Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Bioactive Compounds Identification, Antioxidant and Antibacterial Activities of Algerian Marine Algae Extracts

Author(s): Karima Saidani*, Diana González-Peña, Lucía Giménez, Naima Touati, Fatiha Bedjou, Begoña de Ancos and Concepción Sánchez-Moreno

Volume 18, Issue 8, 2022

Published on: 11 April, 2022

Article ID: e100322201991 Pages: 13

DOI: 10.2174/1573407218666220310100414

Price: $65

Abstract

Background: Marine algae produce bioactive compounds, including polyphenols. They have antioxidant, antibacterial, immune regulation and other biological activities. The aim of this study was to examine the antibacterial and antioxidant activities of extracts of five marine algae species: Cystoseira humilis, Halopteris scoparia, Pavonica padina, Sargassum vulgare and Rhodomela confervoides of Bejaia’s coast (northern Algeria).

Methods: Phenolic content of the five marine algae was assessed using Folin Ciocalteu method and then characterized by HPLC-DAD and HPLC-ESI-QTOF-MS analyses. The antioxidant activity was evaluated by DPPH•, ABTS•+, NO• radical scavenging and FRAP assays. For the screening of the antibacterial activity, six strains were tested using three different methods: agar disc diffusion, agar well diffusion and spot methods. The minimum inhibitory concentrations (MICs) were also determined.

Results: Protocatechuic acid was the phenolic compound identified in all the studied seaweeds, while Padina pavonica was the species where more phenolic compounds were identified (phloroglucinol, gallic acid, ferulic acid and syringic acid). Cystoseira humilis showed the highest antioxidant activity (DPPH•: 2237.50 ± 148.34 μM TE/100 g dw, ABTS•+: 1992.50 ± 165.97 μM TE/100 g dw, NO•: 2559.58 ± 42.08 μM TE/100 g dw, FRAP: 2081.20 ± 115.29 μM TE/100 g dw), which was also the richest in phenolic compounds (4.63 ± 0.23 mg PhlE/g dw). Rodomela confervoides showed an important activity against all the bacterial strains tested with the greatest diameter of inhibition zone (18 mm) against E. coli with a MIC equal to 20 mg/mL. The extract of Padina pavonica showed a moderate activity (13.5 mm) against P. aeruginosa with a MIC ≤ 10 mg/mL and a MBC > 10 mg/mL.

Conclusion: The studied marine algae showed antioxidant and antibacterial activities. They could be potentially used for applications in medicine, food production and the cosmetic industry.

Keywords: Antibacterial activity, antioxidant activity, marine algae, phenolic compounds, HPLC-DAD analysis, HPLC-ESIQTOF- MS analysis.

Graphical Abstract

[1]
Balakrishnan, D.; Kandasamy, D.; Nithyanand, P. A review on antioxidant activity of marine organisms. Int. J. Chemtech Res., 2014, 6, 3431-3436.
[2]
Vadlapudi, V. Antioxidant activities of marine algae: A review. Res. Signpost, 2012, 661, 189-203.
[3]
Muthuirulappan, S.; Francis, S.P. Anti-cancer mechanism and possibility of nano-suspension formulations for a marine algae product fucoxanthin. Asian Pac. J. Cancer Prev., 2013, 14(4), 2213-2216.
[http://dx.doi.org/10.7314/APJCP.2013.14.4.2213] [PMID: 23725114]
[4]
Arvinda Swamy, M.L. Marine algal sources for treating bacterial diseases. Adv. Food Nutr. Res., 2011, 64, 71-84.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00006-5] [PMID: 22054939]
[5]
Martins, S.; Amorim, E.L.C.; Peixoto, T.J.S.; Saraiva, A.M.; Pisciottano, M.N.C.; Aguilar, C.N.; Teixeira, J.A.; Mussatto, S.I. Antibacterial activity of crude methanolic extract and fractions obtained from Larrea Tridentata Leaves. Ind. Crops Prod., 2013, 41, 306-311.
[http://dx.doi.org/10.1016/j.indcrop.2012.04.037]
[6]
Tomsone, L.; Kruma, Z. Comparison of Different Solvents for Isolation of Phenolic Compounds from Horseradish (Armoracia Rusticana L.) Leaves. Res. Rural Develop., 2013, 1, 104-110.
[7]
Karpiński, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs, 2019, 17(4), 241.
[http://dx.doi.org/10.3390/md17040241] [PMID: 31018512]
[8]
Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Narracci, M.; Cecere, E.; Petrocelli, A. Biotech-nological potential of the seaweed Cladophora rupestris (Chlorophyta, Cladophorales) lipidic extract. N. Biotechnol., 2014, 31(5), 436-444.
[http://dx.doi.org/10.1016/j.nbt.2014.05.002] [PMID: 24852224]
[9]
Stabili, L.; Acquaviva, M.I.; Biandolino, F.; Cavallo, R.A.; De Pascali, S.A.; Fanizzi, F.P.; Narracci, M.; Petrocelli, A.; Cecere, E. The lipidic extract of the seaweed Gracilariopsis longissima (Rhodophyta, Gracilariales): A potential resource for biotechnological purposes? N. Biotechnol., 2012, 29(3), 443-450.
[http://dx.doi.org/10.1016/j.nbt.2011.11.003] [PMID: 22100430]
[10]
Smit, A.J. Medicinal and pharmaceutical uses of seaweed natural products: A review. J. Appl. Phycol., 2004, 16(4), 245-262.
[http://dx.doi.org/10.1023/B:JAPH.0000047783.36600.ef]
[11]
Wijesekara, I.; Pangestuti, R.; Kim, S. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym., 2011, 84(1), 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[12]
Wijesinghe, W.A.J.P.; Jeon, Y.J. Biological activities and potential industrial applications of fucose rich sulfated polysaccharides and fu-coidans isolated from brown seaweeds: A review. Carbohydr. Polym., 2012, 88(1), 13-20.
[http://dx.doi.org/10.1016/j.carbpol.2011.12.029]
[13]
Maharana, D.; Das, P.B.; Verlecar, X.N.; Pise, N.M.; Gauns, M. Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ. Sci. Pollut. Res. Int., 2015, 22(23), 18741-18749.
[http://dx.doi.org/10.1007/s11356-015-4985-6] [PMID: 26194236]
[14]
Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother., 2002, 50(6), 889-893.
[http://dx.doi.org/10.1093/jac/dkf222] [PMID: 12461009]
[15]
Fernando, I.P.S.; Kim, M.; Son, K-T.; Jeong, Y.; Jeon, Y-J. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food, 2016, 19(7), 615-628.
[http://dx.doi.org/10.1089/jmf.2016.3706] [PMID: 27332715]
[16]
Machu, L.; Misurcova, L.; Ambrozova, J.V.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Phenolic content and antioxidant capacity in algal food products. Molecules, 2015, 20(1), 1118-1133.
[http://dx.doi.org/10.3390/molecules20011118] [PMID: 25587787]
[17]
Vizetto-Duarte, C.; Custódio, L.; Acosta, G.; Lago, J.H.G.; Morais, T.R.; Bruno de Sousa, C.; Gangadhar, K.N.; Rodrigues, M.J.; Pereira, H.; Lima, R.T.; Vasconcelos, M.H.; Barreira, L.; Rauter, A.P.; Albericio, F.; Varela, J. Can macroalgae provide promising anti-tumoral compounds? A closer look at Cystoseira tamariscifolia as a source for antioxidant and anti-hepatocarcinoma compounds. PeerJ, 2016, 4, e1704.
[http://dx.doi.org/10.7717/peerj.1704] [PMID: 26925328]
[18]
Salvayre, R.; Auge, N.; Benoist, H.; Negre-Salvayre, A. Oxidized low-density lipoprotein-induced apoptosis. Biochim. Biophys. Acta, 2002, 1585(2-3), 213-221.
[http://dx.doi.org/10.1016/S1388-1981(02)00343-8] [PMID: 12531556]
[19]
Ho, R.C.; Davy, K.; Davy, B.; Melby, C.L. Whole-body insulin sensitivity, low-density lipoprotein (LDL) particle size, and oxidized LDL in overweight, nondiabetic men. Metabolism, 2002, 51(11), 1478-1483.
[http://dx.doi.org/10.1053/meta.2002.35577] [PMID: 12404201]
[20]
Saidani, K.; Bedjou, F.; Benabdesselam, F.; Touati, N. Antifungal activity of methanolic extracts of four algerian marine algae species. Afr. J. Biotechnol., 2012, 11(39), 9496-9500.
[http://dx.doi.org/10.5897/AJB11.1537]
[21]
Bedjou, F.; Benabdesselam, F.; Saidani, K.; Touati, N. Antimicrobial activity of four species of algerian algae. Natural Product, 2011, 7(2), 66-70.
[22]
Koivikko, R.; Eränen, J.K.; Loponen, J.; Jormalainen, V. Variation of phlorotannins among three populations of Fucus vesiculosus as re-vealed by HPLC and colorimetric quantification. J. Chem. Ecol., 2008, 34(1), 57-64.
[http://dx.doi.org/10.1007/s10886-007-9410-2] [PMID: 18157573]
[23]
Kuda, T.; Tsunekawa, M.; Hishi, T.; Araki, Y. Antioxidant Properties of Dried “Kayamo-Nori”, a Brown Alga Scytosiphon lomentaria (Scytosiphonales, Phaeophyceae). Food Chem., 2005, 89(4), 617-622.
[http://dx.doi.org/10.1016/j.foodchem.2004.03.020]
[24]
Ferreres, F.; Lopes, G.; Gil-izquierdo, A.; Andrade, P.B. Phlorotannin extracts from fucales characterized by inhibitory capacity and anti-oxidant properties. Mar. Drugs, 2012, 2766-2781.
[http://dx.doi.org/10.3390/md10122766] [PMID: 23222802]
[25]
Sánchez-Moreno, C.; Larrauri, J.A.; Saura-calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric., 1998, 270(2), 270-276.
[http://dx.doi.org/10.1002/(SICI)1097-0010(199802)76:2<270:AID-JSFA945>3.0.CO;2-9]
[26]
González-Peña, D.; Colina-Coca, C.; Char, C.D.; Cano, M.P.; de Ancos, B.; Sánchez-Moreno, C. Hyaluronidase inhibiting activity and radical scavenging potential of flavonols in processed onion. J. Agric. Food Chem., 2013, 61(20), 4862-4872.
[http://dx.doi.org/10.1021/jf3054356] [PMID: 23656415]
[27]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cati-on decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[28]
Hazra, B.; Biswas, S.; Mandal, N. BMC complementary and antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complement. Altern. Med., 2008, 10, 1-10.
[29]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[30]
Cho, S.H.; Kang, S.E.; Cho, J.Y.; Kim, A.R.; Park, S.M.; Hong, Y-K.; Ahn, D-H. The antioxidant properties of brown seaweed (Sargassum siliquastrum) extracts. J. Med. Food, 2007, 10(3), 479-485.
[http://dx.doi.org/10.1089/jmf.2006.099] [PMID: 17887942]
[31]
Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother., 2008, 61(6), 1295-1301.
[http://dx.doi.org/10.1093/jac/dkn090] [PMID: 18339637]
[32]
Karabay-Yavasoglu, N.U.; Sukatar, A.; Ozdemir, G.; Horzum, Z. Antimicrobial activity of volatile components and various extracts of the red alga Jania rubens. Phytother. Res., 2007, 21(2), 153-156.
[http://dx.doi.org/10.1002/ptr.2045] [PMID: 17128433]
[33]
Bansemir, A.; Blume, M.; Schröder, S.; Lindequist, U. Screening of cultivated seaweeds for antibacterial activity against fish pathogenic bacteria. Aquaculture, 2006, 252(1), 79-84.
[http://dx.doi.org/10.1016/j.aquaculture.2005.11.051]
[34]
Meyer, A.; Deiana, J.; Leclerc, H. Cours de Microbiologie Générale; Doin: Paris, 1994, p. 365.
[35]
Santoyo, S.; Rodríguez-Meizoso, I.; Cifuentes, A.; Jaime, L.; García-Blairsy Reina, G.; Señorans, F.J.; Ibáñez, E. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. Lebensm. Wiss. Technol., 2009, 42(7), 1213-1218.
[http://dx.doi.org/10.1016/j.lwt.2009.01.012]
[36]
Güner, A.; Köksal, Ç. Erel, Ş.B.; Kayalar, H.; Nalbantsoy, A.; Sukatar, A.; Karabay Yavaşoğlu, N.Ü. Antimicrobial and antioxidant activi-ties with acute toxicity, cytotoxicity and mutagenicity of Cystoseira compressa (Esper) Gerloff & Nizamuddin from the coast of Urla (Iz-mir, Turkey). Cytotechnology, 2015, 67(1), 135-143.
[http://dx.doi.org/10.1007/s10616-013-9668-x] [PMID: 24292649]
[37]
Tariq, A.; Ara, J.; Sultana, V.; Ehteshamul-Haque, S.; Athar, M. antioxidant potential of seaweeds occurring at Karachi coast of Pakistan. J. Appl. Bot. Food Qual., 2011, 84, 207-212.
[38]
Foon, T.S.; Ai, L.A.; Kuppusamy, P.; Yusoff, M.M.; Govindan, N. Studies on in-vitro antioxidant activity of marine edible seaweeds from the east coastal region of peninsular malaysia using different extraction methods. J. Coast. Life Med., 2013, 1, 193-198.
[39]
Zhang, W.W.; Duan, X.J.; Huang, H.L.; Zhang, Y.; Wang, B.G. Evaluation of 28 marine algae from the qingdao coast for antioxidative capacity and determination of antioxidant efficiency and total phenolic content of fractions and subfractions derived from Symphyocladia latiuscula (Rhodomelaceae). J. Appl. Phycol., 2007, 19(2), 97-108.
[http://dx.doi.org/10.1007/s10811-006-9115-x]
[40]
Murugan, K.; Iyer, V.V. Antioxidant and antiproliferative activities of marine algae, Gracilaria edulis and Enteromorpha lingulata, from Chennai coast. Int. J. Cancer Res., 2012, 8(1), 15-26.
[http://dx.doi.org/10.3923/ijcr.2012.15.26]
[41]
Wang, B.; Zhang, W.; Duan, X.; Li, X. In vitro antioxidative activities of extract and semi-purified fractions of the marine Red Alga, Rho-domela confervoides (Rhodomelaceae). Food Chem., 2009, 113(4), 1101-1105.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.078]
[42]
Fan, X.; Xu, N.; Shi, J. Bromophenols from the Red Alga Rhodomela confervoides., 2003. 49, 455-458.
[43]
Li, Y.; Wijesekara, I.; Li, Y.; Kim, S. Phlorotannins as bioactive agents from brown Algae. Process Biochem., 2011, 46(12), 2219-2224.
[http://dx.doi.org/10.1016/j.procbio.2011.09.015]
[44]
Bugni, T.S.; Ireland, C.M. Marine-derived fungi: A chemically and biologically diverse group of microorganisms. Nat. Prod. Rep., 2004, 21(1), 143-163.
[http://dx.doi.org/10.1039/b301926h] [PMID: 15039840]
[45]
Valls, R.; Piovetti, L.; Banaigst, B.; Praud, A. Secondary metabolites from Morocco Brown algae of the genus Cystoseira. Phytochemistry, 1993, 32(4), 961-966.
[http://dx.doi.org/10.1016/0031-9422(93)85236-K]
[46]
Amico, V. Marine brown algae of family cystoseiraceae: Chemistry and chemotaxonomy. Phytochemistry, 1995, 39(6), 1257-1279.
[http://dx.doi.org/10.1016/0031-9422(95)00199-H]
[47]
Jégou, C.; Culioli, G.; Kervarec, N.; Simon, G.; Stiger-Pouvreau, V. LC/ESI-MS n and 1H HR-MAS NMR analytical methods as useful taxonomical tools within the genus Cystoseira C. Agardh (Fucales; Phaeophyceae). Talanta, 2010, 83(2), 613-622.
[http://dx.doi.org/10.1016/j.talanta.2010.10.003] [PMID: 21111182]
[48]
Kanias, G.D.; Skaltsa, H.; Tsitsa, E.; Loukis, A.; Bitis, J. Study of the correlation between trace elements, sterols and fatty acids in brown algae from the saronikos gulf of Greece. J. Anal. Chem., 1992, 344(7-8), 334-339.
[49]
Wahbeh, M.I. Amino acid and fatty acid profiles of four species of macroalgae from aqaba and their suitability for use in fish diets. Aquaculture, 1997, 159(1-2), 101-109.
[http://dx.doi.org/10.1016/S0044-8486(97)00183-X]
[50]
Hegazi, M.M.; Pérez-Ruzafa, A.; Almela, L.; Candela, M.E. Separation and identification of chlorophylls and carotenoids from Caulerpa prolifera, Jania rubens and Padina pavonica by reversed-phase high-performance liquid chromatography. J. Chromatogr. A, 1998, 829(1-2), 153-159.
[http://dx.doi.org/10.1016/S0021-9673(98)00803-6] [PMID: 9764489]
[51]
Men’shova, R.V.; Ermakova, S.P.; Rachidi, S.M.; Al-Hajje, A.H.; Zvyagintseva, T.N.; Kanaan, H.M. Seasonal variations of the composi-tion, structural features, and antitumor properties of polysaccharides from Padina Pavonica (lebanon) as a function of composition. Chem. Nat. Compd., 2012, 47(6), 870-875.
[http://dx.doi.org/10.1007/s10600-012-0091-x]
[52]
Orhan, I.; Sener, B.; Atici, T. Fatty acid distribution in the lipoid extracts of various algae. Chem. Nat. Compd., 2003, 39(2), 123-125.
[http://dx.doi.org/10.1023/A:1024876810579]
[53]
Korbee, N.; Figueroa, F.L.; Aguilera, J. Acumulación de aminoácidos tipo micosporina (MAAs): Biosíntesis, fotocontrol y Funciones Ecofisiológicas. Rev. Chil. Hist. Nat., 2006, 79(1), 119-132.
[http://dx.doi.org/10.4067/S0716-078X2006000100010]
[54]
Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem., 2009, 57(5), 1768-1774.
[http://dx.doi.org/10.1021/jf803011r] [PMID: 19199445]
[55]
Cotelle, N.; Bernier, J.L.; Catteau, J.P.; Pommery, J.; Wallet, J.C.; Gaydou, E.M. Antioxidant properties of hydroxy-flavones. Free Radic. Biol. Med., 1996, 20(1), 35-43.
[http://dx.doi.org/10.1016/0891-5849(95)02014-4] [PMID: 8903677]
[56]
Duan, X.J.; Zhang, W.W.; Li, X.M.; Wang, B.G. Evaluation of antioxidant property of extract and fractions obtained from a red Alga, Poly-siphonia Urceolata. Food Chem., 2006, 95(1), 37-43.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.015]
[57]
Chiboub, O.; Ktari, L.; Sifaoui, I.; López-Arencibia, A.; Reyes-Batlle, M.; Mejri, M.; Valladares, B.; Abderrabba, M.; Piñero, J.E.; Lo-renzo-Morales, J. In vitro amoebicidal and antioxidant activities of some Tunisian seaweeds. Exp. Parasitol., 2017, 183, 76-80.
[http://dx.doi.org/10.1016/j.exppara.2017.10.012] [PMID: 29102681]
[58]
Tenorio-Rodriguez, P.A.; Murillo-Álvarez, J.I.; Campa-Cordova, Á.I.; Angulo, C. Antioxidant screening and phenolic content of ethanol extracts of selected Baja California Peninsula macroalgae. J. Food Sci. Technol., 2017, 54(2), 422-429.
[http://dx.doi.org/10.1007/s13197-016-2478-3] [PMID: 28242941]
[59]
De Lima, R.L.; Maria, K.; De, D.B. In vitro evaluation of antioxidant activity of methanolic extracts obtained from seaweeds endemic to the coast of Ceará, Brazil. Acta Sci. Technol., 2016, 38(2), 247-255.
[http://dx.doi.org/10.4025/actascitechnol.v38i2.27275]
[60]
Lee, J-H.; Kim, G-H. Evaluation of antioxidant activity of marine Algae extracts from Korea. J. Aquat. Food Prod. Technol., 2015, 24(3), 227-240.
[http://dx.doi.org/10.1080/10498850.2013.770809]
[61]
Roginsky, V.; Lissi, E.A. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem., 2005, 92(2), 235-254.
[http://dx.doi.org/10.1016/j.foodchem.2004.08.004]
[62]
Dang, T.T.; Bowyer, M.C.; Van Altena, I.A.; Scarlett, C.J. Comparison of chemical profile and antioxidant properties of the brown Algae. Int. J. Food Sci. Technol., 2017, 174-181.
[63]
Sivaramakrishnan, T.; Swain, S.; Saravanan, K.; Roy, S.D.; Biswas, L.; Shalini, B. In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south andaman coast of India. Turk. J. Fish. Aquat. Sci., 2017, 648, 639-648.
[64]
Soltani, S.; Saadatmand, S.; Khavarinejad, R.; Nejadsattari, T. Antioxidant and antibacterial activities of Cladophora Glomerata (l.) kütz in caspian sea coast. Iran. Afr. J. Biotechnol., 2011, 10, 7684-7689.
[65]
Lim, S.N.; Cheung, P.C.K.; Ooi, V.E.C.; Ang, P.O. Evaluation of antioxidative activity of extracts from a brown seaweed, Sargassum sili-quastrum. J. Agric. Food Chem., 2002, 50(13), 3862-3866.
[http://dx.doi.org/10.1021/jf020096b] [PMID: 12059172]
[66]
Yangthong, M.; Hutadilok-Towatana, N.; Phromkunthong, W. Antioxidant activities of four edible seaweeds from the southern coast of Thailand. Plant Foods Hum. Nutr., 2009, 64(3), 218-223.
[http://dx.doi.org/10.1007/s11130-009-0127-y] [PMID: 19609678]
[67]
Matanjun, P.; Mohamed, S.; Mustapha, N.M.; Muhammad, K.; Ming, C.H. Antioxidant activities and Phenolics content of eight species of seaweeds from north Borneo. J. Appl. Phycol., 2008, 20(4), 367-373.
[http://dx.doi.org/10.1007/s10811-007-9264-6]
[68]
Salvador, N.; Gómez Garreta, A.; Lavelli, L.; Ribera, M.A. Antimicrobial activity of Iberian Macroalgae. Sci. Mar., 2007, 71(1), 101-114.
[http://dx.doi.org/10.3989/scimar.2007.71n1101]
[69]
Sea, M.S.R.; Borie, I.; Ibraheem, M.; Abdel-raouf, N. Abdel-, M.S. Antimicrobial and antiviral activities against newcastle disease virus (NDV) from Marine algae isolated. Afr. J. Biotechnol., 2012, 11, 8332-8340.
[70]
González, F.; Silva, M. Biodiversidad Química de Macroalgas Marinas En: Sustentabilidad de la biodiversidad, un problema actual. Bases científico-técnicas, teorizaciones y proyecciones. Alveal K.y.T; Chile, 2001, pp. 415-496.
[71]
Zubia, M.; Payri, C.; Deslandes, E. Alginate, Mannitol, phenolic compounds and biological activities of two range-extending brown Algae, Sargassum mangarevense and Turbinaria ornata (Phaeophyta: Fucales), from Tahiti (French polynesia). J. Appl. Phycol., 2008, 20(6), 1033-1043.
[http://dx.doi.org/10.1007/s10811-007-9303-3]
[72]
Manivannan, K.; Thirumaran, G.; Devi, G.K.; Anantharaman, P.; Balasubramanian, T. Proximate Composition of different group of sea-weeds from vedalai coastal waters (Gulf of Mannar): Southeast coast of India. Middle East J. Sci. Res., 2009, 4, 72-77.
[73]
Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. The in vitro antibacterial activity of dietary spice and medicinal herb extracts. Int. J. Food Microbiol., 2007, 117(1), 112-119.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2007.03.003] [PMID: 17449125]
[74]
Tian, F.; Li, B.; Ji, B.; Yang, J.; Zhang, G.; Chen, Y.; Luo, Y. Antioxidant and antimicrobial activities of consecutive extracts from galla Chinensis: The polarity affects the bioactivities. Food Chem., 2009, 113(1), 173-179.
[http://dx.doi.org/10.1016/j.foodchem.2008.07.062]
[75]
Turkmen, N.; Sari, F.; Velioglu, Y.S. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous Tartrate and Folin-Ciocalteu methods. Food Chem., 2006, 99(4), 835-841.
[http://dx.doi.org/10.1016/j.foodchem.2005.08.034]
[76]
Hayouni, E.A.; Abedrabba, M.; Bouix, M.; Hamdi, M. The effects of solvents and extraction method on the phenolic contents and biologi-cal activities in vitro of tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem., 2007, 105(3), 1126-1134.
[http://dx.doi.org/10.1016/j.foodchem.2007.02.010]
[77]
Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardun-culus L. organs, and their biological activities. C. R. Biol., 2008, 331(5), 372-379.
[http://dx.doi.org/10.1016/j.crvi.2008.02.008] [PMID: 18472083]
[78]
Georgantelis, D.; Ambrosiadis, I.; Katikou, P.; Blekas, G.; Georgakis, S.A. Effect of rosemary extract, chitosan and α-tocopherol on mi-crobiological parameters and lipid oxidation of fresh pork sausages stored at 4°C. Meat Sci., 2007, 76(1), 172-181.
[http://dx.doi.org/10.1016/j.meatsci.2006.10.026] [PMID: 22064204]
[79]
Omar, H.H. Antibacterial activity of extracts of marine algae from the red sea of Jeddah, Saudi Arabia. Afr. J. Biotechnol., 2012, 11, 13576-13585.
[80]
Salem, W.M. Screening for antibacterial activities in some marine algae from the red sea (Hurghada, Egypt). Afr. J. Microbiol. Res., 2011, 5(15), 2160-2167.
[http://dx.doi.org/10.5897/AJMR11.390]
[81]
Rosaline, X.D.; Sakthivelkumar, S.; Rajendran, K.; Janarthanan, S. Screening of selected marine algae from the coastal tamil nadu, South India for antibacterial activity. Asian Pac. J. Trop. Biomed., 2012, 2(1), S140-S146.
[http://dx.doi.org/10.1016/S2221-1691(12)60145-2]
[82]
Xu, N.; Fan, X.; Yan, X.; Li, X.; Niu, R.; Tseng, C.K. Antibacterial bromophenols from the marine red alga Rhodomela confervoides. Phytochemistry, 2003, 62(8), 1221-1224.
[http://dx.doi.org/10.1016/S0031-9422(03)00004-9] [PMID: 12648540]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy