Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Mini-Review Article

Recent Advances in Rhodanine-Based Compounds as Potential Antimicrobial Agents

Author(s): Yasser M.A. Mohamed and Eirik Solum*

Volume 18, Issue 7, 2022

Published on: 22 April, 2022

Article ID: e100322201995 Pages: 11

DOI: 10.2174/1573407218666220310102900

Price: $65

Abstract

Microbial resistance towards antibiotics has become a global threat to human health. There is currently an urgent need to develop novel antibacterial and antifungal agents with new mechanisms of antimicrobial action and lower levels of toxicity. This paper reviews the structureactivity relationship as well as the antimicrobial effect of substituted rhodanine derivatives. The inhibitory effects of the substituted rhodanines on different, specific antibacterial targets and the potential that rhodanine-derived compounds have to be new antibacterial compounds have been discussed in detail.

Keywords: Antibacterial, microbial resistance, murc-inhibitor, murd-inhibitor, rhodanine, thiazolidine.

[1]
(a)Campaigne, E. Adrien albert and the rationalization of heterocyclic chemistry. J. Chem. Educ., 1986, 63(10), 860.
[http://dx.doi.org/10.1021/ed063p860]
(b)Mohamed, Y.M.A.; Solum, E.J.; Eweas, A.F. Synthesis, antibacterial evaluation, and docking studies of azaisoflavone analogues generated by palladium-catalyzed cross coupling. Monatsh. Chem., 2018, 149(10), 1857-1864.
[http://dx.doi.org/10.1007/s00706-018-2252-5]
[2]
(a)Sørvik, I.B.; Solum, E.J.; Labba, N.A.; Hansen, T.V.; Paulsen, R.E. Differential effects of some novel synthetic oestrogen analogs on oxidative PC12 cell death caused by serum deprivation. Free Radic. Res., 2018, 52(2), 273-287.
[http://dx.doi.org/10.1080/10715762.2018.1430363] [PMID: 29405079]
(b)Mohamed, Y.M.A.; El Nazer, H.A.; Solum, E.J. Practical synthesis of silyl-protected and functionalized propargylamines using nanostructured Ag/TiO2 and Pt/TiO2 as active recyclable catalysts. Chem. Pap., 2019, 73(2), 435-445.
[http://dx.doi.org/10.1007/s11696-018-0604-6]
(c)Al-Kazaale, N.; Tran, P.T.; Haidari, F.; Solum, E.J.; Liekens, S.; Vervaeke, P.; Sylte, I.; Cheng, J-J.; Vik, A.; Hansen, T.V. Synthesis, molecular modeling and biological evaluation of potent analogs of 2-methoxyestradiol. Steroids, 2018, 136, 47-55.
[http://dx.doi.org/10.1016/j.steroids.2018.05.002] [PMID: 29772242]
(d)Solum, E.; Hansen, T.V.; Aesoy, R.; Herfindal, L. New CDK8 inhibitors as potential anti-leukemic agents - Design, synthesis and biological evaluation. Bioorg. Med. Chem., 2020, 28(10), 115461.
[http://dx.doi.org/10.1016/j.bmc.2020.115461] [PMID: 32245563]
[3]
(a)Terashima, H.; Hama, K.; Yamamoto, R.; Tsuboshima, M.; Kikkawa, R.; Hatanaka, I.; Shigeta, Y. Effects of a new aldose reductase inhibitor on various tissues in vitro. J. Pharmacol. Exp. Ther., 1984, 229(1), 226-230.
[PMID: 6423811]
(b)Sharma, S.R.; Sharma, N. Epalrestat, an aldose reductase inhibitor, in diabetic neuropathy: An indian perspective. Ann. Indian Acad. Neurol., 2008, 11(4), 231-235.
[http://dx.doi.org/10.4103/0972-2327.44558] [PMID: 19893679]
[(4)]
Eggers, H.J.; Koch, M.A.; Furst, A.; Daves, G.D., Jr; Wilczynski, J.J.; Folkers, K. Rhodanine: A selective inhibitor of the multiplication of echovirus 12. Science, 1970, 167(3916), 294-297.
[http://dx.doi.org/10.1126/science.167.3916.294] [PMID: 4982794]
[5]
Foye, W.O.; Tovivich, P. N-Glucopyranosyl-5-aralkylidener-hodanines: Synthesis and antibacterial and antiviral activities. J. Pharm. Sci., 1977, 66(11), 1607-1611.
[http://dx.doi.org/10.1002/jps.2600661126] [PMID: 915738]
[6]
Sim, M.M.; Ng, S.B.; Buss, A.D.; Crasta, S.C.; Goh, K.L.; Lee, S.K. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg. Med. Chem. Lett., 2002, 12(4), 697-699.
[http://dx.doi.org/10.1016/S0960-894X(01)00832-0] [PMID: 11844704]
[7]
Tomasić, T.; Zidar, N.; Mueller-Premru, M.; Kikelj, D.; Mašič, L.P. Synthesis and antibacterial activity of 5-ylidenethiazolidin-4-ones and 5-benzylidene-4,6-pyrimidinediones. Eur. J. Med. Chem., 2010, 45(4), 1667-1672.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.030] [PMID: 20060624]
[8]
Chen, Z-H.; Zheng, C-J.; Sun, L-P.; Piao, H-R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem., 2010, 45(12), 5739-5743.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.031] [PMID: 20889240]
[9]
Momose, Y.; Meguro, K.; Ikeda, H.; Hatanaka, C.; Oi, S.; Sohda, T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull. (Tokyo), 1991, 39(6), 1440-1445.
[http://dx.doi.org/10.1248/cpb.39.1440] [PMID: 1934164]
[10]
Patel, B.A.; Ashby, C.R., Jr; Hardej, D.; Talele, T.T. The synthesis and SAR study of phenylalanine-derived (Z)-5-arylmethylidene rhodanines as anti-methicillin-resistant staphylococcus aureus (MRSA) compounds. Bioorg. Med. Chem. Lett., 2013, 23(20), 5523-5527.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.059] [PMID: 24012180]
[11]
AbdelKhalek, A.; Ashby, C.R., Jr; Patel, B.A.; Talele, T.T.; Seleem, M.N. In vitro antibacterial activity of rhodanine derivatives against pathogenic clinical isolates. PLoS One, 2016, 11(10), e0164227.
[http://dx.doi.org/10.1371/journal.pone.0164227] [PMID: 27711156]
[12]
Song, M-X.; Li, S-H.; Peng, J-Y.; Guo, T-T.; Xu, W-H.; Xiong, S-F.; Deng, X-Q. Synthesis and bioactivity evaluation of N-Arylsulfonylindole analogs bearing a rhodanine moiety as antibacterial agents. Molecules, 2017, 22(6), E970.
[http://dx.doi.org/10.3390/molecules22060970] [PMID: 28613234]
[13]
(a)Song, M.X.; Deng, X.Q.; Wei, Z.Y.; Zheng, C.J.; Wu, Y.; An, C.S.; Piao, H.R. Synthesis and antibacterial evaluation of (S,Z)-4-methyl-2-(4-oxo-5-((5-substituted phenylfuran-2-yl) methylene)-2-thioxothiazolidin-3-yl)pentanoic acids. Iran. J. Pharm. Res., 2015, 14(1), 89-96.
[PMID: 25561915]
(b)Mohamed, Y.M.A.; Attia, Y.A.; Solum, E.J. Photoinduced one-pot synthesis of hydroxamic acids from aldehydes through in-situ generated silver nanoclusters. Res. Chem. Intermed., 2018, 44(12), 7173-7186.
[http://dx.doi.org/10.1007/s11164-018-3549-z]
(c)Song, M.X.; Zheng, C.J.; Deng, X.Q.; Wang, Q.; Hou, S.P.; Liu, T.T.; Xing, X.L.; Piao, H.R. Synthesis and bioactivity evaluation of rhodanine derivatives as potential anti-bacterial agents. Eur. J. Med. Chem., 2012, 54, 403-412.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.023] [PMID: 22703706]
(d)Song, M.X.; Deng, X.Q.; Li, Y.R.; Zheng, C.J.; Hong, L.; Piao, H.R. Synthesis and biological evaluation of (E)-1-(substituted)-3-phenylprop-2-en-1-ones bearing rhodanines as potent anti-microbial agents. J. Enzyme Inhib. Med. Chem., 2014, 29(5), 647-653.
[http://dx.doi.org/10.3109/14756366.2013.837899] [PMID: 24102526]
[14]
Tomašić, T.; Peterlin Mašič, L. Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. Expert Opin. Drug Discov., 2012, 7(7), 549-560.
[http://dx.doi.org/10.1517/17460441.2012.688743] [PMID: 22607309]
[15]
Tomasić, T.; Zidar, N.; Rupnik, V.; Kovač, A.; Blanot, D.; Gobec, S.; Kikelj, D.; Mašič, L.P. Synthesis and biological evaluation of new glutamic acid-based inhibitors of MurD ligase. Bioorg. Med. Chem. Lett., 2009, 19(1), 153-157.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.129] [PMID: 19014883]
[16]
Tomasić, T.; Zidar, N.; Kovač, A.; Turk, S.; Simčič, M.; Blanot, D.; Müller-Premru, M.; Filipič, M.; Grdadolnik, S.G.; Zega, A.; Anderluh, M.; Gobec, S.; Kikelj, D.; Peterlin Mašič, L. 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial mur ligases. ChemMedChem, 2010, 5(2), 286-295.
[http://dx.doi.org/10.1002/cmdc.200900449] [PMID: 20024979]
[17]
Zidar, N.; Tomasić, T.; Šink, R.; Rupnik, V.; Kovač, A.; Turk, S.; Patin, D.; Blanot, D.; Contreras Martel, C.; Dessen, A.; Müller Premru, M.; Zega, A.; Gobec, S.; Peterlin Mašič, L.; Kikelj, D. Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J. Med. Chem., 2010, 53(18), 6584-6594.
[http://dx.doi.org/10.1021/jm100285g] [PMID: 20804196]
[18]
Tomasić, T.; Zidar, N.; Šink, R.; Kovač, A.; Blanot, D.; Contreras-Martel, C.; Dessen, A.; Müller-Premru, M.; Zega, A.; Gobec, S.; Kikelj, D.; Masic, L.P. Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase (MurD). J. Med. Chem., 2011, 54(13), 4600-4610.
[http://dx.doi.org/10.1021/jm2002525] [PMID: 21591605]
[19]
Tomašić, T.; Šink, R.; Zidar, N.; Fic, A.; Contreras-Martel, C.; Dessen, A.; Patin, D.; Blanot, D.; Müller-Premru, M.; Gobec, S.; Zega, A.; Kikelj, D.; Mašič, L.P. Dual inhibitor of MurD and MurE ligases from escherichia coli and staphylococcus aureus. ACS Med. Chem. Lett., 2012, 3(8), 626-630.
[http://dx.doi.org/10.1021/ml300047h] [PMID: 24900523]
[20]
(a)Tomašić, T.; Kovač, A.; Simčič, M.; Blanot, D.; Grdadolnik, S.G.; Gobec, S.; Kikelj, D.; Peterlin Mašič, L. Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting D-Glu- and diphosphate-binding sites. Eur. J. Med. Chem., 2011, 46(9), 3964-3975.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.070] [PMID: 21703731]
(b)Barreteau, H.; Sosič, I.; Turk, S.; Humljan, J.; Tomašić, T.; Zidar, N.; Hervé, M.; Boniface, A.; Peterlin-Mašič, L.; Kikelj, D.; Mengin-Lecreulx, D.; Gobec, S.; Blanot, D. MurD enzymes from different bacteria: Evaluation of inhibitors. Biochem. Pharmacol., 2012, 84(5), 625-632.
[http://dx.doi.org/10.1016/j.bcp.2012.06.006] [PMID: 22705647]
(c)Perdih, A.; Wolber, G.; Solmajer, T. Molecular dynamics simulation and linear interaction energy study of D-Glu-based inhibitors of the MurD ligase. J. Comput. Aided Mol. Des., 2013, 27(8), 723-738.
[http://dx.doi.org/10.1007/s10822-013-9673-3] [PMID: 23990043]
(d)Perdih, A.; Hrast, M.; Barreteau, H.; Gobec, S.; Wolber, G.; Solmajer, T. Inhibitor design strategy based on an enzyme structural flexibility: A case of bacterial MurD ligase. J. Chem. Inf. Model., 2014, 54(5), 1451-1466.
[http://dx.doi.org/10.1021/ci500104m] [PMID: 24724969]
[21]
Zidar, N.; Tomašić, T.; Šink, R.; Kovač, A.; Patin, D.; Blanot, D.; Contreras-Martel, C.; Dessen, A.; Premru, M.M.; Zega, A.; Gobec, S.; Mašič, L.P.; Kikelj, D. New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: Design, synthesis, crystal structures, and biological evaluation. Eur. J. Med. Chem., 2011, 46(11), 5512-5523.
[http://dx.doi.org/10.1016/j.ejmech.2011.09.017] [PMID: 21963114]
[22]
(a)Götz, F. Staphylococcus and biofilms. Mol. Microbiol., 2002, 43(6), 1367-1378.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02827.x] [PMID: 11952892]
(b)Hazan, Z.; Zumeris, J.; Jacob, H.; Raskin, H.; Kratysh, G.; Vishnia, M.; Dror, N.; Barliya, T.; Mandel, M.; Lavie, G. Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob. Agents Chemother., 2006, 50(12), 4144-4152.
[http://dx.doi.org/10.1128/AAC.00418-06] [PMID: 16940055]
[23]
Gualtieri, M.; Bastide, L.; Villain-Guillot, P.; Michaux-Charachon, S.; Latouche, J.; Leonetti, J-P. In vitro activity of a new antibacterial rhodanine derivative against staphylococcus epidermidis biofilms. J. Antimicrob. Chemother., 2006, 58(4), 778-783.
[http://dx.doi.org/10.1093/jac/dkl314] [PMID: 16880176]
[24]
Villain-Guillot, P.; Gualtieri, M.; Bastide, L.; Roquet, F.; Martinez, J.; Amblard, M.; Pugniere, M.; Leonetti, J-P. Structure-activity relationships of phenyl-furanyl-rhodanines as inhibitors of RNA polymerase with antibacterial activity on biofilms. J. Med. Chem., 2007, 50(17), 4195-4204.
[http://dx.doi.org/10.1021/jm0703183] [PMID: 17665895]
[25]
Opperman, T.J.; Kwasny, S.M.; Williams, J.D.; Khan, A.R.; Peet, N.P.; Moir, D.T.; Bowlin, T.L. Aryl rhodanines specifically inhibit staphylococcal and enterococcal biofilm formation. Antimicrob. Agents Chemother., 2009, 53(10), 4357-4367.
[http://dx.doi.org/10.1128/AAC.00077-09] [PMID: 19651903]
[26]
Song, J.; Song, H.; Kong, H.; Hong, J-Y.; Jang, J. J. Fabrication of silica/polyrhodanine core/shell nanoparticles and their antibacterial properties. J. Mater. Chem., 2011, 21(48), 19317-19323.
[http://dx.doi.org/10.1039/c1jm13017j]
[27]
Hamdy, R.; Soliman, S.S.M.; Alsaadi, A.I.; Fayed, B.; Hamoda, A.M.; Elseginy, S.A.; Husseiny, M.I.; Ibrahim, A.S. Design and synthesis of new drugs inhibitors of Candida albicans hyphae and biofilm formation by upregulating the expression of TUP1 transcription repressor gene. Eur. J. Pharm. Sci., 2020, 148, 105327.
[http://dx.doi.org/10.1016/j.ejps.2020.105327] [PMID: 32272212]
[28]
Champoux, J.J. DNA topoisomerases: Structure, function, and mechanism. Annu. Rev. Biochem., 2001, 70(1), 369-413.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.369] [PMID: 11395412]
[29]
Brvar, M.; Perdih, A.; Hodnik, V.; Renko, M.; Anderluh, G.; Jerala, R.; Solmajer, T. In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg. Med. Chem., 2012, 20(8), 2572-2580.
[http://dx.doi.org/10.1016/j.bmc.2012.02.052] [PMID: 22444877]
[30]
Werner, M.M.; Patel, B.A.; Talele, T.T.; Ashby, C.R.; Li, Z.; Zauhar, R.J. Dual inhibition of Staphylococcus aureus DNA gyrase and topoisomerase IV activity by phenylalanine-derived (Z)-5-arylmethylidene rhodanines. Bioorg. Med. Chem., 2015, 23(18), 6125-6137.
[http://dx.doi.org/10.1016/j.bmc.2015.08.004] [PMID: 26320664]
[31]
Sun, Z-G.; Xu, Y-J.; Xu, J-F.; Liu, Q-X.; Yang, Y-S.; Zhu, H-L. Introducing broadened antibacterial activity to rhodanine derivatives targeting enoyl-acyl carrier protein reductase. Chem. Pharm. Bull. (Tokyo), 2019, 67(2), 125-129.
[http://dx.doi.org/10.1248/cpb.c18-00663] [PMID: 30713272]
[32]
Grant, E.B.; Guiadeen, D.; Baum, E.Z.; Foleno, B.D.; Jin, H.; Montenegro, D.A.; Nelson, E.A.; Bush, K.; Hlasta, D.J. The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors. Bioorg. Med. Chem. Lett., 2000, 10(19), 2179-2182.
[http://dx.doi.org/10.1016/S0960-894X(00)00444-3] [PMID: 11012024]
[33]
Brem, J.; van Berkel, S.S.; Aik, W.; Rydzik, A.M.; Avison, M.B.; Pettinati, I.; Umland, K-D.; Kawamura, A.; Spencer, J.; Claridge, T.D.W.; McDonough, M.A.; Schofield, C.J. Rhodanine hydrolysis leads to potent thioenolate mediated metallo-β-lactamase inhibition. Nat. Chem., 2014, 6(12), 1084-1090.
[http://dx.doi.org/10.1038/nchem.2110] [PMID: 25411887]
[34]
Zervosen, A.; Lu, W-P.; Chen, Z.; White, R.E.; Demuth, T.P., Jr; Frère, J-M. Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones. Antimicrob. Agents Chemother., 2004, 48(3), 961-969.
[http://dx.doi.org/10.1128/AAC.48.3.961-969.2004] [PMID: 14982790]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy