Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Research Article

Ethoxidol as a Broad-spectrum Adaptogen

Author(s): Zhigacheva V. Irina*, Krikunova I. Natalya, Binyukov I. Vladimir, Mil Elena, Rusina Irina and Goloshchapov Alexander

Volume 16, Issue 1, 2023

Published on: 20 May, 2022

Article ID: e080322201879 Pages: 7

DOI: 10.2174/1874467215666220308115514

Price: $65

Abstract

Background: Stress factors lead to a shift in the antioxidant-prooxidant relationship, allowing an increase in the generation of reactive oxygen species (ROS) by mitochondria, which results in the development of oxidative stress. Consequently, it is possible to put forward an assumption that drugs which reduce the excessive generation of ROS by these organelles should increase the body's resistance to stress factors. Antioxidants can be used as such drugs. In this regard, the aim of this work was to study the bioenergetics characteristic of mitochondria under stress conditions and under the action of 2-ethyl-6-methyl-3-hydroxypyridinium hydroxybutanedioate (ethoxidol).

Methods: The antiradical activity of the drug was evaluated by the chemiluminescent method (CL). The functional state of the mitochondria was studied with reference to the level of lipid peroxidation by the spectrofluorimetry and in terms of fatty acid composition of mitochondrial membranes using the chromatography technique. The study of mitochondrial morphology was performed employing the method of atomic force microscopy.

Results: The injection in mice of ethoxidol at a dose of 10-5 mol/kg for 7 days led to the prevention of the stress-induced increase in the intensity of LPO in the membranes of the mitochondria, and swelling of these organelles; it also prevented a decrease in the content of unsaturated fatty acids, containing 18 and 20 carbon atoms. At the same time, ethoxidol increased the life expectancy of mice by 3.0-4.2 times in conditions of various types of hypoxia.

Conclusion: The adaptogenic properties of ethoxidol can be attributed to its antiradical and antioxidant properties.

Keywords: Mitochondria, LPO, antiradical activity, fatty acids, antioxidants, 3-hydroxypyridine, adaptogens.

Graphical Abstract

[1]
Grivennikova, V.G.; Vinogradov, A.D. Mitochondrial produc-tion of reactive oxygen species. Biochemistry (Mosc.), 2013, 78(13), 1490-1511.
[http://dx.doi.org/10.1134/S0006297913130087] [PMID: 24490736]
[2]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological condi-tions. Oxid. Med. Cell. Longev., 2016, 2016, 1245049.
[http://dx.doi.org/10.1155/2016/1245049] [PMID: 27478531]
[3]
Brand, M.D.; Affourtit, C.; Esteves, T.C.; Green, K.; Lambert, A.J.; Miwa, S.; Pakay, J.L.; Parker, N. Mitochondrial superox-ide: production, biological effects, and activation of uncou-pling proteins. Free Radic. Biol. Med., 2004, 37(6), 755-767.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.05.034] [PMID: 15304252]
[4]
Robb, E.L.; Christoff, C.A.; Maddalena, L.A.; Stuart, J.A. Mitochondrial reactive oxygen species (ROS) in animal cells: Relevance to aging and normal physiology1. Can. J. Zool., 2013, 92(7)
[http://dx.doi.org/10.1139/cjz-2013-0131]
[5]
Taylor, N.L.; Heazlewood, J.L.; Day, D.A.; Millar, A.H. Dif-ferential impact of environmental stresses on the pea mito-chondrial proteome. Mol. Cell. Proteomics, 2005, 4(8), 1122-1133.
[http://dx.doi.org/10.1074/mcp.M400210-MCP200] [PMID: 15914488]
[6]
Zorov, D.B.; Isaev, N.K.; Plotnikov, E.Yu.; Zorova, L.D.; Stelmashook, E.V.; Vasileva, A.K.; Arkhangelskaya, A.A.; Khrjapenkova, T.G. The mitochondrion as janus bifrons. Biochemistry (Mosc.), 2007, 72(10), 1115-1126.
[http://dx.doi.org/10.1134/S0006297907100094] [PMID: 18021069]
[7]
Bardaweel, S.K.; Gul, M.; Alzweiri, M.; Ishaqat, A. ALSala-mat, H.A.; Bashatwah, R.M. Reactive oxygen species: The du-al role in physiological and pathological conditions of the human body. Eurasian J. Med., 2018, 50(3), 193-201.
[http://dx.doi.org/10.5152/eurasianjmed.2018.17397] [PMID: 30515042]
[8]
Menshchikova, E.B.; Lankin, V.Z.; Kandalintseva, N.V. Phe-nolic Antioxidants in Biology and Medicine. Structure, Prop-erties and Mechanism of Action; Saarbrücken: LAP LAM-BERT Academic Publishing, 2013, p. 496.
[9]
Sapezhinsky, I.I.; Gudkova, N.A.; Dontsova, E.G.; Smirnov, L.D.; Kuzmin, V.I. On the effect of various substances on the X-ray chemiluscence of serum albumin and glycintryptophan solutions. Biophysics (Oxf.), 1980, 25(1), 30-35.
[10]
Efendiev, A.M. Pomoĭnetskiĭ V.D.; Smirnov, L.D.; Kuba-tiev, A.A. Effect of antioxidants on the synthesis of prosta-glandins, prostacyclin and thromboxane in different layers of the kidneys of old rats. Farmakol. Toksikol., 1986, 49(3), 60-63.
[PMID: 3522269]
[11]
Karpov, A.V.; Gudz, P.A.; Grudskiy, K.S. Scientific and methodological aspects of the use of a new domestic drug Ethoxidol in phthisiology. Bull. Novgorod State Univ., 2016, 6(97), 91-98.
[12]
Nesterova, N.I.; Shcheblykina, O.V.; Kolesnichenko, P.D.; Nesterov, A.V.; Shcheblykin, D.V.; Yakovlev, D. Additive neuroprotective effect jf 3-hydroxypyridine derivatives and human erythropoietin analogue on a hemorrhagic stroke mod-el in rats. Pharm. Pharmacol., 2020, 8(3), 169-180.
[13]
Kukes, V.G.; Parfenova, O.K.; Romanov, B.K.; Prokofiev, A.B.; Parfenova, E.V.; Sidorov, N.G.; Gazdanova, A.A.; Pav-lova, L.I.; Zozina, V.I.; Andreev, A.D.; Alexandrova, T.V.; Chernova, S.V.; Ramenskaya, G.V. The mechanism of action of ethoxidol on the indicators of oxidative stress in heart fail-ure and hypertension. Moden Technol. Medicine, 2020, 12(2), 67-73.
[http://dx.doi.org/10.17691/stm2020.12.2.08] [PMID: 34513055]
[14]
Peresypkina, A.; Pazhinsky, A.; Pokrovskii, M.; Beskhmelni-tsyna, E.; Pobeda, A.; Korokin, M. Correction of experimental retinal ischemia by l-isomer of ethylmethylhydroxypyridine malate. Antioxidants, 2019, 8(2), 34.
[http://dx.doi.org/10.3390/antiox8020034] [PMID: 30717452 ]
[15]
Sernov, L.N.; Kesarev, O.G. Russian patent 2,277,237, 2009.
[16]
Mokhova, E.N.; Skulachev, V.P.; Zhigacheva, I.V. Activation of the external pathway of NADH oxidation in liver mito-chondria of cold-adapted rats. Biochim. Biophys. Acta, 1978, 501(3), 415-423.
[http://dx.doi.org/10.1016/0005-2728(78)90109-3] [PMID: 204343]
[17]
Fletcher, B.L.; Dillard, C.J.; Tappel, A.L. Measurement of fluorescent lipid peroxidation products in biological systems and tissues. Anal. Biochem., 1973, 52(1), 1-9.
[http://dx.doi.org/10.1016/0003-2697(73)90327-8] [PMID: 4696687]
[18]
Carreau, J.P.; Dubacq, J.P. Adaptation of macroscale method to the microscale for fatty acid methyl transesterification of biological lipid extracts. J. Chromatogr. A, 1979, 151(3), 384-390.
[http://dx.doi.org/10.1016/S0021-9673(00)88356-9]
[19]
Wang, Y.; Sunwoo, H.; Cherian, G.; Sim, J.S. Fatty acid de-termination in chicken egg yolk: a comparison of different methods. Poult. Sci., 2000, 79(8), 1168-1171.
[http://dx.doi.org/10.1093/ps/79.8.1168] [PMID: 10947186]
[20]
Golovina, R.V.; Kuzmenko, T.E. Thermodynamic evaluation interaction of fatty acid metyl esters with polar and non-polar stationary phases, based on their retention indices chroma-tographia. Chromatogr, 1977, 10(9), 545-546.
[http://dx.doi.org/10.1007/BF02262915]
[21]
Shlyapintokh, V.Ya.; Karpukhin, O.N.; Postnikov, L.M.; Zakharov, I.V.; Vichutinsky, A.A.; Tsepalov, V.F. Chemilu-minescent methods for studying slow chemical processes; Nau-ka: Moscow, 1966.
[22]
Ostrovskaya, R.U.; Kleimenova, N.N.; Kamysheva, V.A.; Molodavkin, G.M.; Yavorskiy, A.N.; Boyko, S.S. Pharmacological correction of fatigue; BobkovYu, G., Ed.; Medicine: Moscow, 1982.
[23]
Shakirova, F.M. Nonspecific plant resistance to stress factors and its regulation; Gilem: Ufa, 2001.
[24]
Rusina, I.F.; Karpukhin, O.N.; Kasaikina, O.T. Chemilumi-nescent methods in the study of inhibited oxidation. Chem. Phys., 2013, 32(8), 49-64.
[25]
Lukyanova, L.D. Signaling mechanisms of hypoxia; RAS: Moscow, 2019.
[26]
Gonchar, O.A. Effects of intermittent hypoxia different re-gimes on mitochondrial lipid peroxidation and glutathione-redox balance in stressed rats. Cent. Eur. J. Biol., 2008, 3, 233-242.
[27]
Aleksandrova, A.E. Antihypoxant activity and mechanisms of action of some natural and synthetic compounds. Eksp. Klin. Farmakol., 2005, 68(5), 72-78.
[PMID: 16277217]
[28]
Paradies, G.; Petrosillo, G.; Pistolese, M.; Di Venosa, N.; Federici, A.; Ruggiero, F.M. Decrease in mitochondrial com-plex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ. Res., 2004, 94(1), 53-59.
[http://dx.doi.org/10.1161/01.RES.0000109416.56608.64] [PMID: 14656928]
[29]
Acin-Perez, R.; Enriquez, J.A. The function of the respiratory supercomplexes: the plasticity model. Biochim. Biophys. Acta, 2014, 1837(4), 444-450.
[http://dx.doi.org/10.1016/j.bbabio.2013.12.009] [PMID: 24368156]
[30]
Timoshchuk, O.V.; Lembrik, I.S.; Kocherga, Z.R. Prostaglan-dins are universal bioregulators in the human body. Zaporozhye Med. J., 2018, 1, 121-127.
[31]
Dadasheva, M.N. Pathogenetic therapy with a new domestic antioxidant Ethoxidol in cerebrovascular disease. Family Med. Bull., 2015, 1(2), 12-16.
[32]
de Paepe, R.; Lemaire, S.D.; Danon, A. Cardiolipin at the heart of stress response across kingdoms. Plant Signal. Behav., 2014, 9(9), e29228-e29228-e4.
[http://dx.doi.org/10.4161/psb.29228]
[33]
Paradies, G.; Paradies, V.; Ruggiero, F.M.; Petrosillo, G. Role of cardiolipin in mitochondrial function and dynamics in health and disease: Molecular and pharmacological aspects. Cells, 2019, 8(7), 728.
[http://dx.doi.org/10.3390/cells8070728] [PMID: 31315173]
[34]
Karkishchenko, N.N.; Grachevoy, S.V. A guide to laboratory animals and alternative models in biomedical research; Pro-file: Moscow, 2010.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy