Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

A New Paradigm Shift in Antidepressant Therapy: From Dual-action to Multitarget-directed Ligands

Author(s): Julio Rodríguez-Lavado, Jazmín Alarcón-Espósito*, Michael Mallea and Alejandro Lorente

Volume 29, Issue 29, 2022

Published on: 17 May, 2022

Page: [4896 - 4922] Pages: 27

DOI: 10.2174/0929867329666220317121551

Price: $65

conference banner
Abstract

Major Depressive Disorder is a chronic, recurring, and potentially fatal disease, affecting up to 20% of the global population. Since the monoamine hypothesis was proposed more than 60 years ago, only a few relevant advances have been made, with very little disease course changing from a pharmacological perspective. Moreover, since the negative efficacy of novel molecules is frequently reported in studies, many pharmaceutical companies have put new studies on hold. Fortunately, relevant clinical studies are currently being performed extensively, developing immense interest among universities, research centers, and other public and private institutions. Depression is no longer considered a simple disease but a multifactorial one. New research fields are emerging, occurring a paradigm shift, such as the multi-target approach beyond monoamines. In this review, we summarize antidepressant drug discovery aiming to shed some light on the current state-of-the-art clinical and preclinical advances to face this increasingly devastating disease.

Keywords: Clinical trials, antidepressants, selective serotonin reuptake inhibitors (SSRI), dopamine receptors, dual-target approach, multi-target approach.

[1]
Kim, J.; Cha, E.; Park, W.K.; Lee, H.Y.; Lim, S.M.; Kim, H.J.; Pae, A.N. Evaluation of anti-depressant effects of phthalazinone-based triple-acting small molecules against 5-HT2A, 5-HT2C, and the serotonin transporter. Bioorg. Med. Chem. Lett., 2020, 30(4), 126882.
[http://dx.doi.org/10.1016/j.bmcl.2019.126882] [PMID: 31889666]
[2]
Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major depressive disorder. Nat. Rev. Dis. Primers, 2016, 2(1), 16065.
[http://dx.doi.org/10.1038/nrdp.2016.65] [PMID: 27629598]
[3]
Kupfer, D.J.; Frank, E.; Phillips, M.L. Major depressive disorder: New clinical, neurobiological, and treatment perspectives. Lancet, 2012, 379(9820), 1045-1055.
[http://dx.doi.org/10.1016/S0140-6736(11)60602-8] [PMID: 22189047]
[4]
Sheet, D.F. World Health Organization; WHO: Geneva, Switzerland, 2020. Available from: Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Depression (Accessed on: 08 Feb 2022).
[5]
Miller, N.; Perich, T.; Meade, T. Depression, mania and self-reported creativity in bipolar disorder. Psychiatry Res., 2019, 276, 129-133.
[http://dx.doi.org/10.1016/j.psychres.2019.05.006] [PMID: 31078791]
[6]
Watters, A.J.; Carpenter, J.S.; Harris, A.W.F.; Korgaonkar, M.S.; Williams, L.M. Characterizing neurocognitive markers of familial risk for depression using multi-modal imaging, behavioral and self-report measures. J. Affect. Disord., 2019, 253, 336-342.
[http://dx.doi.org/10.1016/j.jad.2019.04.078] [PMID: 31078833]
[7]
McIntosh, A.M.; Sullivan, P.F.; Lewis, C.M. Uncovering the genetic architecture of major depression. Neuron, 2019, 102(1), 91-103.
[http://dx.doi.org/10.1016/j.neuron.2019.03.022] [PMID: 30946830]
[8]
Mei, L.; Gao, Y.; Chen, M.; Zhang, X.; Yue, W.; Zhang, D.; Yu, H. Overlapping common genetic architecture between major depressive disorders and anxiety and stress-related disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2022, 113, 110450.
[http://dx.doi.org/10.1016/j.pnpbp.2021.110450] [PMID: 34634379]
[9]
Coretti, S.; Rumi, F.; Cicchetti, A. The social cost of major depression. A systematic review. Rev. Eur. Stud., 2019, 11(1), 73.
[http://dx.doi.org/10.5539/res.v11n1p73]
[10]
Collins, P.Y.; Patel, V.; Joestl, S.S.; March, D.; Insel, T.R.; Daar, A.S.; Anderson, W.; Dhansay, M.A.; Phillips, A.; Shurin, S.; Walport, M.; Ewart, W.; Savill, S.J.; Bordin, I.A.; Costello, E.J.; Durkin, M.; Fairburn, C.; Glass, R.I.; Hall, W.; Huang, Y.; Hyman, S.E.; Jamison, K.; Kaaya, S.; Kapur, S.; Kleinman, A.; Ogunniyi, A.; Otero-Ojeda, A.; Poo, M.M.; Ravindranath, V.; Sahakian, B.J.; Saxena, S.; Singer, P.A.; Stein, D.J. Grand challenges in global mental health. Nature, 2011, 475(7354), 27-30.
[http://dx.doi.org/10.1038/475027a] [PMID: 21734685]
[11]
Salari, N.; Hosseinian-Far, A.; Jalali, R.; Vaisi-Raygani, A.; Rasoulpoor, S.; Mohammadi, M.; Rasoulpoor, S.; Khaledi-Paveh, B. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: A systematic review and meta-analysis. Global. Health, 2020, 16(1), 57.
[http://dx.doi.org/10.1186/s12992-020-00589-w] [PMID: 32631403]
[12]
Bäuerle, A.; Teufel, M.; Musche, V.; Weismüller, B.; Kohler, H.; Hetkamp, M.; Dörrie, N.; Schweda, A.; Skoda, E.M. Increased generalized anxiety, depression and distress during the COVID-19 pandemic: A cross-sectional study in Germany. J. Public Health, 2020, 42(4), 672-678.
[http://dx.doi.org/10.1093/pubmed/fdaa106] [PMID: 32657323]
[13]
Chew, N.W.; Lee, G.K.; Tan, B.Y.; Jing, M.; Goh, Y.; Ngiam, N.J.; Yeo, L.L.; Ahmad, A.; Ahmed, K.F.; Napolean, S.G.; Sharma, A.K.; Komalkumar, R.N.; Meenakshi, P.V.; Shah, K.; Patel, B.; Chan, B.P.; Sunny, S.; Chandra, B.; Ong, J.J.; Paliwal, P.R.; Wong, L.Y.H.; Sagayanathan, R.; Chen, J.T.; Ying Ng, A.Y.; Teoh, H.L.; Tsivgoulis, G.; Ho, C.S.; Ho, R.C.; Sharma, V.K. A multinational, multicentre study on the psychological outcomes and associated physical symptoms amongst healthcare workers during COVID-19 outbreak. Brain Behav. Immun., 2020, 88, 559-565.
[http://dx.doi.org/10.1016/j.bbi.2020.04.049] [PMID: 32330593]
[14]
Xiong, J.; Lipsitz, O.; Nasri, F.; Lui, L.M.W.; Gill, H.; Phan, L.; Chen-Li, D.; Iacobucci, M.; Ho, R.; Majeed, A.; McIntyre, R.S. Impact of COVID-19 pandemic on mental health in the general population: A systematic review. J. Affect. Disord., 2020, 277, 55-64.
[http://dx.doi.org/10.1016/j.jad.2020.08.001] [PMID: 32799105]
[15]
Cullen, W.; Gulati, G.; Kelly, B.D. Mental health in the COVID-19 pandemic. QJM, 2020, 113(5), 311-312.
[http://dx.doi.org/10.1093/qjmed/hcaa110] [PMID: 32227218]
[16]
Oderda, L.H.; Young, J.R.; Asche, C.V.; Pepper, G.A. Psychotropic-related hip fractures: Meta-analysis of first-generation and second-generation antidepressant and antipsychotic drugs. Ann. Pharmacother., 2012, 46(7-8), 917-928.
[http://dx.doi.org/10.1345/aph.1Q589] [PMID: 22811347]
[17]
Tomlinson, A.; Efthimiou, O.; Boaden, K.; New, E.; Mather, S.; Salanti, G.; Imai, H.; Ogawa, Y.; Tajika, A.; Kishimoto, S.; Kikuchi, S.; Chevance, A.; Furukawa, T.A.; Cipriani, A. Side effect profile and comparative tolerability of 21 antidepressants in the acute treatment of major depression in adults: Protocol for a network meta-analysis. Evid. Based Ment. Health, 2019, 22(2), 61-66.
[http://dx.doi.org/10.1136/ebmental-2019-300087] [PMID: 30996028]
[18]
Furukawa, T.A.; Salanti, G.; Atkinson, L.Z.; Leucht, S.; Ruhe, H.G.; Turner, E.H.; Chaimani, A.; Ogawa, Y.; Takeshima, N.; Hayasaka, Y.; Imai, H.; Shinohara, K.; Suganuma, A.; Watanabe, N.; Stockton, S.; Geddes, J.R.; Cipriani, A. Comparative efficacy and acceptability of first-generation and second-generation antidepressants in the acute treatment of major depression: Protocol for a network meta-analysis. BMJ Open, 2016, 6(7), e010919.
[http://dx.doi.org/10.1136/bmjopen-2015-010919] [PMID: 27401359]
[19]
Rief, W.; Nestoriuc, Y.; von Lilienfeld-Toal, A.; Dogan, I.; Schreiber, F.; Hofmann, S.G.; Barsky, A.J.; Avorn, J. Differences in adverse effect reporting in placebo groups in SSRI and tricyclic antidepressant trials: A systematic review and meta-analysis. Drug Saf., 2009, 32(11), 1041-1056.
[http://dx.doi.org/10.2165/11316580-000000000-00000] [PMID: 19810776]
[20]
Ferguson, J.M. SSRI antidepressant medications: Adverse effects and tolerability. Prim. Care Companion J. Clin. Psychiatry, 2001, 3(1), 22-27.
[http://dx.doi.org/10.4088/PCC.v03n0105] [PMID: 15014625]
[21]
Rudorfer, M.V.; Potter, W.Z. Antidepressants. A comparative review of the clinical pharmacology and therapeutic use of the ‘newer’ versus the ‘older’ drugs. Drugs, 1989, 37(5), 713-738.
[http://dx.doi.org/10.2165/00003495-198937050-00006] [PMID: 2663417]
[22]
Blackwell, B. Adverse effects of antidepressant drugs. Part 1: Monoamine oxidase inhibitors and tricyclics. Drugs, 1981, 21(3), 201-219.
[http://dx.doi.org/10.2165/00003495-198121030-00002] [PMID: 6114849]
[23]
Wang, S.; Chen, Y.; Zhao, S.; Xu, X.; Liu, X.; Liu, B.F.; Zhang, G. Synthesis and biological evaluation of a series of benzoxazole/benzothiazole-containing 2,3-dihydrobenzo[b][1,4]dioxine derivatives as potential antidepressants. Bioorg. Med. Chem. Lett., 2014, 24(7), 1766-1770.
[http://dx.doi.org/10.1016/j.bmcl.2014.02.031] [PMID: 24618300]
[24]
Richelson, E.; Pfenning, M. Blockade by antidepressants and related compounds of biogenic amine uptake into rat brain synaptosomes: Most antidepressants selectively block norepinephrine uptake. Eur. J. Pharmacol., 1984, 104(3-4), 277-286.
[http://dx.doi.org/10.1016/0014-2999(84)90403-5] [PMID: 6499924]
[25]
Hyttel, J. Pharmacological characterization of selective serotonin reuptake inhibitors (SSRIs). Int. Clin. Psychopharmacol., 1994, 9(Suppl. 1), 19-26.
[http://dx.doi.org/10.1097/00004850-199403001-00004] [PMID: 8021435]
[26]
Skolnick, P. Antidepressants: New Pharmacological Strategies; Springer Science & Business Media, 1997.
[http://dx.doi.org/10.1385/0896034690]
[27]
Spinks, D.; Spinks, G. Serotonin reuptake inhibition: An update on current research strategies. Curr. Med. Chem., 2002, 9(8), 799-810.
[http://dx.doi.org/10.2174/0929867024606795] [PMID: 11966445]
[28]
Connolly, K.R.; Thase, M.E. Emerging drugs for major depressive disorder. Expert Opin. Emerg. Drugs, 2012, 17(1), 105-126.
[http://dx.doi.org/10.1517/14728214.2012.660146] [PMID: 22339643]
[29]
Clevenger, S.S.; Malhotra, D.; Dang, J.; Vanle, B.; IsHak, W.W. The role of selective serotonin reuptake inhibitors in preventing relapse of major depressive disorder. Ther. Adv. Psychopharmacol., 2018, 8(1), 49-58.
[http://dx.doi.org/10.1177/2045125317737264] [PMID: 29344343]
[30]
Fournier, J.C.; DeRubeis, R.J.; Hollon, S.D.; Dimidjian, S.; Amsterdam, J.D.; Shelton, R.C.; Fawcett, J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA, 2010, 303(1), 47-53.
[http://dx.doi.org/10.1001/jama.2009.1943] [PMID: 20051569]
[31]
Landén, M.; Högberg, P.; Thase, M.E. Incidence of sexual side effects in refractory depression during treatment with citalopram or paroxetine. J. Clin. Psychiatry, 2005, 66(1), 100-106.
[http://dx.doi.org/10.4088/JCP.v66n0114] [PMID: 15669895]
[32]
Quilichini, J.B.; Revet, A.; Garcia, P.; Bouquié, R.; Hamard, J.; Yrondi, A.; Montastruc, F. Comparative effects of 15 antidepressants on the risk of withdrawal syndrome: A real-world study using the WHO pharmacovigilance database. J. Affect. Disord., 2022, 297, 189-193.
[http://dx.doi.org/10.1016/j.jad.2021.10.041] [PMID: 34699855]
[33]
Edinoff, A.N.; Akuly, H.A.; Hanna, T.A.; Ochoa, C.O.; Patti, S.J.; Ghaffar, Y.A.; Kaye, A.D.; Viswanath, O.; Urits, I.; Boyer, A.G.; Cornett, E.M.; Kaye, A.M. Selective serotonin reuptake inhibitors and adverse effects: A narrative review. Neurol. Int., 2021, 13(3), 387-401.
[http://dx.doi.org/10.3390/neurolint13030038] [PMID: 34449705]
[34]
Humble, M. Noradrenaline and serotonin reuptake inhibition as clinical principles: A review of antidepressant efficacy. Acta Psychiatr. Scand. Suppl., 2000, 402(s402), 28-36.
[http://dx.doi.org/10.1034/j.1600-0447.2000.02605.x] [PMID: 10901156]
[35]
Protti, M.; Mandrioli, R.; Marasca, C.; Cavalli, A.; Serretti, A.; Mercolini, L. New-generation, non-SSRI antidepressants: Drug-drug interactions and therapeutic drug monitoring. Part 2: NaSSAs, NRIs, SNDRIs, MASSAs, NDRIs, and others. Med. Res. Rev., 2020, 40(5), 1794-1832.
[http://dx.doi.org/10.1002/med.21671] [PMID: 32285503]
[36]
Machado-Vieira, R.; Salvadore, G.; Luckenbaugh, D.A.; Manji, H.K.; Zarate, C.A., Jr Rapid onset of antidepressant action: A new paradigm in the research and treatment of major depressive disorder. J. Clin. Psychiatry, 2008, 69(6), 946-958.
[http://dx.doi.org/10.4088/JCP.v69n0610] [PMID: 18435563]
[37]
Matrisciano, F.; Panaccione, I.; Zusso, M.; Giusti, P.; Tatarelli, R.; Iacovelli, L.; Mathé, A.A.; Gruber, S.H.; Nicoletti, F.; Girardi, P. Group-II metabotropic glutamate receptor ligands as adjunctive drugs in the treatment of depression: A new strategy to shorten the latency of antidepressant medication? Mol. Psychiatry, 2007, 12(8), 704-706.
[http://dx.doi.org/10.1038/sj.mp.4002005] [PMID: 17653204]
[38]
Stahl, S.M. Mechanism of action of serotonin selective reuptake inhibitors. Serotonin receptors and pathways mediate therapeutic effects and side effects. J. Affect. Disord., 1998, 51(3), 215-235.
[http://dx.doi.org/10.1016/S0165-0327(98)00221-3] [PMID: 10333979]
[39]
Racagni, G.; Popoli, M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin. Neurosci., 2008, 10(4), 385-400.
[http://dx.doi.org/10.31887/DCNS.2008.10.4/gracagni] [PMID: 19170396]
[40]
Malberg, J.E.; Blendy, J.A. Antidepressant action: To the nucleus and beyond. Trends Pharmacol. Sci., 2005, 26(12), 631-638.
[http://dx.doi.org/10.1016/j.tips.2005.10.005] [PMID: 16246434]
[41]
Ward, M.P.; Irazoqui, P.P. Evolving refractory major depressive disorder diagnostic and treatment paradigms: Toward closed-loop therapeutics. Front. Neuroeng., 2010, 3, 7.
[http://dx.doi.org/10.3389/fneng.2010.00007] [PMID: 20631824]
[42]
Visentin, A.P.; Colombo, R.; Scotton, E.; Fracasso, D.S.; da Rosa, A.R.; Branco, C.S.; Salvador, M. Targeting inflammatory-mitochondrial response in major depression: Current evidence and further challenges. Oxid. Med. Cell. Longev., 2020, 2020, 2972968.
[http://dx.doi.org/10.1155/2020/2972968] [PMID: 32351669]
[43]
Ribaudo, G.; Bortoli, M.; Pavan, C.; Zagotto, G.; Orian, L. Antioxidant potential of psychotropic drugs: From clinical evidence to in vitro and in vivo assessment and toward a new challenge for in silico molecular design. Antioxidants, 2020, 9(8), 9.
[http://dx.doi.org/10.3390/antiox9080714] [PMID: 32781750]
[44]
Goetzl, E.J.; Wolkowitz, O.M.; Srihari, V.H.; Reus, V.I.; Goetzl, L.; Kapogiannis, D.; Heninger, G.R.; Mellon, S.H. Abnormal levels of mitochondrial proteins in plasma neuronal extracellular vesicles in major depressive disorder. Mol. Psychiatry, 2021, 2021, 1-8.
[http://dx.doi.org/10.1038/s41380-021-01268-x] [PMID: 34471251]
[45]
Kornhuber, J.; Gulbins, E. New molecular targets for antidepressant drugs. Pharmaceuticals, 2021, 14(9), 14.
[http://dx.doi.org/10.3390/ph14090894] [PMID: 34577594]
[46]
Caruso, G.; Benatti, C.; Blom, J.M.; Caraci, F.; Tascedda, F. The many faces of mitochondrial dysfunction in depression: From pathology to treatment. Front. Pharmacol., 2019, 10, 995.
[http://dx.doi.org/10.3389/fphar.2019.00995] [PMID: 31551791]
[47]
Scaini, G.; Mason, B.L.; Diaz, A.P.; Jha, M.K.; Soares, J.C.; Trivedi, M.H.; Quevedo, J. Dysregulation of mitochondrial dynamics, mitophagy and apoptosis in major depressive disorder: Does inflammation play a role? Mol. Psychiatry, 2022, 27(2), 1095-1102.
[http://dx.doi.org/10.1038/s41380-021-01312-w] [PMID: 34650203]
[48]
Tang, M.; Liu, T.; Jiang, P.; Dang, R. The interaction between autophagy and neuroinflammation in major depressive disorder: From pathophysiology to therapeutic implications. Pharmacol. Res., 2021, 168, 105586.
[http://dx.doi.org/10.1016/j.phrs.2021.105586] [PMID: 33812005]
[49]
Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today, 2020, 25(7), 1270-1276.
[http://dx.doi.org/10.1016/j.drudis.2020.05.001] [PMID: 32404275]
[50]
Czarny, P.; Wigner, P.; Galecki, P.; Sliwinski, T. The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 80(Pt C), 309-321.
[http://dx.doi.org/10.1016/j.pnpbp.2017.06.036] [PMID: 28669580]
[51]
Liu, S.; Zha, C.; Nacro, K.; Hu, M.; Cui, W.; Yang, Y-L.; Bhatt, U.; Sambandam, A.; Isherwood, M.; Yet, L.; Herr, M.T.; Ebeltoft, S.; Hassler, C.; Fleming, L.; Pechulis, A.D.; Payen-Fornicola, A.; Holman, N.; Milanowski, D.; Cotterill, I.; Mozhaev, V.; Khmelnitsky, Y.; Guzzo, P.R.; Sargent, B.J.; Molino, B.F.; Olson, R.; King, D.; Lelas, S.; Li, Y-W.; Johnson, K.; Molski, T.; Orie, A.; Ng, A.; Haskell, R.; Clarke, W.; Bertekap, R.; O’Connell, J.; Lodge, N.; Sinz, M.; Adams, S.; Zaczek, R.; Macor, J.E. Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors. ACS Med. Chem. Lett., 2014, 5(7), 760-765.
[http://dx.doi.org/10.1021/ml500053b] [PMID: 25050161]
[52]
Maubach, K.A.; Rupniak, N.M.; Kramer, M.S.; Hill, R.G. Novel strategies for pharmacotherapy of depression. Curr. Opin. Chem. Biol., 1999, 3(4), 481-488.
[http://dx.doi.org/10.1016/S1367-5931(99)80070-2] [PMID: 10419849]
[53]
Intagliata, S.; Modica, M.N.; Pittalà, V.; Salerno, L.; Siracusa, M.A.; Cagnotto, A.; Salmona, M.; Kurczab, R.; Romeo, G. New N- and O-arylpiperazinylalkyl pyrimidines and 2-methylquinazolines derivatives as 5-HT7 and 5-HT1A receptor ligands: Synthesis, structure-activity relationships, and molecular modeling studies. Bioorg. Med. Chem., 2017, 25(3), 1250-1259.
[http://dx.doi.org/10.1016/j.bmc.2016.12.039] [PMID: 28063784]
[54]
Gu, Z.S.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant activity of a series of arylalkanol and aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2017, 27(24), 5420-5423.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.007] [PMID: 29138029]
[55]
Shaw, A.M.; Boules, M.; Zhang, Y.; Williams, K.; Robinson, J.; Carlier, P.R.; Richelson, E. Antidepressant-like effects of novel triple reuptake inhibitors, PRC025 and PRC050. Eur. J. Pharmacol., 2007, 555(1), 30-36.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.004] [PMID: 17109850]
[56]
Ruhé, H.G.; Mason, N.S.; Schene, A.H. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Mol. Psychiatry, 2007, 12(4), 331-359.
[http://dx.doi.org/10.1038/sj.mp.4001949] [PMID: 17389902]
[57]
Guiard, B.P.; El Mansari, M.; Blier, P. Prospect of a dopamine contribution in the next generation of antidepressant drugs: The triple reuptake inhibitors. Curr. Drug Targets, 2009, 10(11), 1069-1084.
[http://dx.doi.org/10.2174/138945009789735156] [PMID: 19702555]
[58]
Prins, J.; Olivier, B.; Korte, S.M. Triple reuptake inhibitors for treating subtypes of major depressive disorder: The monoamine hypothesis revisited. Expert Opin. Investig. Drugs, 2011, 20(8), 1107-1130.
[http://dx.doi.org/10.1517/13543784.2011.594039] [PMID: 21682663]
[59]
Jin, Z.L.; Gao, N.; Li, X.R.; Tang, Y.; Xiong, J.; Chen, H.X.; Xue, R.; Li, Y.F. The antidepressant-like pharmacological profile of Yuanzhi-1, a novel serotonin, norepinephrine and dopamine reuptake inhibitor. Eur. Neuropsychopharmacol., 2015, 25(4), 544-556.
[http://dx.doi.org/10.1016/j.euroneuro.2015.01.005] [PMID: 25638027]
[60]
Jiang, J.L.; El Mansari, M.; Blier, P. Triple reuptake inhibition of serotonin, norepinephrine, and dopamine increases the tonic activation of α2-adrenoceptors in the rat hippocampus and dopamine levels in the nucleus accumbens. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 103, 109987.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109987] [PMID: 32474007]
[61]
Millan, M.J. On ‘polypharmacy’ and multi-target agents, complementary strategies for improving the treatment of depression: A comparative appraisal. Int. J. Neuropsychopharmacol., 2014, 17(7), 1009-1037.
[http://dx.doi.org/10.1017/S1461145712001496] [PMID: 23719026]
[62]
Millan, M.J. Dual- and triple-acting agents for treating core and co-morbid symptoms of major depression: Novel concepts, new drugs. Neurotherapeutics, 2009, 6(1), 53-77.
[http://dx.doi.org/10.1016/j.nurt.2008.10.039] [PMID: 19110199]
[63]
Gu, Z.S.; Zhou, A.N.; Xiao, Y.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant-like activity of novel aralkyl piperazine derivatives targeting SSRI/5-HT1A/5-HT7. Eur. J. Med. Chem., 2018, 144, 701-715.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.063] [PMID: 29291438]
[64]
Cerda-Cavieres, C.; Quiroz, G.; Iturriaga-Vásquez, P.; Rodríguez-Lavado, J.; Alarcón-Espósito, J.; Saitz, C.; Pessoa-Mahana, C.D.; Chung, H.; Araya-Maturana, R.; Mella-Raipán, J.; Cabezas, D.; Ojeda-Gómez, C.; Reyes-Parada, M.; Pessoa-Mahana, H. Synthesis, docking, 3-D-Qsar, and biological assays of novel indole derivatives targeting serotonin transporter, dopamine D2 receptor, and Mao-A enzyme: In the pursuit for potential multitarget directed ligands. Molecules, 2020, 25(20), 4614.
[http://dx.doi.org/10.3390/molecules25204614] [PMID: 33050524]
[65]
Wróbel, M.Z.; Chodkowski, A.; Herold, F.; Marciniak, M.; Dawidowski, M.; Siwek, A.; Starowicz, G.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Belka, M.; Bączek, T.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur. J. Med. Chem., 2019, 183, 111736.
[http://dx.doi.org/10.1016/j.ejmech.2019.111736] [PMID: 31586817]
[66]
Bawa, P.; Pradeep, P.; Kumar, P.; Choonara, Y.E.; Modi, G.; Pillay, V. Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov. Today, 2016, 21(12), 1886-1914.
[http://dx.doi.org/10.1016/j.drudis.2016.08.001] [PMID: 27506871]
[67]
Liu, W.; Wang, H.; Li, X.; Xu, Y.; Zhang, J.; Wang, W.; Gong, Q.; Qiu, X.; Zhu, J.; Mao, F.; Zhang, H.; Li, J. Design, synthesis and evaluation of vilazodone-tacrine hybrids as multitarget-directed ligands against depression with cognitive impairment. Bioorg. Med. Chem., 2018, 26(12), 3117-3125.
[http://dx.doi.org/10.1016/j.bmc.2018.04.037] [PMID: 29729987]
[68]
Millan, M.J. Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic application. Pharmacol. Ther., 2006, 110(2), 135-370.
[http://dx.doi.org/10.1016/j.pharmthera.2005.11.006] [PMID: 16522330]
[69]
Ma, H.; Huang, B.; Zhang, Y. Recent advances in multitarget-directed ligands targeting G-protein-coupled receptors. Drug Discov. Today, 2020, 25(9), 1682-1692.
[http://dx.doi.org/10.1016/j.drudis.2020.07.004] [PMID: 32652312]
[70]
Alarcón-Espósito, J.; Mallea, M.; Rodríguez-Lavado, J. From hybrids to new scaffolds: The latest medicinal chemistry goals in multi-target directed ligands for Alzheimer’s Disease. Curr. Neuropharmacol., 2020, 19(6), 832-867.
[PMID: 32928087]
[71]
Bansode, S.B.; Jana, A.K.; Batkulwar, K.B.; Warkad, S.D.; Joshi, R.S.; Sengupta, N.; Kulkarni, M.J. Molecular investigations of protriptyline as a multi-target directed ligand in Alzheimer’s disease. PLoS One, 2014, 9(8), e105196.
[http://dx.doi.org/10.1371/journal.pone.0105196] [PMID: 25141174]
[72]
Bolea, I.; Gella, A.; Unzeta, M. Propargylamine-derived multitarget-directed ligands: Fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. (Vienna), 2013, 120(6), 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
[73]
Weinreb, O.; Amit, T.; Riederer, P.; Youdim, M.B.H.; Mandel, S.A. Neuroprotective profile of the multitarget drug rasagiline in Parkinson’s disease. Int. Rev. Neurobiol., 2011, 100, 127-149.
[http://dx.doi.org/10.1016/B978-0-12-386467-3.00007-8] [PMID: 21971006]
[74]
Dalpiaz, A.; Cacciari, B.; Vicentini, C.B.; Bortolotti, F.; Spalluto, G.; Federico, S.; Pavan, B.; Vincenzi, F.; Borea, P.A.; Varani, K. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach. Mol. Pharm., 2012, 9(3), 591-604.
[http://dx.doi.org/10.1021/mp200489d] [PMID: 22292533]
[75]
Youdim, M.B.H.; Kupershmidt, L.; Amit, T.; Weinreb, O. Promises of novel multi-target neuroprotective and neurorestorative drugs for Parkinson’s disease. Parkinsonism Relat. Disord., 2014, 20(Suppl. 1), S132-S136.
[http://dx.doi.org/10.1016/S1353-8020(13)70032-4] [PMID: 24262165]
[76]
Cheong, S.L.; Federico, S.; Spalluto, G.; Klotz, K.N.; Pastorin, G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: Transition from single-target to multitarget therapy. Drug Discov. Today, 2019, 24(9), 1769-1783.
[http://dx.doi.org/10.1016/j.drudis.2019.05.003] [PMID: 31102728]
[77]
Guerrero, M.; Urbano, M.; Kim, E.K.; Gamo, A.M.; Riley, S.; Abgaryan, L.; Leaf, N.; Van Orden, L.J.; Brown, S.J.; Xie, J.Y.; Porreca, F.; Cameron, M.D.; Rosen, H.; Roberts, E. Design and synthesis of a novel and selective Kappa Opioid Receptor (KOR) antagonist (BTRX-335140). J. Med. Chem., 2019, 62(4), 1761-1780.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01679] [PMID: 30707578]
[78]
Chen, H.X.; Jin, Z.L.; Zhang, L.M.; Xue, R.; Xu, X.D.; Zhao, N.; Qiu, Z.K.; Wang, X.W.; Zhang, Y.Z.; Yang, R.F.; Li, Y.F. Antidepressant-like activity of YL-0919: A novel combined selective serotonin reuptake inhibitor and 5-HT1A receptor agonist. PLoS One, 2013, 8(12), e83271.
[http://dx.doi.org/10.1371/journal.pone.0083271] [PMID: 24367588]
[79]
Chen, X.F.; Jin, Z.L.; Gong, Y.; Zhao, N.; Wang, X.Y.; Ran, Y.H.; Zhang, Y.Z.; Zhang, L.M.; Li, Y.F. 5-HT6 receptor agonist and memory-enhancing properties of hypidone hydrochloride (YL-0919), a novel 5-HT1A receptor partial agonist and SSRI. Neuropharmacology, 2018, 138, 1-9.
[http://dx.doi.org/10.1016/j.neuropharm.2018.05.027] [PMID: 29805118]
[80]
Recourt, K.; van der Aart, J.; Jacobs, G.; de Kam, M.; Drevets, W.; van Nueten, L.; Kanhai, K.; Siebenga, P.; Zuiker, R.; Ravenstijn, P.; Timmers, M.; van Gerven, J.; de Boer, P. Characterisation of the pharmacodynamic effects of the P2X7 receptor antagonist JNJ-54175446 using an oral dexamphetamine challenge model in healthy males in a randomised, double-blind, placebo-controlled, multiple ascending dose trial. J. Psychopharmacol., 2020, 34(9), 1030-1042.
[http://dx.doi.org/10.1177/0269881120914206] [PMID: 32248747]
[81]
Ribeiro, D.E.; Roncalho, A.L.; Glaser, T.; Ulrich, H.; Wegener, G.; Joca, S. P2X7 receptor signaling in stress and depression. Int. J. Mol. Sci., 2019, 20(11), 2778.
[http://dx.doi.org/10.3390/ijms20112778] [PMID: 31174279]
[82]
Nageye, F.; Cortese, S. Beyond stimulants: A systematic review of randomised controlled trials assessing novel compounds for ADHD. Expert Rev. Neurother., 2019, 19(7), 707-717.
[http://dx.doi.org/10.1080/14737175.2019.1628640] [PMID: 31167583]
[83]
Bianchi, M.; Baulieu, E.E. 3β-Methoxy-pregnenolone (MAP4343) as an innovative therapeutic approach for depressive disorders. Proc. Natl. Acad. Sci., 2012, 109(5), 1713-1718.
[http://dx.doi.org/10.1073/pnas.1121485109] [PMID: 22307636]
[84]
Gunthorpe, M.J.; Large, C.H.; Sankar, R. The mechanism of action of retigabine (ezogabine), a first-in-class K+ channel opener for the treatment of epilepsy. Epilepsia, 2012, 53(3), 412-424.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03365.x] [PMID: 22220513]
[85]
Gorman, A.L.; Elliott, K.J.; Inturrisi, C.E. The d- and l-isomers of methadone bind to the non-competitive site on the N-Methyl-D-Aspartate (NMDA) receptor in rat forebrain and spinal cord. Neurosci. Lett., 1997, 223(1), 5-8.
[http://dx.doi.org/10.1016/S0304-3940(97)13391-2] [PMID: 9058409]
[86]
Hayley, S.; Litteljohn, D. Neuroplasticity and the next wave of antidepressant strategies. Front. Cell. Neurosci., 2013, 7, 218.
[http://dx.doi.org/10.3389/fncel.2013.00218] [PMID: 24312008]
[87]
Recourt, K.; de Boer, P.; Zuiker, R.; Luthringer, R.; Kent, J.; van der Ark, P.; Van Hove, I.; van Gerven, J.; Jacobs, G.; van Nueten, L.; Drevets, W. The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry, 2019, 9(1), 216.
[http://dx.doi.org/10.1038/s41398-019-0553-z] [PMID: 31481683]
[88]
Zhang, R.; Li, X.; Shi, Y.; Shao, Y.; Sun, K.; Wang, A.; Sun, F.; Liu, W.; Wang, D.; Jin, J.; Li, Y. The effects of LPM570065, a novel triple reuptake inhibitor, on extracellular serotonin, dopamine and norepinephrine levels in rats. PLoS One, 2014, 9(3), e91775.
[http://dx.doi.org/10.1371/journal.pone.0091775] [PMID: 24614602]
[89]
Maeda, K.; Sugino, H.; Akazawa, H.; Amada, N.; Shimada, J.; Futamura, T.; Yamashita, H.; Ito, N.; McQuade, R.D.; Mørk, A.; Pehrson, A.L.; Hentzer, M.; Nielsen, V.; Bundgaard, C.; Arnt, J.; Stensbøl, T.B.; Kikuchi, T.; Brexpiprazole, I. Brexpiprazole I: In vitro and in vivo characterization of a novel serotonin-dopamine activity modulator. J. Pharmacol. Exp. Ther., 2014, 350(3), 589-604.
[http://dx.doi.org/10.1124/jpet.114.213793] [PMID: 24947465]
[90]
Fava, M.; Okame, T.; Matsushima, Y.; Perry, P.; Weiller, E.; Baker, R.A. Switching from inadequate adjunctive or combination treatment options to brexpiprazole adjunctive to antidepressant: An open-label study on the effects on depressive symptoms and cognitive and physical functioning. Int. J. Neuropsychopharmacol., 2017, 20(1), 22-30.
[PMID: 27784751]
[91]
Hobart, M.; Zhang, P.; Weiss, C.; Meehan, S.R.; Eriksson, H. Adjunctive brexpiprazole and functioning in major depressive disorder: A pooled analysis of six randomized studies using the sheehan disability scale. Int. J. Neuropsychopharmacol., 2019, 22(3), 173-179.
[PMID: 30508090]
[92]
Patel, R.S.; Bhela, J.; Tahir, M.; Pisati, S.R.; Hossain, S. Pimavanserin in Parkinson’s Disease-induced psychosis: A literature review. Cureus, 2019, 11(7), e5257.
[http://dx.doi.org/10.7759/cureus.5257] [PMID: 31572642]
[93]
Stahl, S.M. Mechanism of action of pimavanserin in Parkinson’s disease psychosis: targeting serotonin 5HT2A and 5HT2C receptors. CNS Spectr., 2016, 21(4), 271-275.
[http://dx.doi.org/10.1017/S1092852916000407] [PMID: 27503570]
[94]
Blanco, M.J.; La, D.; Coughlin, Q.; Newman, C.A.; Griffin, A.M.; Harrison, B.L.; Salituro, F.G. Breakthroughs in neuroactive steroid drug discovery. Bioorg. Med. Chem. Lett., 2018, 28(2), 61-70.
[http://dx.doi.org/10.1016/j.bmcl.2017.11.043] [PMID: 29223589]
[95]
Saijo, T.; Maeda, J.; Okauchi, T.; Maeda, J.; Morio, Y.; Kuwahara, Y.; Suzuki, M.; Goto, N.; Fukumura, T.; Suhara, T.; Higuchi, M. Presynaptic selectivity of a ligand for serotonin 1A receptors revealed by in vivo PET assays of rat brain. PLoS One, 2012, 7(8), e42589.
[http://dx.doi.org/10.1371/journal.pone.0042589] [PMID: 22880045]
[96]
Griebel, G.; Holsboer, F. Neuropeptide receptor ligands as drugs for psychiatric diseases: The end of the beginning? Nat. Rev. Drug Discov., 2012, 11(6), 462-478.
[http://dx.doi.org/10.1038/nrd3702] [PMID: 22596253]
[97]
Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A.S. “Broad spectrum” antidepressants: Is more better for the treatment of depression? Life Sci., 2003, 73(25), 3175-3179.
[http://dx.doi.org/10.1016/j.lfs.2003.06.007] [PMID: 14561522]
[98]
Moskal, J.R.; Burgdorf, J.S.; Stanton, P.K.; Kroes, R.A.; Disterhoft, J.F.; Burch, R.M.; Khan, M.A. The development of rapastinel (Formerly GLYX-13); A rapid acting and long lasting antidepressant. Curr. Neuropharmacol., 2017, 15(1), 47-56.
[http://dx.doi.org/10.2174/1570159X14666160321122703] [PMID: 26997507]
[99]
Goettel, M.; Höfler, J.; Fuertig, R.; Sharma, V.; Göttel, M. First-in-human study of oral bi 1358894 in healthy male volunteers: A phase I study to investigate safety and tolerability. Biol. Psychiatry, 2020, 87(9), S289-S290.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.747]
[100]
Goettel, M.; Herich, L.; Wiebe, S.; Fuertig, R.; Sharma, V.; Göttel, M. Multiple rising doses of oral BI 1358894 in healthy male volunteers: A phase I study to investigate safety and tolerability. Biol. Psychiatry, 2020, 87(9), S417-S418.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.1065]
[101]
Zhang, L.M.; Wang, X.Y.; Zhao, N.; Wang, Y.L.; Hu, X.X.; Ran, Y.H.; Liu, Y.Q.; Zhang, Y.Z.; Yang, R.F.; Li, Y.F. Neurochemical and behavioural effects of hypidone hydrochloride (YL-0919): A novel combined selective 5-HT reuptake inhibitor and partial 5-HT1A agonist. Br. J. Pharmacol., 2017, 174(9), 769-780.
[http://dx.doi.org/10.1111/bph.13675] [PMID: 27882537]
[102]
Timmers, M.; Ravenstijn, P.; Xi, L.; Triana-Baltzer, G.; Furey, M.; Van Hemelryck, S.; Biewenga, J.; Ceusters, M.; Bhattacharya, A.; van den Boer, M.; van Nueten, L.; de Boer, P. Clinical pharmacokinetics, pharmacodynamics, safety, and tolerability of JNJ-54175446, a brain permeable P2X7 antagonist, in a randomised single-ascending dose study in healthy participants. J. Psychopharmacol., 2018, 32(12), 1341-1350.
[http://dx.doi.org/10.1177/0269881118800067] [PMID: 30260294]
[103]
Fogaça, M.V.; Fukumoto, K.; Franklin, T.; Liu, R.J.; Duman, C.H.; Vitolo, O.V.; Duman, R.S. N-Methyl-D-aspartate receptor antagonist d-methadone produces rapid, mTORC1-dependent antidepressant effects. Neuropsychopharmacology, 2019, 44(13), 2230-2238.
[http://dx.doi.org/10.1038/s41386-019-0501-x] [PMID: 31454827]
[104]
Sunovion announces topline results from global phase 2 study of SEP-4199 in patients with bipolar I depression. BioSpace, 2020. Available from: http://www.biospace. com/article/releases/sunovion-announces-topline-results-from-global-phase-2-study-of-sep-4199-in-patients-with-bipolar-i-depression/
[105]
Wilkinson, S.T.; Sanacora, G. A new generation of antidepressants: An update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov. Today, 2019, 24(2), 606-615.
[http://dx.doi.org/10.1016/j.drudis.2018.11.007] [PMID: 30447328]
[106]
Recourt, K.; de Boer, P.; Zuiker, R.; Luthringer, R.; Kent, J.; van der Ark, P.; Van Hove, I.; van Gerven, J.; Jacobs, G.; van Nueten, L.; Drevets, W. Correction to: The selective orexin-2 antagonist seltorexant (JNJ-42847922/MIN-202) shows antidepressant and sleep-promoting effects in patients with major depressive disorder. Transl. Psychiatry, 2019, 9(1), 240.
[http://dx.doi.org/10.1038/s41398-019-0585-4] [PMID: 31578318]
[107]
Tran, P.; Skolnick, P.; Czobor, P.; Huang, N.Y.; Bradshaw, M.; McKinney, A.; Fava, M. Efficacy and tolerability of the novel triple reuptake inhibitor amitifadine in the treatment of patients with major depressive disorder: A randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res., 2012, 46(1), 64-71.
[http://dx.doi.org/10.1016/j.jpsychires.2011.09.003] [PMID: 21925682]
[108]
Iovieno, N.; Papakostas, G.I. Correlation between different levels of placebo response rate and clinical trial outcome in major depressive disorder: A meta-analysis. J. Clin. Psychiatry, 2012, 73(10), 1300-1306.
[http://dx.doi.org/10.4088/JCP.11r07485] [PMID: 23140647]
[109]
Zajecka, J.M.; Stanford, A.D.; Memisoglu, A.; Martin, W.F.; Pathak, S. Buprenorphine/samidorphan combination for the adjunctive treatment of major depressive disorder: Results of a phase III clinical trial (FORWARD-3). Neuropsychiatr. Dis. Treat., 2019, 15, 795-808.
[http://dx.doi.org/10.2147/NDT.S199245] [PMID: 31040679]
[110]
Khin, N.A.; Chen, Y.F.; Yang, Y.; Yang, P.; Laughren, T.P. Exploratory analyses of efficacy data from major depressive disorder trials submitted to the US food and drug administration in support of new drug applications. J. Clin. Psychiatry, 2011, 72(4), 464-472.
[http://dx.doi.org/10.4088/JCP.10m06191] [PMID: 21527123]
[111]
Blackburn, T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect., 2019, 7(3), e00472-e00472.
[http://dx.doi.org/10.1002/prp2.472] [PMID: 31065377]
[112]
Shiovitz, T.M.; Zarrow, M.E.; Shiovitz, A.M.; Bystritsky, A.M. Failure rate and “professional subjects” in clinical trials of major depressive disorder. J Clin Psychiatry, 2011, 72(9), 1284.
[113]
Yankelevitch-Yahav, R.; Franko, M.; Huly, A.; Doron, R. The forced swim test as a model of depressive-like behavior. J. Vis. Exp., 2015, (97), e52587.
[http://dx.doi.org/10.3791/52587]
[114]
Moltzen, E.K.; Bang-Andersen, B. Serotonin reuptake inhibitors: The corner stone in treatment of depression for half a century--a medicinal chemistry survey. Curr. Top. Med. Chem., 2006, 6(17), 1801-1823.
[http://dx.doi.org/10.2174/156802606778249810] [PMID: 17017959]
[115]
Welch, W.M.; Kraska, A.R.; Sarges, R.; Koe, B.K. Nontricyclic antidepressant agents derived from cis- and trans-1-amino-4-aryltetralins. J. Med. Chem., 1984, 27(11), 1508-1515.
[http://dx.doi.org/10.1021/jm00377a021] [PMID: 6492080]
[116]
Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther., 1977, 229(2), 327-336.
[PMID: 596982]
[117]
Gu, Z.S.; Wang, W.T.; Qian, H.; Zhou, A.N.; Sun, H.B.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant effect of novel aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2019, 29(23), 126703.
[http://dx.doi.org/10.1016/j.bmcl.2019.126703] [PMID: 31627993]
[118]
Heinrich, T.; Böttcher, H.; Gericke, R.; Bartoszyk, G.D.; Anzali, S.; Seyfried, C.A.; Greiner, H.E.; Van Amsterdam, C. Synthesis and structure-activity relationship in a class of indolebutylpiperazines as dual 5-HT(1A) receptor agonists and serotonin reuptake inhibitors. J. Med. Chem., 2004, 47(19), 4684-4692.
[http://dx.doi.org/10.1021/jm040793q] [PMID: 15341484]
[119]
Steru, L.; Chermat, R.; Thierry, B.; Simon, P. The tail suspension test: A new method for screening antidepressants in mice. Psychopharmacology, 1985, 85(3), 367-370.
[http://dx.doi.org/10.1007/BF00428203] [PMID: 3923523]
[120]
Partyka, A.; Kurczab, R.; Canale, V.; Satała, G.; Marciniec, K.; Pasierb, A.; Jastrzębska-Więsek, M.; Pawłowski, M.; Wesołowska, A.; Bojarski, A.J.; Zajdel, P. The impact of the halogen bonding on D2 and 5-HT1A/5-HT7 receptor activity of azinesulfonamides of 4-[(2-ethyl)piperidinyl-1-yl]phenylpiperazines with antipsychotic and antidepressant properties. Bioorg. Med. Chem., 2017, 25(14), 3638-3648.
[http://dx.doi.org/10.1016/j.bmc.2017.04.046] [PMID: 28529043]
[121]
Zajdel, P.; Marciniec, K.; Maślankiewicz, A.; Satała, G.; Duszyńska, B.; Bojarski, A.J.; Partyka, A.; Jastrzębska-Więsek, M.; Wróbel, D.; Wesołowska, A.; Pawłowski, M. Quinoline- and isoquinoline-sulfonamide derivatives of LCAP as potent CNS multi-receptor-5-HT1A/5- HT2A/5-HT7 and D2/D3/D4-agents: The synthesis and pharmacological evaluation. Bioorg. Med. Chem., 2012, 20(4), 1545-1556.
[http://dx.doi.org/10.1016/j.bmc.2011.12.039] [PMID: 22277589]
[122]
Zajdel, P.; Marciniec, K.; Maślankiewicz, A.; Grychowska, K.; Satała, G.; Duszyńska, B.; Lenda, T.; Siwek, A.; Nowak, G.; Partyka, A.; Wróbel, D.; Jastrzębska-Więsek, M.; Bojarski, A.J.; Wesołowska, A.; Pawłowski, M. Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D1/D2 receptors. Eur. J. Med. Chem., 2013, 60, 42-50.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.042] [PMID: 23279866]
[123]
Zajdel, P.; Partyka, A.; Marciniec, K.; Bojarski, A.J.; Pawlowski, M.; Wesolowska, A. Quinoline- and isoquinoline-sulfonamide analogs of aripiprazole: Novel antipsychotic agents? Future Med. Chem., 2014, 6(1), 57-75.
[http://dx.doi.org/10.4155/fmc.13.158] [PMID: 24358948]
[124]
Staroń, J.; Warszycki, D.; Kurczab, R.; Satała, G.; Bugno, R.; Hogendorf, A.; Bojarski, A.J. Halogen bonding enhances activity in a series of dual 5-HT6/D2 ligands designed in a hybrid bioisostere generation/virtual screening protocol. RSC Advances, 2016, 6(60), 54918-54925.
[http://dx.doi.org/10.1039/C6RA08714K]
[125]
Kurczab, R.; Canale, V.; Zajdel, P.; Bojarski, A.J. An algorithm to identify target-selective ligands - A case study of 5-HT7/5-HT1A receptor selectivity. PLoS One, 2016, 11(6), e0156986.
[http://dx.doi.org/10.1371/journal.pone.0156986] [PMID: 27271158]
[126]
Handzlik, J.; Bojarski, A.J.; Satała, G.; Kubacka, M.; Sadek, B.; Ashoor, A.; Siwek, A.; Więcek, M.; Kucwaj, K.; Filipek, B.; Kieć-Kononowicz, K. SAR-studies on the importance of aromatic ring topologies in search for selective 5-HT(7) receptor ligands among phenylpiperazine hydantoin derivatives. Eur. J. Med. Chem., 2014, 78, 324-339.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.065] [PMID: 24691057]
[127]
Leopoldo, M.; Lacivita, E.; Berardi, F.; Perrone, R.; Hedlund, P.B. Serotonin 5-HT7 receptor agents: Structure-activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol. Ther., 2011, 129(2), 120-148.
[http://dx.doi.org/10.1016/j.pharmthera.2010.08.013] [PMID: 20923682]
[128]
Bojarski, A.J. Pharmacophore models for metabotropic 5-HT receptor ligands. Curr. Top. Med. Chem., 2006, 6(18), 2005-2026.
[http://dx.doi.org/10.2174/156802606778522186] [PMID: 17017971]
[129]
Lepailleur, A.; Bureau, R.; Paillet-Loilier, M.; Fabis, F.; Saettel, N.; Lemaître, S.; Dauphin, F.; Lesnard, A.; Lancelot, J.C.; Rault, S. Molecular modeling studies focused on 5-HT7 versus 5-HT1A selectivity. Discovery of novel phenylpyrrole derivatives with high affinity for 5-HT7 receptors. J. Chem. Inf. Model., 2005, 45(4), 1075-1081.
[http://dx.doi.org/10.1021/ci050045p] [PMID: 16045303]
[130]
Du, L.; Li, M. Modeling the interactions between alpha(1)-adrenergic receptors and their antagonists. Curr. Comput. Aided Drug Des., 2010, 6(3), 165-178.
[http://dx.doi.org/10.2174/157340910791760082] [PMID: 20412040]
[131]
Romeo, G.; Materia, L.; Modica, M.N.; Pittalà, V.; Salerno, L.; Siracusa, M.A.; Manetti, F.; Botta, M.; Minneman, K.P. Novel 4-phenylpiperidine-2,6-dione derivatives. Ligands for α1-adrenoceptor subtypes. Eur. J. Med. Chem., 2011, 46(7), 2676-2690.
[http://dx.doi.org/10.1016/j.ejmech.2011.03.054] [PMID: 21514979]
[132]
Barbaro, R.; Betti, L.; Botta, M.; Corelli, F.; Giannaccini, G.; Maccari, L.; Manetti, F.; Strappaghetti, G.; Corsano, S. Synthesis, biological evaluation, and pharmacophore generation of new pyridazinone derivatives with affinity toward alpha(1)- and alpha(2)-adrenoceptors. J. Med. Chem., 2001, 44(13), 2118-2132.
[http://dx.doi.org/10.1021/jm010821u] [PMID: 11405649]
[133]
Jankowska, A.; Satała, G.; Kołaczkowski, M.; Bucki, A.; Głuch-Lutwin, M.; Świerczek, A.; Pociecha, K.; Partyka, A.; Jastrzębska-Więsek, M.; Lubelska, A.; Latacz, G.; Gawalska, A.; Bojarski, A.J.; Wyska, E.; Chłoń-Rzepa, G. Novel anilide and benzylamide derivatives of arylpiperazinylalkanoic acids as 5-HT1A/5-HT7 receptor antagonists and phosphodiesterase 4/7 inhibitors with procognitive and antidepressant activity. Eur. J. Med. Chem., 2020, 201, 112437.
[http://dx.doi.org/10.1016/j.ejmech.2020.112437] [PMID: 32673902]
[134]
Chłoń-Rzepa, G.; Żmudzki, P.; Zajdel, P.; Bojarski, A.J.; Duszyńska, B.; Nikiforuk, A.; Tatarczyńska, E.; Pawłowski, M. 7-Arylpiperazinylalkyl and 7-tetrahydroisoquinolinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and some of their purine-2,6,8-trione analogs as 5-HT(1A), 5-HT(2A), and 5-HT(7) serotonin receptor ligands. Bioorg. Med. Chem., 2007, 15(15), 5239-5250.
[http://dx.doi.org/10.1016/j.bmc.2007.05.017] [PMID: 17517514]
[135]
Zygmunt, M.; Sapa, J.; Chłoń-Rzepa, G.; Zagórska, A.; Siwek, A.; Pawłowski, M.; Nowak, G. 7-3-Chloro phenypiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione as a serotonin receptor ligands with potential antidepressant activity. Pharmacol. Rep., 2014, 66(3), 505-510.
[http://dx.doi.org/10.1016/j.pharep.2013.12.014] [PMID: 24905531]
[136]
Chłoń-Rzepa, G.; Żmudzki, P.; Satała, G.; Duszyńska, B.; Partyka, A.; Wróbel, D.; Jastrzębska-Więsek, M.; Wesołowska, A.; Bojarski, A.J.; Pawłowski, M.; Zajdel, P. New 8-aminoalkyl derivatives of purine-2,6-dione with arylalkyl, allyl or propynyl substituents in position 7, their 5-HT1A, 5-HT2A, and 5-HT7 receptor affinity and pharmacological evaluation. Pharmacol. Rep., 2013, 65(1), 15-29.
[http://dx.doi.org/10.1016/S1734-1140(13)70960-5] [PMID: 23563020]
[137]
Zagórska, A.; Bucki, A.; Kołaczkowski, M.; Siwek, A.; Głuch-Lutwin, M.; Starowicz, G.; Kazek, G.; Partyka, A.; Wesołowska, A.; Słoczyńska, K.; Pękala, E.; Pawłowski, M. Synthesis and biological evaluation of 2-fluoro and 3-trifluoromethyl-phenyl-piperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione as potential antidepressant agents. J. Enzyme Inhib. Med. Chem., 2016, 31(Suppl. 3), 10-24.
[http://dx.doi.org/10.1080/14756366.2016.1198902] [PMID: 27353547]
[138]
Jankowska, A.; Świerczek, A.; Wyska, E.; Gawalska, A.; Bucki, A.; Pawłowski, M.; Chłoń-Rzepa, G. Advances in discovery of PDE10A inhibitors for CNS-related disorders. Part 1: Overview of the chemical and biological research. Curr. Drug Targets, 2019, 20(1), 122-143.
[http://dx.doi.org/10.2174/1389450119666180808105056] [PMID: 30091414]
[139]
Artigas, F.; Bortolozzi, A.; Celada, P. Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol, 2018, 28(4), 445-456.
[http://dx.doi.org/10.1016/j.euroneuro.2017.10.032] [PMID: 29174531]
[140]
Kishi, T.; Meltzer, H.Y.; Matsuda, Y.; Iwata, N. Azapirone 5-HT1A receptor partial agonist treatment for major depressive disorder: Systematic review and meta-analysis. Psychol. Med., 2014, 44(11), 2255-2269.
[http://dx.doi.org/10.1017/S0033291713002857] [PMID: 24262766]
[141]
Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; Luther, J.F.; Shores-Wilson, K.; Rush, A.J. STAR*D Study Team. Medication augmentation after the failure of SSRIs for depression. N. Engl. J. Med., 2006, 354(12), 1243-1252.
[http://dx.doi.org/10.1056/NEJMoa052964] [PMID: 16554526]
[142]
Ślifirski, G.; Król, M.; Kleps, J.; Podsadni, P.; Belka, M.; Bączek, T.; Siwek, A.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Bojarski, A.; Kozioł, A.E.; Turło, J.; Herold, F. Synthesis of new 5,6,7,8-tetrahydropyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT1A receptor ligands. Eur. J. Med. Chem., 2019, 180, 383-397.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.027] [PMID: 31325785]
[143]
Ślifirski, G.; Król, M.; Kleps, J.; Ulenberg, S.; Belka, M.; Bączek, T.; Siwek, A.; Stachowicz, K.; Szewczyk, B.; Nowak, G.; Bojarski, A.; Kozioł, A.E.; Turło, J.; Herold, F. Synthesis of novel pyrido[1,2-c]pyrimidine derivatives with rigidized tryptamine moiety as potential SSRI and 5-HT1A receptor ligands. Eur. J. Med. Chem., 2019, 166, 144-158.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.031] [PMID: 30703658]
[144]
Rampe, D.; Brown, A.M. A history of the role of the hERG channel in cardiac risk assessment. J. Pharmacol. Toxicol. Methods, 2013, 68(1), 13-22.
[http://dx.doi.org/10.1016/j.vascn.2013.03.005] [PMID: 23538024]
[145]
Hedlund, P.B.; Sutcliffe, J.G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends Pharmacol. Sci., 2004, 25(9), 481-486.
[http://dx.doi.org/10.1016/j.tips.2004.07.002] [PMID: 15559250]
[146]
Naumenko, V.S.; Popova, N.K.; Lacivita, E.; Leopoldo, M.; Ponimaskin, E.G. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. CNS Neurosci. Ther., 2014, 20(7), 582-590.
[http://dx.doi.org/10.1111/cns.12247] [PMID: 24935787]
[147]
Stiedl, O.; Pappa, E.; Konradsson-Geuken, Å.; Ögren, S.O. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front. Pharmacol., 2015, 6, 162.
[http://dx.doi.org/10.3389/fphar.2015.00162] [PMID: 26300776]
[148]
Rojas, P.S.; Aguayo, F.; Neira, D.; Tejos, M.; Aliaga, E.; Muñoz, J.P.; Parra, C.S.; Fiedler, J.L. Dual effect of serotonin on the dendritic growth of cultured hippocampal neurons: Involvement of 5-HT1A and 5-HT7 receptors. Mol. Cell. Neurosci., 2017, 85, 148-161.
[http://dx.doi.org/10.1016/j.mcn.2017.09.009] [PMID: 28974382]
[149]
Hoyer, D.; Hannon, J.P.; Martin, G.R. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav., 2002, 71(4), 533-554.
[http://dx.doi.org/10.1016/S0091-3057(01)00746-8] [PMID: 11888546]
[150]
Renner, U.; Zeug, A.; Woehler, A.; Niebert, M.; Dityatev, A.; Dityateva, G.; Gorinski, N.; Guseva, D.; Abdel-Galil, D.; Fröhlich, M.; Döring, F.; Wischmeyer, E.; Richter, D.W.; Neher, E.; Ponimaskin, E.G. Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking. J. Cell Sci., 2012, 125(Pt 10), 2486-2499.
[http://dx.doi.org/10.1242/jcs.101337] [PMID: 22357950]
[151]
Ofori, E.; Zhu, X.Y.; Etukala, J.R.; Peprah, K.; Jordan, K.R.; Adkins, A.A.; Bricker, B.A.; Kang, H.J.; Huang, X-P.; Roth, B.L.; Ablordeppey, S.Y. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands. Bioorg. Med. Chem., 2016, 24(16), 3464-3471.
[http://dx.doi.org/10.1016/j.bmc.2016.05.053] [PMID: 27312422]
[152]
Shapiro, D.A.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology, 2003, 28(8), 1400-1411.
[http://dx.doi.org/10.1038/sj.npp.1300203] [PMID: 12784105]
[153]
Wróbel, M.Z.; Chodkowski, A.; Herold, F.; Gomółka, A.; Kleps, J.; Mazurek, A.P.; Pluciński, F.; Mazurek, A.; Nowak, G.; Siwek, A.; Stachowicz, K.; Sławińska, A.; Wolak, M.; Szewczyk, B.; Satała, G.; Bojarski, A.J.; Turło, J. Synthesis and biological evaluation of novel pyrrolidine-2,5-dione derivatives as potential antidepressant agents. Part 1. Eur. J. Med. Chem., 2013, 63, 484-500.
[http://dx.doi.org/10.1016/j.ejmech.2013.02.033] [PMID: 23524160]
[154]
Park, J.E.; Song, C.; Choi, K.; Sim, T.; Moon, B.; Roh, E.J. Synthesis and biological evaluation of novel 3,4-diaryl lactam derivatives as triple reuptake inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(20), 5515-5518.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.062] [PMID: 24012181]
[155]
Skolnick, P.; Krieter, P.; Tizzano, J.; Basile, A.; Popik, P.; Czobor, P.; Lippa, A. Preclinical and clinical pharmacology of DOV 216,303, a “triple” reuptake inhibitor. CNS Drug Rev., 2006, 12(2), 123-134.
[http://dx.doi.org/10.1111/j.1527-3458.2006.00123.x] [PMID: 16958986]
[156]
Prins, J.; Denys, D.A.; Westphal, K.G.; Korte-Bouws, G.A.; Quinton, M.S.; Schreiber, R.; Groenink, L.; Olivier, B.; Korte, S.M. The putative antidepressant DOV 216,303, a triple reuptake inhibitor, increases monoamine release in the prefrontal cortex of olfactory bulbectomized rats. Eur. J. Pharmacol., 2010, 633(1-3), 55-61.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.009] [PMID: 20153745]
[157]
Chen, Z.; Skolnick, P. Triple uptake inhibitors: Therapeutic potential in depression and beyond. Expert Opin. Investig. Drugs, 2007, 16(9), 1365-1377.
[http://dx.doi.org/10.1517/13543784.16.9.1365] [PMID: 17714023]
[158]
Liang, Y.; Shaw, A.M.; Boules, M.; Briody, S.; Robinson, J.; Oliveros, A.; Blazar, E.; Williams, K.; Zhang, Y.; Carlier, P.R.; Richelson, E. Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS). J. Pharmacol. Exp. Ther., 2008, 327(2), 573-583.
[http://dx.doi.org/10.1124/jpet.108.143610] [PMID: 18689611]
[159]
Skolnick, P.; Popik, P.; Janowsky, A.; Beer, B.; Lippa, A.S. Antidepressant-like actions of DOV 21,947: A “triple” reuptake inhibitor. Eur. J. Pharmacol., 2003, 461(2-3), 99-104.
[http://dx.doi.org/10.1016/S0014-2999(03)01310-4] [PMID: 12586204]
[160]
Micheli, F.; Cavanni, P.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Checchia, A.; Davalli, S.; Di Fabio, R.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Minick, D.; Negri, M.; Oliosi, B.; Read, K.D.; Sartori, I.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L. 1-(Aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes and 6-(aryl)-6-[alkoxyalkyl]-3-azabicyclo[3.1.0]hexanes: A new series of potent and selective triple reuptake inhibitors. J. Med. Chem., 2010, 53(6), 2534-2551.
[http://dx.doi.org/10.1021/jm901818u] [PMID: 20170186]
[161]
Lucas, M.C.; Weikert, R.J.; Carter, D.S.; Cai, H.Y.; Greenhouse, R.; Iyer, P.S.; Lin, C.J.; Lee, E.K.; Madera, A.M.; Moore, A.; Ozboya, K.; Schoenfeld, R.C.; Steiner, S.; Zhai, Y.; Lynch, S.M. Design, synthesis, and biological evaluation of new monoamine reuptake inhibitors with potential therapeutic utility in depression and pain. Bioorg. Med. Chem. Lett., 2010, 20(18), 5559-5566.
[http://dx.doi.org/10.1016/j.bmcl.2010.07.020] [PMID: 20691589]
[162]
Pechulis, A.D.; Beck, J.P.; Curry, M.A.; Wolf, M.A.; Harms, A.E.; Xi, N.; Opalka, C.; Sweet, M.P.; Yang, Z.; Vellekoop, A.S.; Klos, A.M.; Crocker, P.J.; Hassler, C.; Laws, M.; Kitchen, D.B.; Smith, M.A.; Olson, R.E.; Liu, S.; Molino, B.F. 4-Phenyl tetrahydroisoquinolines as dual norepinephrine and dopamine reuptake inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(23), 7219-7222.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.050] [PMID: 23084899]
[163]
Bymaster, F.P.; Katner, J.S.; Nelson, D.L.; Hemrick-Luecke, S.K.; Threlkeld, P.G.; Heiligenstein, J.H.; Morin, S.M.; Gehlert, D.R.; Perry, K.W. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: A potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 2002, 27(5), 699-711.
[http://dx.doi.org/10.1016/S0893-133X(02)00346-9] [PMID: 12431845]
[164]
Yun, J.; Han, M.; Song, C.; Cheon, S.H.; Choi, K.; Hahn, H.G. Synthesis and biological evaluation of 3-phenethylazetidine derivatives as triple reuptake inhibitors. Bioorg. Med. Chem. Lett., 2014, 24(15), 3234-3237.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.026] [PMID: 24974340]
[165]
Jørgensen, S.; Nielsen, E.Ø.; Peters, D.; Dyhring, T. Validation of a fluorescence-based high-throughput assay for the measurement of neurotransmitter transporter uptake activity. J. Neurosci. Methods, 2008, 169(1), 168-176.
[http://dx.doi.org/10.1016/j.jneumeth.2007.12.004] [PMID: 18222006]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy