; Meenakshi, P.V.; Shah, K.; Patel, B.; Chan, B.P.; Sunny, S.; Chandra, B.; Ong, J.J.; Paliwal, P.R.; Wong, L.Y.H.; Sagayanathan, R.; Chen, J.T.; Ying Ng, A.Y.; Teoh, H.L.; Tsivgoulis, G.; Ho, C.S.; Ho, R.C.; Sharma, V.K. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav. Immun., 2020, 88, 559-565.
[http://dx.doi.org/10.1016/j.bbi.2020.04.049] [PMID: 32330593]
[14]
Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; McIntyre, R.S. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord., 2020, 277, 55-64.
[http://dx.doi.org/10.1016/j.jad.2020.08.001] [PMID: 32799105]
[15]
Cullen, W.; Gulati, G.; Kelly, B.D. Mental health in the COVID-19 pandemic. QJM, 2020, 113(5), 311-312.
[http://dx.doi.org/10.1093/qjmed/hcaa110] [PMID: 32227218]
[16]
Oderda, L.H.; Young, J.R.; Asche, C.V.; Pepper, G.A. Psychotropic-related hip fractures: Meta-analysis of first-generation and second-generation antidepressant and antipsychotic drugs. Ann. Pharmacother., 2012, 46(7-8), 917-928.
[http://dx.doi.org/10.1345/aph.1Q589] [PMID: 22811347]
[17]
Tomlinson, A.; Efthimiou, O.; Boaden, K.; New, E.; Mather, S.; Salanti, G.; Imai, H.; Ogawa, Y.; Tajika, A.; Kishimoto, S.; Kikuchi, S.; Chevance, A.; Furukawa, T.A.; Cipriani, A. Side effect profile and comparative tolerability of 21 antidepressants in the acute treatment of major depression in adults: Protocol for a network meta-analysis. Evid. Based Ment. Health, 2019, 22(2), 61-66.
[http://dx.doi.org/10.1136/ebmental-2019-300087] [PMID: 30996028]
[18]
Furukawa, T.A.; Salanti, G.; Atkinson, L.Z.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Chaimani, A.; Ogawa, Y.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Suganuma, A.; Watanabe, N.; Stockton, S.; Geddes, J.R.; Cipriani, A. Comparative efficacy and acceptability of first-generation and second-generation antidepressants in the acute treatment of major depression: Protocol for a network meta-analysis. BMJ Open, 2016, 6(7), e010919.
[http://dx.doi.org/10.1136/bmjopen-2015-010919] [PMID: 27401359]
[19]
Rief, W.; Nestoriuc, Y.; von Lilienfeld-Toal, A.; Dogan, I.; Schreiber, F.; Hofmann, S.G.; Barsky, A.J.; Avorn, J. Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials: A systematic review and meta-analysis. Drug Saf., 2009, 32(11), 1041-1056.
[http://dx.doi.org/10.2165/11316580-000000000-00000] [PMID: 19810776]
[20]
Ferguson, J.M. SSRI antidepressant medications: Adverse effects and tolerability. Prim. Care Companion J. Clin. Psychiatry, 2001, 3(1), 22-27.
[http://dx.doi.org/10.4088/PCC.v03n0105] [PMID: 15014625]
[21]
Rudorfer, M.V.; Potter, W.Z. Antidepressants. A comparative review of the clinical pharmacology and therapeutic use of the ‘newer’ versus the ‘older’ drugs. Drugs, 1989, 37(5), 713-738.
[http://dx.doi.org/10.2165/00003495-198937050-00006] [PMID: 2663417]
[22]
Blackwell, B. Adverse effects of antidepressant drugs. Part 1: Monoamine oxidase inhibitors and tricyclics. Drugs, 1981, 21(3), 201-219.
[http://dx.doi.org/10.2165/00003495-198121030-00002] [PMID: 6114849]
[23]
Wang, S.; Chen, Y.; Zhao, S.; Xu, X.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and biological evaluation of a series of benzoxazole/benzothiazole-containing 2,3-dihydrobenzo[b][1,4]dioxine derivatives as potential antidepressants. Bioorg. Med. Chem. Lett., 2014, 24(7), 1766-1770.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.031] [PMID: 24618300]
[24]
Richelson, E.; Pfenning, M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. Eur. J. Pharmacol., 1984, 104(3-4), 277-286.
[http://dx.doi.org/10.1016/0014-2999(84)90403-5] [PMID: 6499924]
[25]
Hyttel, J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int. Clin. Psychopharmacol., 1994, 9(Suppl. 1), 19-26.
[http://dx.doi.org/10.1097/00004850-199403001-00004] [PMID: 8021435]
[26]
Skolnick, P. Antidepressants: New Pharmacological Strategies; Springer Science & Business Media, 1997.
[http://dx.doi.org/10.1385/0896034690]
[27]
Spinks, D.; Spinks, G. Serotonin reuptake inhibition: An update on current research strategies. Curr. Med. Chem., 2002, 9(8), 799-810.
[http://dx.doi.org/10.2174/0929867024606795] [PMID: 11966445]
[28]
Connolly, K.R.; Thase, M.E. Emerging drugs for major depressive disorder. Expert Opin. Emerg. Drugs, 2012, 17(1), 105-126.
[http://dx.doi.org/10.1517/14728214.2012.660146] [PMID: 22339643]
[29]
Clevenger, S.S.; Malhotra, D.; Dang, J.; Vanle, B.; IsHak, W.W. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther. Adv. Psychopharmacol., 2018, 8(1), 49-58.
[http://dx.doi.org/10.1177/2045125317737264] [PMID: 29344343]
[30]
Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA, 2010, 303(1), 47-53.
[http://dx.doi.org/10.1001/jama.2009.1943] [PMID: 20051569]
[31]
Landén, M.; Högberg, P.; Thase, M.E. Incidence of sexual side effects in refractory depression during treatment with citalopram or paroxetine. J. Clin. Psychiatry, 2005, 66(1), 100-106.
[http://dx.doi.org/10.4088/JCP.v66n0114] [PMID: 15669895]
[32]
Quilichini, J.B.; Revet, A.; Garcia, P.; Bouquié, R.; Hamard, J.; Yrondi, A.; Montastruc, F. Comparative effects of 15 antidepressants on the risk of withdrawal syndrome: A real-world study using the WHO pharmacovigilance database. J. Affect. Disord., 2022, 297, 189-193.
[http://dx.doi.org/10.1016/j.jad.2021.10.041] [PMID: 34699855]
[33]
Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; Cornett, E.M.; Kaye, A.M. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol. Int., 2021, 13(3), 387-401.
[http://dx.doi.org/10.3390/neurolint13030038] [PMID: 34449705]
[34]
Humble, M. Noradrenaline and serotonin reuptake inhibition as clinical principles: A review of antidepressant efficacy. Acta Psychiatr. Scand. Suppl., 2000, 402(s402), 28-36.
[http://dx.doi.org/10.1034/j.1600-0447.2000.02605.x] [PMID: 10901156]
[35]
Protti, M.; Mandrioli, R.; Marasca, C.; Cavalli, A.; Serretti, A.; Mercolini, L. New-generation, non-SSRI antidepressants: Drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med. Res. Rev., 2020, 40(5), 1794-1832.
[http://dx.doi.org/10.1002/med.21671] [PMID: 32285503]
[36]
Machado-Vieira, R.; Salvadore, G.; Luckenbaugh, D.A.; Manji, H.K.; Zarate, C.A., Jr Rapid onset of antidepressant action: A new paradigm in the research and treatment of major depressive disorder. J. Clin. Psychiatry, 2008, 69(6), 946-958.
[http://dx.doi.org/10.4088/JCP.v69n0610] [PMID: 18435563]
[37]
Matrisciano, F.; Panaccione, I.; Zusso, M.; Giusti, P.; Tatarelli, R.; Iacovelli, L.; Mathé, A.A.; Gruber, S.H.; Nicoletti, F.; Girardi, P. Group-II metabotropic glutamate receptor ligands as adjunctive drugs in the treatment of depression: A new strategy to shorten the latency of antidepressant medication? Mol. Psychiatry, 2007, 12(8), 704-706.
[http://dx.doi.org/10.1038/sj.mp.4002005] [PMID: 17653204]
[38]
Stahl, S.M. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect. Disord., 1998, 51(3), 215-235.
[http://dx.doi.org/10.1016/S0165-0327(98)00221-3] [PMID: 10333979]
[39]
Racagni, G.; Popoli, M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin. Neurosci., 2008, 10(4), 385-400.
[http://dx.doi.org/10.31887/DCNS.2008.10.4/gracagni] [PMID: 19170396]
[40]
Malberg, J.E.; Blendy, J.A. Antidepressant action: To the nucleus and beyond. Trends Pharmacol. Sci., 2005, 26(12), 631-638.
[http://dx.doi.org/10.1016/j.tips.2005.10.005] [PMID: 16246434]
[41]
Ward, M.P.; Irazoqui, P.P. Evolving refractory major depressive disorder diagnostic and treatment paradigms: Toward closed-loop therapeutics. Front. Neuroeng., 2010, 3, 7.
[http://dx.doi.org/10.3389/fneng.2010.00007] [PMID: 20631824]
[42]
Visentin, A.P.; Colombo, R.; Scotton, E.; Fracasso, D.S.; da Rosa, A.R.; Branco, C.S.; Salvador, M. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxid. Med. Cell. Longev., 2020, 2020, 2972968.
[http://dx.doi.org/10.1155/2020/2972968] [PMID: 32351669]
[43]
Ribaudo, G.; Bortoli, M.; Pavan, C.; Zagotto, G.; Orian, L. Antioxidant potential of psychotropic drugs: From clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants, 2020, 9(8), 9.
[http://dx.doi.org/10.3390/antiox9080714] [PMID: 32781750]
[44]
Goetzl, E.J.; Wolkowitz, O.M.; Srihari, V.H.; Reus, V.I.; Goetzl, L.; Kapogiannis, D.; Heninger, G.R.; Mellon, S.H. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol. Psychiatry, 2021, 2021, 1-8.
[http://dx.doi.org/10.1038/s41380-021-01268-x] [PMID: 34471251]
[45]
Kornhuber, J.; Gulbins, E. New molecular targets for antidepressant drugs. Pharmaceuticals, 2021, 14(9), 14.
[http://dx.doi.org/10.3390/ph14090894] [PMID: 34577594]
[46]
Caruso, G.; Benatti, C.; Blom, J.M.; Caraci, F.; Tascedda, F. The many faces of mitochondrial dysfunction in depression: From pathology to treatment. Front. Pharmacol., 2019, 10, 995.
[http://dx.doi.org/10.3389/fphar.2019.00995] [PMID: 31551791]
[47]
Scaini, G.; Mason, B.L.; Diaz, A.P.; Jha, M.K.; Soares, J.C.; Trivedi, M.H.; Quevedo, J. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol. Psychiatry, 2022, 27(2), 1095-1102.
[http://dx.doi.org/10.1038/s41380-021-01312-w] [PMID: 34650203]
[48]
Tang, M.; Liu, T.; Jiang, P.; Dang, R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol. Res., 2021, 168, 105586.
[http://dx.doi.org/10.1016/j.phrs.2021.105586] [PMID: 33812005]
[49]
Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today, 2020, 25(7), 1270-1276.
[http://dx.doi.org/10.1016/j.drudis.2020.05.001] [PMID: 32404275]
[50]
Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 309-321.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.036] [PMID: 28669580]
[51]
Liu, S.; Zha, C.; Nacro, K.; Hu, M.; Cui, W.; Yang, Y-L.; Bhatt, U.; Sambandam, A.; Isherwood, M.; Yet, L.; Herr, M.T.; Ebeltoft, S.; Hassler, C.; Fleming, L.; Pechulis, A.D.; Payen-Fornicola, A.; Holman, N.; Milanowski, D.; Cotterill, I.; Mozhaev, V.; Khmelnitsky, Y.; Guzzo, P.R.; Sargent, B.J.; Molino, B.F.; Olson, R.; King, D.; Lelas, S.; Li, Y-W.; Johnson, K.; Molski, T.; Orie, A.; Ng, A.; Haskell, R.; Clarke, W.; Bertekap, R.; O’Connell, J.; Lodge, N.; Sinz, M.; Adams, S.; Zaczek, R.; Macor, J.E. Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors. ACS Med. Chem. Lett., 2014, 5(7), 760-765.
[http://dx.doi.org/10.1021/ml500053b] [PMID: 25050161]
[52]
Maubach, K.A.; Rupniak, N.M.; Kramer, M.S.; Hill, R.G. Novel strategies for pharmacotherapy of depression. Curr. Opin. Chem. Biol., 1999, 3(4), 481-488.
[http://dx.doi.org/10.1016/S1367-5931(99)80070-2] [PMID: 10419849]
[53]
Intagliata, S.; Modica, M.N.; Pittalà, V.; Salerno, L.; Siracusa, M.A.; Cagnotto, A.; Salmona, M.; Kurczab, R.; Romeo, G. New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: Synthesis, structure-activity relationships, and molecular modeling studies. Bioorg. Med. Chem., 2017, 25(3), 1250-1259.
[http://dx.doi.org/10.1016/j.bmc.2016.12.039] [PMID: 28063784]
[54]
Gu, Z.S.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2017, 27(24), 5420-5423.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.007] [PMID: 29138029]
[55]
Shaw, A.M.; Boules, M.; Zhang, Y.; Williams, K.; Robinson, J.; Carlier, P.R.; Richelson, E. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur. J. Pharmacol., 2007, 555(1), 30-36.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.004] [PMID: 17109850]
[56]
Ruhé, H.G.; Mason, N.S.; Schene, A.H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Mol. Psychiatry, 2007, 12(4), 331-359.
[http://dx.doi.org/10.1038/sj.mp.4001949] [PMID: 17389902]
[57]
Guiard, B.P.; El Mansari, M.; Blier, P. Prospect of a dopamine contribution in the next generation of antidepressant drugs: The triple reuptake inhibitors. Curr. Drug Targets, 2009, 10(11), 1069-1084.
[http://dx.doi.org/10.2174/138945009789735156] [PMID: 19702555]
[58]
Prins, J.; Olivier, B.; Korte, S.M. Triple reuptake inhibitors for treating subtypes of major depressive disorder: The monoamine hypothesis revisited. Expert Opin. Investig. Drugs, 2011, 20(8), 1107-1130.
[http://dx.doi.org/10.1517/13543784.2011.594039] [PMID: 21682663]
[59]
Jin, Z.L.; Gao, N.; Li, X.R.; Tang, Y.; Xiong, J.; Chen, H.X.; Xue, R.; Li, Y.F. The antidepressant-like pharmacological profile of Yuanzhi-1, a novel serotonin, norepinephrine and dopamine reuptake inhibitor. Eur. Neuropsychopharmacol., 2015, 25(4), 544-556.
[http://dx.doi.org/10.1016/j.euroneuro.2015.01.005] [PMID: 25638027]
[60]
Jiang, J.L.; El Mansari, M.; Blier, P. Triple reuptake inhibition of serotonin, norepinephrine, and dopamine increases the tonic activation of α2-adrenoceptors in the rat hippocampus and dopamine levels in the nucleus accumbens. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 103, 109987.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109987] [PMID: 32474007]
[61]
Millan, M.J. On ‘polypharmacy’ and multi-target agents, complementary strategies for improving the treatment of depression: A comparative appraisal. Int. J. Neuropsychopharmacol., 2014, 17(7), 1009-1037.
[http://dx.doi.org/10.1017/S1461145712001496] [PMID: 23719026]
[62]
Millan, M.J. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: Novel concepts, new drugs. Neurotherapeutics, 2009, 6(1), 53-77.
[http://dx.doi.org/10.1016/j.nurt.2008.10.039] [PMID: 19110199]
[63]
Gu, Z.S.; Zhou, A.N.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Eur. J. Med. Chem., 2018, 144, 701-715.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.063] [PMID: 29291438]
[64]
Cerda-Cavieres, C.; Quiroz, G.; Iturriaga-Vásquez, P.; Rodríguez-Lavado, J.; Alarcón-Espósito, J.; Saitz, C.; Pessoa-Mahana, C.D.; Chung, H.; Araya-Maturana, R.; Mella-Raipán, J.; Cabezas, D.; Ojeda-Gómez, C.; Reyes-Parada, M.; Pessoa-Mahana, H. Synthesis, docking, 3-D-Qsar, and biological assays of novel indole derivatives targeting serotonin transporter, dopamine D2 receptor, and Mao-A enzyme: In the pursuit for potential multitarget directed ligands. Molecules, 2020, 25(20), 4614.
[http://dx.doi.org/10.3390/molecules25204614] [PMID: 33050524]
[65]
Wróbel, M.Z.; Chodkowski, A.; Herold, F.; Marciniak, M.; Dawidowski, M.; Siwek, A.; Starowicz, G.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Belka, M.; Bączek, T.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur. J. Med. Chem., 2019, 183, 111736.
[http://dx.doi.org/10.1016/j.ejmech.2019.111736] [PMID: 31586817]
[66]
Bawa, P.; Pradeep, P.; Kumar, P.; Choonara, Y.E.; Modi, G.; Pillay, V. Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today, 2016, 21(12), 1886-1914.
[http://dx.doi.org/10.1016/j.drudis.2016.08.001] [PMID: 27506871]
[67]
Liu, W.; Wang, H.; Li, X.; Xu, Y.; Zhang, J.; Wang, W.; Gong, Q.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg. Med. Chem., 2018, 26(12), 3117-3125.
[http://dx.doi.org/10.1016/j.bmc.2018.04.037] [PMID: 29729987]
[68]
Millan, M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther., 2006, 110(2), 135-370.
[http://dx.doi.org/10.1016/j.pharmthera.2005.11.006] [PMID: 16522330]
[69]
Ma, H.; Huang, B.; Zhang, Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov. Today, 2020, 25(9), 1682-1692.
[http://dx.doi.org/10.1016/j.drudis.2020.07.004] [PMID: 32652312]
[70]
Alarcón-Espósito, J.; Mallea, M.; Rodríguez-Lavado, J. From hybrids to new scaffolds: The latest medicinal chemistry goals in multi-target directed ligands for Alzheimer’s Disease. Curr. Neuropharmacol., 2020, 19(6), 832-867.
[PMID: 32928087]
[71]
Bansode, S.B.; Jana, A.K.; Batkulwar, K.B.; Warkad, S.D.; Joshi, R.S.; Sengupta, N.; Kulkarni, M.J. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer’s disease. PLoS One, 2014, 9(8), e105196.
[http://dx.doi.org/10.1371/journal.pone.0105196] [PMID: 25141174]
[72]
Bolea, I.; Gella, A.; Unzeta, M. Propargylamine-derived multitarget-directed ligands: Fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. (Vienna), 2013, 120(6), 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
[73]
Weinreb, O.; Amit, T.; Riederer, P.; Youdim, M.B.H.; Mandel, S.A. Neuroprotective profile of the multitarget drug rasagiline in Parkinson’s disease. Int. Rev. Neurobiol., 2011, 100, 127-149.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00007-8] [PMID: 21971006]
[74]
Dalpiaz, A.; Cacciari, B.; Vicentini, C.B.; Bortolotti, F.; Spalluto, G.; Federico, S.; Pavan, B.; Vincenzi, F.; Borea, P.A.; Varani, K. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach. Mol. Pharm., 2012, 9(3), 591-604.
[http://dx.doi.org/10.1021/mp200489d] [PMID: 22292533]
[75]
Youdim, M.B.H.; Kupershmidt, L.; Amit, T.; Weinreb, O. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(Suppl. 1), S132-S136.
[http://dx.doi.org/10.1016/S1353-8020(13)70032-4] [PMID: 24262165]
[76]
Cheong, S.L.; Federico, S.; Spalluto, G.; Klotz, K.N.; Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: Transition from single-target to multitarget therapy. Drug Discov. Today, 2019, 24(9), 1769-1783.
[http://dx.doi.org/10.1016/j.drudis.2019.05.003] [PMID: 31102728]
[77]
Guerrero, M.; Urbano, M.; Kim, E.K.; Gamo, A.M.; Riley, S.; Abgaryan, L.; Leaf, N.; Van Orden, L.J.; Brown, S.J.; Xie, J.Y.; Porreca, F.; Cameron, M.D.; Rosen, H.; Roberts, E. Design and synthesis of a novel and selective Kappa Opioid Receptor (KOR) antagonist (BTRX-335140). J. Med. Chem., 2019, 62(4), 1761-1780.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01679] [PMID: 30707578]
[78]
Chen, H.X.; Jin, Z.L.; Zhang, L.M.; Xue, R.; Xu, X.D.; Zhao, N.; Qiu, Z.K.; Wang, X.W.; Zhang, Y.Z.; Yang, R.F.; Li, Y.F. Antidepressant-like activity of YL-0919: A novel combined selective serotonin reuptake inhibitor and 5-HT1A receptor agonist. PLoS One, 2013, 8(12), e83271.
[http://dx.doi.org/10.1371/journal.pone.0083271] [PMID: 24367588]
[79]
Chen, X.F.; Jin, Z.L.; Gong, Y.; Zhao, N.; Wang, X.Y.; Ran, Y.H.; Zhang, Y.Z.; Zhang, L.M.; Li, Y.F. 5-HT6 receptor agonist and memory-enhancing properties of hypidone hydrochloride (YL-0919), a novel 5-HT1A receptor partial agonist and SSRI. Neuropharmacology, 2018, 138, 1-9.
[http://dx.doi.org/10.1016/j.neuropharm.2018.05.027] [PMID: 29805118]
[80]
Recourt, K.; van der Aart, J.; Jacobs, G.; de Kam, M.; Drevets, W.; van Nueten, L.; Kanhai, K.; Siebenga, P.; Zuiker, R.; Ravenstijn, P.; Timmers, M.; van Gerven, J.; de Boer, P. Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial. J. Psychopharmacol., 2020, 34(9), 1030-1042.
[http://dx.doi.org/10.1177/0269881120914206] [PMID: 32248747]
[81]
Ribeiro, D.E.; Roncalho, A.L.; Glaser, T.; Ulrich, H.; Wegener, G.; Joca, S. P2X7 receptor signaling in stress and depression. Int. J. Mol. Sci., 2019, 20(11), 2778.
[http://dx.doi.org/10.3390/ijms20112778] [PMID: 31174279]
[82]
Nageye, F.; Cortese, S. Beyond stimulants: A systematic review of randomised controlled trials assessing novel compounds for ADHD. Expert Rev. Neurother., 2019, 19(7), 707-717.
[http://dx.doi.org/10.1080/14737175.2019.1628640] [PMID: 31167583]
[83]
Bianchi, M.; Baulieu, E.E. 3β-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc. Natl. Acad. Sci., 2012, 109(5), 1713-1718.
[http://dx.doi.org/10.1073/pnas.1121485109] [PMID: 22307636]
[84]
Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 2012, 53(3), 412-424.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03365.x] [PMID: 22220513]
[85]
Gorman, A.L.; Elliott, K.J.; Inturrisi, C.E. The d- and l-isomers of methadone bind to the non-competitive site on the N-Methyl-D-Aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci. Lett., 1997, 223(1), 5-8.
[http://dx.doi.org/10.1016/S0304-3940(97)13391-2] [PMID: 9058409]
[86]
Hayley, S.; Litteljohn, D. Neuroplasticity and the next wave of antidepressant strategies. Front. Cell. Neurosci., 2013, 7, 218.
[http://dx.doi.org/10.3389/fncel.2013.00218] [PMID: 24312008]
[87]
Recourt, K.; de Boer, P.; Zuiker, R.; Luthringer, R.; Kent, J.; van der Ark, P.; Van Hove, I.; van Gerven, J.; Jacobs, G.; van Nueten, L.; Drevets, W. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry, 2019, 9(1), 216.
[http://dx.doi.org/10.1038/s41398-019-0553-z] [PMID: 31481683]
[88]
Zhang, R.; Li, X.; Shi, Y.; Shao, Y.; Sun, K.; Wang, A.; Sun, F.; Liu, W.; Wang, D.; Jin, J.; Li, Y. The effects of LPM570065, a novel triple reuptake inhibitor, on extracellular serotonin, dopamine and norepinephrine levels in rats. PLoS One, 2014, 9(3), e91775.
[http://dx.doi.org/10.1371/journal.pone.0091775] [PMID: 24614602]
[89]
Maeda, K.; Sugino, H.; Akazawa, H.; Amada, N.; Shimada, J.; Futamura, T.; Yamashita, H.; Ito, N.; McQuade, R.D.; Mørk, A.; Pehrson, A.L.; Hentzer, M.; Nielsen, V.; Bundgaard, C.; Arnt, J.; Stensbøl, T.B.; Kikuchi, T.; Brexpiprazole, I. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J. Pharmacol. Exp. Ther., 2014, 350(3), 589-604.
[http://dx.doi.org/10.1124/jpet.114.213793] [PMID: 24947465]
[90]
Fava, M.; Okame, T.; Matsushima, Y.; Perry, P.; Weiller, E.; Baker, R.A. Switching from inadequate adjunctive or combination treatment options to brexpiprazole adjunctive to antidepressant: An open-label study on the effects on depressive symptoms and cognitive and physical functioning. Int. J. Neuropsychopharmacol., 2017, 20(1), 22-30.
[PMID: 27784751]
[91]
Hobart, M.; Zhang, P.; Weiss, C.; Meehan, S.R.; Eriksson, H. Adjunctive brexpiprazole and functioning in major depressive disorder: A pooled analysis of six randomized studies using the sheehan disability scale. Int. J. Neuropsychopharmacol., 2019, 22(3), 173-179.
[PMID: 30508090]
[92]
Patel, R.S.; Bhela, J.; Tahir, M.; Pisati, S.R.; Hossain, S. Pimavanserin in Parkinson’s Disease-induced psychosis: A literature review. Cureus, 2019, 11(7), e5257.
[http://dx.doi.org/10.7759/cureus.5257] [PMID: 31572642]
[93]
Stahl, S.M. Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr., 2016, 21(4), 271-275.
[http://dx.doi.org/10.1017/S1092852916000407] [PMID: 27503570]
[94]
Blanco, M.J.; La, D.; Coughlin, Q.; Newman, C.A.; Griffin, A.M.; Harrison, B.L.; Salituro, F.G. Breakthroughs in neuroactive steroid drug discovery. Bioorg. Med. Chem. Lett., 2018, 28(2), 61-70.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.043] [PMID: 29223589]
[95]
Saijo, T.; Maeda, J.; Okauchi, T.; Maeda, J.; Morio, Y.; Kuwahara, Y.; Suzuki, M.; Goto, N.; Fukumura, T.; Suhara, T.; Higuchi, M. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain. PLoS One, 2012, 7(8), e42589.
[http://dx.doi.org/10.1371/journal.pone.0042589] [PMID: 22880045]
[96]
Griebel, G.; Holsboer, F. Neuropeptide receptor ligands as drugs for psychiatric diseases: The end of the beginning? Nat. Rev. Drug Discov., 2012, 11(6), 462-478.
[http://dx.doi.org/10.1038/nrd3702] [PMID: 22596253]
[97]
Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A.S. “Broad spectrum” antidepressants: Is more better for the treatment of depression? Life Sci., 2003, 73(25), 3175-3179.
[http://dx.doi.org/10.1016/j.lfs.2003.06.007] [PMID: 14561522]
[98]
Moskal, J.R.; Burgdorf, J.S.; Stanton, P.K.; Kroes, R.A.; Disterhoft, J.F.; Burch, R.M.; Khan, M.A. The development of rapastinel (Formerly GLYX-13); A rapid acting and long lasting antidepressant. Curr. Neuropharmacol., 2017, 15(1), 47-56.
[http://dx.doi.org/10.2174/1570159X14666160321122703] [PMID: 26997507]
[99]
Goettel, M.; Höfler, J.; Fuertig, R.; Sharma, V.; Göttel, M. First-in-human study of oral bi 1358894 in healthy male volunteers: A phase I study to investigate safety and tolerability. Biol. Psychiatry, 2020, 87(9), S289-S290.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.747]
[100]
Goettel, M.; Herich, L.; Wiebe, S.; Fuertig, R.; Sharma, V.; Göttel, M. Multiple rising doses of oral BI 1358894 in healthy male volunteers: A phase I study to investigate safety and tolerability. Biol. Psychiatry, 2020, 87(9), S417-S418.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.1065]
[101]
Zhang, L.M.; Wang, X.Y.; Zhao, N.; Wang, Y.L.; Hu, X.X.; Ran, Y.H.; Liu, Y.Q.; Zhang, Y.Z.; Yang, R.F.; Li, Y.F. Neurochemical and behavioural effects of hypidone hydrochloride (YL-0919): A novel combined selective 5-HT reuptake inhibitor and partial 5-HT1A agonist. Br. J. Pharmacol., 2017, 174(9), 769-780.
[http://dx.doi.org/10.1111/bph.13675] [PMID: 27882537]
[102]
Timmers, M.; Ravenstijn, P.; Xi, L.; Triana-Baltzer, G.; Furey, M.; Van Hemelryck, S.; Biewenga, J.; Ceusters, M.; Bhattacharya, A.; van den Boer, M.; van Nueten, L.; de Boer, P. Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants. J. Psychopharmacol., 2018, 32(12), 1341-1350.
[http://dx.doi.org/10.1177/0269881118800067] [PMID: 30260294]
[103]
Fogaça, M.V.; Fukumoto, K.; Franklin, T.; Liu, R.J.; Duman, C.H.; Vitolo, O.V.; Duman, R.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology, 2019, 44(13), 2230-2238.
[http://dx.doi.org/10.1038/s41386-019-0501-x] [PMID: 31454827]
[104]
Sunovion announces topline results from global phase 2 study of SEP-4199 in patients with bipolar I depression. BioSpace, 2020. Available from: http://www.biospace. com/article/releases/sunovion-announces-topline-results-from-global-phase-2-study-of-sep-4199-in-patients-with-bipolar-i-depression/
[105]
Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today, 2019, 24(2), 606-615.
[http://dx.doi.org/10.1016/j.drudis.2018.11.007] [PMID: 30447328]
[106]
Recourt, K.; de Boer, P.; Zuiker, R.; Luthringer, R.; Kent, J.; van der Ark, P.; Van Hove, I.; van Gerven, J.; Jacobs, G.; van Nueten, L.; Drevets, W. Correction to: The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry, 2019, 9(1), 240.
[http://dx.doi.org/10.1038/s41398-019-0585-4] [PMID: 31578318]
[107]
Tran, P.; Skolnick, P.; Czobor, P.; Huang, N.Y.; Bradshaw, M.; McKinney, A.; Fava, M. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res., 2012, 46(1), 64-71.
[http://dx.doi.org/10.1016/j.jpsychires.2011.09.003] [PMID: 21925682]
[108]
Iovieno, N.; Papakostas, G.I. Correlation between different levels of placebo response rate and clinical trial outcome in major depressive disorder: A meta-analysis. J. Clin. Psychiatry, 2012, 73(10), 1300-1306.
[http://dx.doi.org/10.4088/JCP.11r07485] [PMID: 23140647]
[109]
Zajecka, J.M.; Stanford, A.D.; Memisoglu, A.; Martin, W.F.; Pathak, S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: Results of a phase III clinical trial (FORWARD-3). Neuropsychiatr. Dis. Treat., 2019, 15, 795-808.
[http://dx.doi.org/10.2147/NDT.S199245] [PMID: 31040679]
[110]
Khin, N.A.; Chen, Y.F.; Yang, Y.; Yang, P.; Laughren, T.P. Exploratory analyses of efficacy data from major depressive disorder trials submitted to the US food and drug administration in support of new drug applications. J. Clin. Psychiatry, 2011, 72(4), 464-472.
[http://dx.doi.org/10.4088/JCP.10m06191] [PMID: 21527123]
[111]
Blackburn, T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect., 2019, 7(3), e00472-e00472.
[http://dx.doi.org/10.1002/prp2.472] [PMID: 31065377]
[112]
Shiovitz, T.M.; Zarrow, M.E.; Shiovitz, A.M.; Bystritsky, A.M. Failure rate and “professional subjects” in clinical trials of major depressive disorder. J Clin Psychiatry, 2011, 72(9), 1284.
[113]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, (97), e52587.
[http://dx.doi.org/10.3791/52587]
[114]
Moltzen, E.K.; Bang-Andersen, B. Serotonin reuptake inhibitors: The corner stone in treatment of depression for half a century--a medicinal chemistry survey. Curr. Top. Med. Chem., 2006, 6(17), 1801-1823.
[http://dx.doi.org/10.2174/156802606778249810] [PMID: 17017959]
[115]
Welch, W.M.; Kraska, A.R.; Sarges, R.; Koe, B.K. Nontricyclic antidepressant agents derived from cis- and trans-1-amino-4-aryltetralins. J. Med. Chem., 1984, 27(11), 1508-1515.
[http://dx.doi.org/10.1021/jm00377a021] [PMID: 6492080]
[116]
Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther., 1977, 229(2), 327-336.
[PMID: 596982]
[117]
Gu, Z.S.; Wang, W.T.; Qian, H.; Zhou, A.N.; Sun, H.B.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant effect of novel aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2019, 29(23), 126703.
[http://dx.doi.org/10.1016/j.bmcl.2019.126703] [PMID: 31627993]
[118]
Heinrich, T.; Böttcher, H.; Gericke, R.; Bartoszyk, G.D.; Anzali, S.; Seyfried, C.A.; Greiner, H.E.; Van Amsterdam, C. Synthesis and structure-activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J. Med. Chem., 2004, 47(19), 4684-4692.
[http://dx.doi.org/10.1021/jm040793q] [PMID: 15341484]
[119]
Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 1985, 85(3), 367-370.
[http://dx.doi.org/10.1007/BF00428203] [PMID: 3923523]
[120]
Partyka, A.; Kurczab, R.; Canale, V.; Satała, G.; Marciniec, K.; Pasierb, A.; Jastrzębska-Więsek, M.; Pawłowski, M.; Wesołowska, A.; Bojarski, A.J.; Zajdel, P. The impact of the halogen bonding on D2 and 5-HT1A/5-HT7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorg. Med. Chem., 2017, 25(14), 3638-3648.
[http://dx.doi.org/10.1016/j.bmc.2017.04.046] [PMID: 28529043]
[121]
Zajdel, P.; Marciniec, K.; Maślankiewicz, A.; Satała, G.; Duszyńska, B.; Bojarski, A.J.; Partyka, A.; Jastrzębska-Więsek, M.; Wróbel, D.; Wesołowska, A.; Pawłowski, M. Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor-5-HT1A/5- HT2A/5-HT7 and D2/D3/D4-agents: The synthesis and pharmacological evaluation. Bioorg. Med. Chem., 2012, 20(4), 1545-1556.
[http://dx.doi.org/10.1016/j.bmc.2011.12.039] [PMID: 22277589]
[122]
Zajdel, P.; Marciniec, K.; Maślankiewicz, A.; Grychowska, K.; Satała, G.; Duszyńska, B.; Lenda, T.; Siwek, A.; Nowak, G.; Partyka, A.; Wróbel, D.; Jastrzębska-Więsek, M.; Bojarski, A.J.; Wesołowska, A.; Pawłowski, M. Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D1/D2 receptors. Eur. J. Med. Chem., 2013, 60, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.042] [PMID: 23279866]
[123]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawlowski, M.; Wesolowska, A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[http://dx.doi.org/10.4155/fmc.13.158] [PMID: 24358948]
[124]
Staroń, J.; Warszycki, D.; Kurczab, R.; Satała, G.; Bugno, R.; Hogendorf, A.; Bojarski, A.J. Halogen bonding enhances activity in a series of dual 5-HT6/D2 ligands designed in a hybrid bioisostere generation/virtual screening protocol. RSC Advances, 2016, 6(60), 54918-54925.
[http://dx.doi.org/10.1039/C6RA08714K]
[125]
Kurczab, R.; Canale, V.; Zajdel, P.; Bojarski, A.J. An algorithm to identify target-selective ligands - A case study of 5-HT7/5-HT1A receptor selectivity. PLoS One, 2016, 11(6), e0156986.
[http://dx.doi.org/10.1371/journal.pone.0156986] [PMID: 27271158]
[126]
Handzlik, J.; Bojarski, A.J.; Satała, G.; Kubacka, M.; Sadek, B.; Ashoor, A.; Siwek, A.; Więcek, M.; Kucwaj, K.; Filipek, B.; Kieć-Kononowicz, K. SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT(7) receptor ligands among phenylpiperazine hydantoin derivatives. Eur. J. Med. Chem., 2014, 78, 324-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.065] [PMID: 24691057]
[127]
Leopoldo, M.; Lacivita, E.; Berardi, F.; Perrone, R.; Hedlund, P.B. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol. Ther., 2011, 129(2), 120-148.
[http://dx.doi.org/10.1016/j.pharmthera.2010.08.013] [PMID: 20923682]
[128]
Bojarski, A.J. Pharmacophore models for metabotropic 5-HT receptor ligands. Curr. Top. Med. Chem., 2006, 6(18), 2005-2026.
[http://dx.doi.org/10.2174/156802606778522186] [PMID: 17017971]
[129]
Lepailleur, A.; Bureau, R.; Paillet-Loilier, M.; Fabis, F.; Saettel, N.; Lemaître, S.; Dauphin, F.; Lesnard, A.; Lancelot, J.C.; Rault, S. Molecular modeling studies focused on 5-HT7 versus 5-HT1A selectivity. Discovery of novel phenylpyrrole derivatives with high affinity for 5-HT7 receptors. J. Chem. Inf. Model., 2005, 45(4), 1075-1081.
[http://dx.doi.org/10.1021/ci050045p] [PMID: 16045303]
[130]
Du, L.; Li, M. Modeling the interactions between alpha(1)-adrenergic receptors and their antagonists. Curr. Comput. Aided Drug Des., 2010, 6(3), 165-178.
[http://dx.doi.org/10.2174/157340910791760082] [PMID: 20412040]
[131]
Romeo, G.; Materia, L.; Modica, M.N.; Pittalà, V.; Salerno, L.; Siracusa, M.A.; Manetti, F.; Botta, M.; Minneman, K.P. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes. Eur. J. Med. Chem., 2011, 46(7), 2676-2690.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.054] [PMID: 21514979]
[132]
Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward alpha(1)- and alpha(2)-adrenoceptors. J. Med. Chem., 2001, 44(13), 2118-2132.
[http://dx.doi.org/10.1021/jm010821u] [PMID: 11405649]
[133]
Jankowska, A.; Satała, G.; Kołaczkowski, M.; Bucki, A.; Głuch-Lutwin, M.; Świerczek, A.; Pociecha, K.; Partyka, A.; Jastrzębska-Więsek, M.; Lubelska, A.; Latacz, G.; Gawalska, A.; Bojarski, A.J.; Wyska, E.; Chłoń-Rzepa, G. Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. Eur. J. Med. Chem., 2020, 201, 112437.
[http://dx.doi.org/10.1016/j.ejmech.2020.112437] [PMID: 32673902]
[134]
Chłoń-Rzepa, G.; Żmudzki, P.; Zajdel, P.; Bojarski, A.J.; Duszyńska, B.; Nikiforuk, A.; Tatarczyńska, E.; Pawłowski, M. 7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT(1A), 5-HT(2A), and 5-HT(7) serotonin receptor ligands. Bioorg. Med. Chem., 2007, 15(15), 5239-5250.
[http://dx.doi.org/10.1016/j.bmc.2007.05.017] [PMID: 17517514]
[135]
Zygmunt, M.; Sapa, J.; Chłoń-Rzepa, G.; Zagórska, A.; Siwek, A.; Pawłowski, M.; Nowak, G. 7-3-Chloro phenypiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione as a serotonin receptor ligands with potential antidepressant activity. Pharmacol. Rep., 2014, 66(3), 505-510.
[http://dx.doi.org/10.1016/j.pharep.2013.12.014] [PMID: 24905531]
[136]
Chłoń-Rzepa, G.; Żmudzki, P.; Satała, G.; Duszyńska, B.; Partyka, A.; Wróbel, D.; Jastrzębska-Więsek, M.; Wesołowska, A.; Bojarski, A.J.; Pawłowski, M.; Zajdel, P. New 8-aminoalkyl derivatives of purine-2,6-dione with arylalkyl, allyl or propynyl substituents in position 7, their 5-HT1A, 5-HT2A, and 5-HT7 receptor affinity and pharmacological evaluation. Pharmacol. Rep., 2013, 65(1), 15-29.
[http://dx.doi.org/10.1016/S1734-1140(13)70960-5] [PMID: 23563020]
[137]
Zagórska, A.; Bucki, A.; Kołaczkowski, M.; Siwek, A.; Głuch-Lutwin, M.; Starowicz, G.; Kazek, G.; Partyka, A.; Wesołowska, A.; Słoczyńska, K.; Pękala, E.; Pawłowski, M. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione as potential antidepressant agents. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 3), 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902] [PMID: 27353547]
[138]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: Overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[139]
Artigas, F.; Bortolozzi, A.; Celada, P. Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol, 2018, 28(4), 445-456.
[http://dx.doi.org/10.1016/j.euroneuro.2017.10.032] [PMID: 29174531]
[140]
Kishi, T.; Meltzer, H.Y.; Matsuda, Y.; Iwata, N. Azapirone 5-HT1A receptor partial agonist treatment for major depressive disorder: Systematic review and meta-analysis. Psychol. Med., 2014, 44(11), 2255-2269.
[http://dx.doi.org/10.1017/S0033291713002857] [PMID: 24262766]
[141]
Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; Luther, J.F.; Shores-Wilson, K.; Rush, A.J. STAR*D Study Team. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med., 2006, 354(12), 1243-1252.
[http://dx.doi.org/10.1056/NEJMoa052964] [PMID: 16554526]
[142]
Ślifirski, G.; Król, M.; Kleps, J.; Podsadni, P.; Belka, M.; Bączek, T.; Siwek, A.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Bojarski, A.; Kozioł, A.E.; Turło, J.; Herold, F. Synthesis of new 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT1A receptor ligands. Eur. J. Med. Chem., 2019, 180, 383-397.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.027] [PMID: 31325785]
[143]
Ślifirski, G.; Król, M.; Kleps, J.; Ulenberg, S.; Belka, M.; Bączek, T.; Siwek, A.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Bojarski, A.; Kozioł, A.E.; Turło, J.; Herold, F. Synthesis of novel pyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT1A receptor ligands. Eur. J. Med. Chem., 2019, 166, 144-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.031] [PMID: 30703658]
[144]
Rampe, D.; Brown, A.M. A history of the role of the hERG channel in cardiac risk assessment. J. Pharmacol. Toxicol. Methods, 2013, 68(1), 13-22.
[http://dx.doi.org/10.1016/j.vascn.2013.03.005] [PMID: 23538024]
[145]
Hedlund, P.B.; Sutcliffe, J.G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol. Sci., 2004, 25(9), 481-486.
[http://dx.doi.org/10.1016/j.tips.2004.07.002] [PMID: 15559250]
[146]
Naumenko, V.S.; Popova, N.K.; Lacivita, E.; Leopoldo, M.; Ponimaskin, E.G. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther., 2014, 20(7), 582-590.
[http://dx.doi.org/10.1111/cns.12247] [PMID: 24935787]
[147]
Stiedl, O.; Pappa, E.; Konradsson-Geuken, Å.; Ögren, S.O. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front. Pharmacol., 2015, 6, 162.
[http://dx.doi.org/10.3389/fphar.2015.00162] [PMID: 26300776]
[148]
Rojas, P.S.; Aguayo, F.; Neira, D.; Tejos, M.; Aliaga, E.; Muñoz, J.P.; Parra, C.S.; Fiedler, J.L. Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors. Mol. Cell. Neurosci., 2017, 85, 148-161.
[http://dx.doi.org/10.1016/j.mcn.2017.09.009] [PMID: 28974382]
[149]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[150]
Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Fröhlich, M.; Döring, F.; Wischmeyer, E.; Richter, D.W.; Neher, E.; Ponimaskin, E.G. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci., 2012, 125(Pt 10), 2486-2499.
[http://dx.doi.org/10.1242/jcs.101337] [PMID: 22357950]
[151]
Ofori, E.; Zhu, X.Y.; Etukala, J.R.; Peprah, K.; Jordan, K.R.; Adkins, A.A.; Bricker, B.A.; Kang, H.J.; Huang, X-P.; Roth, B.L.; Ablordeppey, S.Y. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands. Bioorg. Med. Chem., 2016, 24(16), 3464-3471.
[http://dx.doi.org/10.1016/j.bmc.2016.05.053] [PMID: 27312422]
[152]
Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 2003, 28(8), 1400-1411.
[http://dx.doi.org/10.1038/sj.npp.1300203] [PMID: 12784105]
[153]
Wróbel, M.Z.; Chodkowski, A.; Herold, F.; Gomółka, A.; Kleps, J.; Mazurek, A.P.; Pluciński, F.; Mazurek, A.; Nowak, G.; Siwek, A.; Stachowicz, K.; Sławińska, A.; Wolak, M.; Szewczyk, B.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1. Eur. J. Med. Chem., 2013, 63, 484-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.033] [PMID: 23524160]
[154]
Park, J.E.; Song, C.; Choi, K.; Sim, T.; Moon, B.; Roh, E.J. Synthesis and biological evaluation of novel 3,4-diaryl lactam derivatives as triple reuptake inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(20), 5515-5518.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.062] [PMID: 24012181]
[155]
Skolnick, P.; Krieter, P.; Tizzano, J.; Basile, A.; Popik, P.; Czobor, P.; Lippa, A. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev., 2006, 12(2), 123-134.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00123.x] [PMID: 16958986]
[156]
Prins, J.; Denys, D.A.; Westphal, K.G.; Korte-Bouws, G.A.; Quinton, M.S.; Schreiber, R.; Groenink, L.; Olivier, B.; Korte, S.M. The putative antidepressant DOV 216,303, a triple reuptake inhibitor, increases monoamine release in the prefrontal cortex of olfactory bulbectomized rats. Eur. J. Pharmacol., 2010, 633(1-3), 55-61.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.009] [PMID: 20153745]
[157]
Chen, Z.; Skolnick, P. Triple uptake inhibitors: Therapeutic potential in depression and beyond. Expert Opin. Investig. Drugs, 2007, 16(9), 1365-1377.
[http://dx.doi.org/10.1517/13543784.16.9.1365] [PMID: 17714023]
[158]
Liang, Y.; Shaw, A.M.; Boules, M.; Briody, S.; Robinson, J.; Oliveros, A.; Blazar, E.; Williams, K.; Zhang, Y.; Carlier, P.R.; Richelson, E. Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS). J. Pharmacol. Exp. Ther., 2008, 327(2), 573-583.
[http://dx.doi.org/10.1124/jpet.108.143610] [PMID: 18689611]
[159]
Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A.S. Antidepressant-like actions of DOV 21,947: A “triple” reuptake inhibitor. Eur. J. Pharmacol., 2003, 461(2-3), 99-104.
[http://dx.doi.org/10.1016/S0014-2999(03)01310-4] [PMID: 12586204]
[160]
Micheli, F.; Cavanni, P.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Checchia, A.; Davalli, S.; Di Fabio, R.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Minick, D.; Negri, M.; Oliosi, B.; Read, K.D.; Sartori, I.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L. 1-(Aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes: A new series of potent and selective triple reuptake inhibitors. J. Med. Chem., 2010, 53(6), 2534-2551.
[http://dx.doi.org/10.1021/jm901818u] [PMID: 20170186]
[161]
Lucas, M.C.; Weikert, R.J.; Carter, D.S.; Cai, H.Y.; Greenhouse, R.; Iyer, P.S.; Lin, C.J.; Lee, E.K.; Madera, A.M.; Moore, A.; Ozboya, K.; Schoenfeld, R.C.; Steiner, S.; Zhai, Y.; Lynch, S.M. Design, synthesis, and biological evaluation of new monoamine reuptake inhibitors with potential therapeutic utility in depression and pain. Bioorg. Med. Chem. Lett., 2010, 20(18), 5559-5566.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.020] [PMID: 20691589]
[162]
Pechulis, A.D.; Beck, J.P.; Curry, M.A.; Wolf, M.A.; Harms, A.E.; Xi, N.; Opalka, C.; Sweet, M.P.; Yang, Z.; Vellekoop, A.S.; Klos, A.M.; Crocker, P.J.; Hassler, C.; Laws, M.; Kitchen, D.B.; Smith, M.A.; Olson, R.E.; Liu, S.; Molino, B.F. 4-Phenyl tetrahydroisoquinolines as dual norepinephrine and dopamine reuptake inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(23), 7219-7222.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.050] [PMID: 23084899]
[163]
Bymaster, F.P.; Katner, J.S.; Nelson, D.L.; Hemrick-Luecke, S.K.; Threlkeld, P.G.; Heiligenstein, J.H.; Morin, S.M.; Gehlert, D.R.; Perry, K.W. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2002, 27(5), 699-711.
[http://dx.doi.org/10.1016/S0893-133X(02)00346-9] [PMID: 12431845]
[164]
Yun, J.; Han, M.; Song, C.; Cheon, S.H.; Choi, K.; Hahn, H.G. Synthesis and biological evaluation of 3-phenethylazetidine derivatives as triple reuptake inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3234-3237.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.026] [PMID: 24974340]
[165]
Jørgensen, S.; Nielsen, E.Ø.; Peters, D.; Dyhring, T. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity. J. Neurosci. Methods, 2008, 169(1), 168-176.
[http://dx.doi.org/10.1016/j.jneumeth.2007.12.004] [PMID: 18222006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy