Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

Peripapillary Atrophy Segmentation and Classification Methodologies for Glaucoma Image Detection: A Review

Author(s): Najdavan A. Kako* and Adnan M. Abdulazeez

Volume 18, Issue 11, 2022

Published on: 22 June, 2022

Article ID: e080322201870 Pages: 20

DOI: 10.2174/1573405618666220308112732

Price: $65

conference banner
Abstract

Information-based image processing and computer vision methods are utilized in several healthcare organizations to diagnose diseases. The irregularities in the visual system are identified over fundus images with a fundus camera. Among ophthalmology diseases, glaucoma is the most common case leading to neurodegenerative illness. The unsuitable fluid pressure inside the eye within the visual system is described as the major cause of those diseases. Glaucoma has no symptoms in the early stages, and if it is not treated, it may result in total blindness. Diagnosing glaucoma at an early stage may prevent permanent blindness. Manual inspection of the human eye may be a solution, but it depends on the skills of the individuals involved. The diagnosis of glaucoma by applying a consolidation of computer vision, artificial intelligence, and image processing can aid in the prevention and detection of those diseases. In this review article, we aim to introduce numerous approaches based on peripapillary atrophy segmentation and classification that can detect these diseases, as well as details regarding the publicly available image benchmarks, datasets, and measurement of performance. The review article highlights the research carried out on numerous available study models that objectively diagnose glaucoma via peripapillary atrophy from the lowest level of feature extraction to the current direction based on deep learning. The advantages and disadvantages of each method are addressed in detail, and tabular descriptions are included to highlight the results of each category. Moreover, the frameworks of each approach and fundus image datasets are provided. Our study would help in providing possible future work directions to diagnose glaucoma.

Keywords: Peripapillary atrophy, segmentation, feature extraction, retinal image datasets, glaucoma, Content-based image analysis.

Graphical Abstract

[1]
Rathi S, Andrews CA, Greenfield DS, Stein JD. Trends in glaucoma surgeries performed by glaucoma subspecialists versus nonsubspecial-ists on medicare beneficiaries from 2008 through 2016. Ophthalmology 2021; 128(1): 30-8.
[http://dx.doi.org/10.1016/j.ophtha.2020.06.051] [PMID: 32598949]
[2]
Koppens J. Essentials in ophthalmology: Glaucoma. Clin Exp Ophthalmol 2008; 36(2): 187-8.
[http://dx.doi.org/10.1111/j.1442-9071.2008.01688.x]
[3]
Almazroa A, Burman R, Raahemifar K, Lakshminarayanan V. Optic disc and optic cup segmentation methodologies for glaucoma image detection: A survey. J Ophthalmol 2015; 2015: 180972.
[http://dx.doi.org/10.1155/2015/180972]
[4]
Septiarini A, Harjoko A. Automatic glaucoma detection based on the type of features used: A review. J Theor Appl Inf Technol 2015; 72(3): 366-75.
[5]
Shabbir A, Rasheed A, Shehraz H, et al. Detection of glaucoma using retinal fundus images: A comprehensive review. Math Biosci Eng 2021; 18(3): 2033-76.
[http://dx.doi.org/10.3934/mbe.2021106] [PMID: 33892536]
[6]
Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V. Application of deep learning in fundus image processing for ophthalmic diagnosis - a review. arXiv 2018; eess.IV.
[7]
Thompson AC, Jammal AA, Medeiros FA. A review of deep learning for screening, diagnosis, and detection of glaucoma progression. Transl Vis Sci Technol 2020; 9(2): 42-2.
[8]
Saba T, Bokhari STF, Sharif M, Yasmin M, Raza M. Fundus image classification methods for the detection of glaucoma: A review. Microsc Res Tech 2018; 81(10): 1105-21.
[http://dx.doi.org/10.1002/jemt.23094] [PMID: 30281861]
[9]
Zheng C, Xie X, Huang L, et al. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: A comparison study between hand-crafted features and deep learning model. Graefes Arch Clin Exp Ophthalmol 2020; 258(3): 577-85.
[http://dx.doi.org/10.1007/s00417-019-04543-4] [PMID: 31811363]
[10]
Khaw PT. Atlas of glaucoma. Br J Ophthalmol 1999; 83(8): 994.
[11]
Fingeret M, Medeiros FA, Susanna R Jr, Weinreb RN. Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. Optometry 2005; 76(11): 661-8.
[http://dx.doi.org/10.1016/j.optm.2005.08.029] [PMID: 16298320]
[12]
Hyung SM, Kim DM, Hong C, Youn DH. Optic disc of the myopic eye: Relationship between refractive errors and morphometric character-istics. Korean J Ophthalmol 1992; 6: 32-5.
[13]
Chang L, Pan CW, Ohno-Matsui K, et al. Myopia-related fundus changes in Singapore adults with high myopia. Am J Ophthalmol 2013; 155(6): 991-999.e1.
[http://dx.doi.org/10.1016/j.ajo.2013.01.016] [PMID: 23499368]
[14]
Sprabary A. Lens of the eye [Internet]. All About Vision. 2021. Available from: https://www.allaboutvision.com/eye-care/eye-anatomy/lens-of-eye/ [Accessed on 2021 Sep 14]
[15]
Septiarini A, Harjoko A, Pulungan R, Ekantini R. Automatic detection of peripapillary atrophy in retinal fundus images using statistical fea-tures. Biomed Signal Process Control 2018; 45: 151-9.
[http://dx.doi.org/10.1016/j.bspc.2018.05.028]
[16]
Jonas JB. Clinical implications of peripapillary atrophy in glaucoma. Curr Opin Ophthalmol 2005; 16(2): 84-8.
[http://dx.doi.org/10.1097/01.icu.0000156135.20570.30] [PMID: 15744137]
[17]
Jonas JB, Jonas SB, Jonas RA, et al. Parapapillary atrophy: Histological gamma zone and delta zone. PLoS One 2012; 7(10): e47237.
[http://dx.doi.org/10.1371/journal.pone.0047237] [PMID: 23094040]
[18]
Wang YX, Panda-Jonas S, Jonas JB. Optic nerve head anatomy in myopia and glaucoma, including parapapillary zones alpha, beta, gamma and delta: Histology and clinical features. Prog Retin Eye Res 2021; 83: 100933.
[http://dx.doi.org/10.1016/j.preteyeres.2020.100933] [PMID: 33309588]
[19]
Vianna JR, Malik R, Danthurebandara VM, et al. Beta and gamma peripapillary atrophy in myopic eyes with and without glaucoma. Invest Ophthalmol Vis Sci 2016; 57(7): 3103-11.
[http://dx.doi.org/10.1167/iovs.16-19646] [PMID: 27294804]
[20]
Park KH, Tomita G, Liou SY, Kitazawa Y. Correlation between peripapillary atrophy and optic nerve damage in normal-tension glaucoma. Ophthalmology 1996; 103(11): 1899-906.
[http://dx.doi.org/10.1016/S0161-6420(96)30409-0] [PMID: 8942888]
[21]
Dai Y, Jonas JB, Huang H, Wang M, Sun X. Microstructure of parapapillary atrophy: Beta zone and gamma zone. Invest Ophthalmol Vis Sci 2013; 54(3): 2013-8.
[http://dx.doi.org/10.1167/iovs.12-11255] [PMID: 23462744]
[22]
Jonas JB, Martus P, Budde WM, Jünemann A, Hayler J. Small neuroretinal rim and large parapapillary atrophy as predictive factors for progression of glaucomatous optic neuropathy. Ophthalmology 2002; 109(8): 1561-7.
[http://dx.doi.org/10.1016/S0161-6420(02)01098-9] [PMID: 12153811]
[23]
Ahmed MI, Amin MA. High speed detection of optical disc in retinal fundus image. Signal Image Video Process 2015; 9(1): 77-85.
[http://dx.doi.org/10.1007/s11760-012-0412-3]
[24]
Mittapalli PS, Kande GB. Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed Signal Process Control 2016; 24: 34-46.
[http://dx.doi.org/10.1016/j.bspc.2015.09.003]
[25]
Marin D, Gegundez-Arias ME, Suero A, Bravo JM. Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput Methods Programs Biomed 2015; 118(2): 173-85.
[http://dx.doi.org/10.1016/j.cmpb.2014.11.003] [PMID: 25433912]
[26]
Hatanaka Y, Fukuta K, Muramatsu C, et al. Automated measurement of cup-to-disc ratio for diagnosing glaucoma in retinal fundus images. IFMBE Proc 2009; 25(11): 198-200.
[http://dx.doi.org/10.1007/978-3-642-03891-4_53]
[27]
Muramatsu C, Nakagawa T, Sawada A, et al. Automated segmentation of optic disc region on retinal fundus photographs: Comparison of contour modeling and pixel classification methods. Comput Methods Programs Biomed 2011; 101(1): 23-32.
[http://dx.doi.org/10.1016/j.cmpb.2010.04.006] [PMID: 20546966]
[28]
Mary MCVS, Rajsingh EB, Jacob JKK, Anandhi D, Amato U, Selvan SE. An empirical study on optic disc segmentation using an active contour model. Biomed Signal Process Control 2015; 18: 19-29.
[http://dx.doi.org/10.1016/j.bspc.2014.11.003]
[29]
Fondón I, Núñez F, Tirado M, et al. Automatic cup-to-disc ratio estimation using active contours and color clustering in fundus images for glaucoma diagnosis. Lect Notes Comput Sci 2012; 7325 LNCS(PART 2): 390-9.
[http://dx.doi.org/10.1007/978-3-642-31298-4_46]
[30]
Dutta MK, Mourya AK, Singh A, Parthasarathi M, Burget R, Riha K. Glaucoma detection by segmenting the super pixels from fundus colour retinal images. In: 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom); 2014 Nov 7-8; Greater Noida, India; pp. 86-90.
[31]
Cheng J, Liu J, Tao D, et al. Superpixel classification based optic cup segmentation. Lect Notes Comput Sci 2013; 8151 LNCS(PART 3): 421-8.
[http://dx.doi.org/10.1007/978-3-642-40760-4_53]
[32]
Ho CY, Pai TW, Chang HT, Chen HY. An atomatic fundus image analysis system for clinical diagnosis of glaucoma. In: 2011 International Conference on Complex, Intelligent, and Software Intensive Systems. 2011 Jun 30-Jul 2; Seoul, Korea (South). pp 559-64.
[http://dx.doi.org/10.1109/CISIS.2011.92]
[33]
Kavitha S, Karthikeyan S, Duraiswamy K. Early detection of glaucoma in retinal images using cup to disc ratio. In: 2010 Second Interna-tional conference on Computing, Communication and Networking Technologies. 2010 Jul 29-31; Karur, India. pp 2-6.
[34]
Khalid NEA, Noor NM, Ariff NM. Fuzzy c-Means (FCM) for optic cup and disc segmentation with morphological operation. Procedia Comput Sci 2014; 42(C): 255-62.
[http://dx.doi.org/10.1016/j.procs.2014.11.060]
[35]
Nayak J, Acharya UR, Bhat PS, Shetty N, Lim TC. Automated diagnosis of glaucoma using digital fundus images. J Med Syst 2009; 33(5): 337-46.
[http://dx.doi.org/10.1007/s10916-008-9195-z] [PMID: 19827259]
[36]
Krizhevsky A. ImageNet classification with deep convolutional neural. Commun ACM 2007; 60(6): 1-9.
[37]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: The 3rd International Conference on Learning Representations (ICLR2015). 2015 May 7-9; San Deigo, CA, USA. pp 1-14.
[38]
Christian S, Wei L, Yangqing J, Pierre S. Going deeper with convolutions.. 2015 IEEE Conference on Computer Vision and Pattern Recogni-tion (CVPR). 2015 Jun 7-12; Boston, MA, USA. 1-9.
[39]
Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans Pattern Anal Mach Intell 2017; 39(12): 2481-95.
[http://dx.doi.org/10.1109/TPAMI.2016.2644615] [PMID: 28060704]
[40]
Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans Pattern Anal Mach Intell 2018; 40(4): 834-48.
[http://dx.doi.org/10.1109/TPAMI.2017.2699184] [PMID: 28463186]
[41]
Cai X, Li X, Razmjooy N, Ghadimi N. Breast cancer diagnosis by convolutional neural network and advanced thermal exchange optimiza-tion algorithm. Comput Math Methods Med 2021; 2021: 5595180.
[http://dx.doi.org/10.1155/2021/5595180]
[42]
Olaf R, Fischer Philipp BT. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi A, Eds. MICCAI 2015. Medical Image Computing and Computer-Assisted InterventionCham: Springer 2015; pp. 234-41.
[43]
Milletari F, Navab N, Ahmadi SA. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV); 2016 Oct 25- 28; Standford, CA, USA; pp. 565-71.
[44]
Chen H, Qi X, Yu L, Dou Q, Qin J, Heng PA. DCAN: Deep contour-aware networks for object instance segmentation from histology imag-es. Med Image Anal 2017; 36: 135-46.
[http://dx.doi.org/10.1016/j.media.2016.11.004] [PMID: 27898306]
[45]
Kampffmeyer M, Salberg AB, Jenssen R. Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing im-ages using deep convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 2016 Jun 26-Jul 1; Las Vegas, NV, USA. pp 680-8.
[http://dx.doi.org/10.1109/CVPRW.2016.90]
[46]
Neider M. Ophthalmic photography: A textbook of retinal photography, angiography, and electronic imaging. Arch Ophthalmol 1997; 115(6): 825.
[47]
Ai AC, Maloney FL, Hickman T, Wilcox AR, Ramelson H, Wright A. A picture is worth 1, 000 words. Appl Clin Inform 2017; 8(3): 710-8.
[48]
Armaly MF. Optic cup in normal and glaucomatous eyes. Invest Ophthalmol 1970; 9(6): 425-9.
[PMID: 5446046]
[49]
Kinyoun JL, Martin DC, Fujimoto WY, Leonetti DL. Ophthalmoscopy versus fundus photographs for detecting and grading diabetic reti-nopathy. Invest Ophthalmol Vis Sci 1992; 33(6): 1888-93.
[PMID: 1582794]
[50]
Khan SM, Liu X, Nath S, et al. A global review of publicly available datasets for ophthalmological imaging: barriers to access, usability, and generalisability. Lancet Digit Health 2021; 3(1): e51-66.
[http://dx.doi.org/10.1016/S2589-7500(20)30240-5] [PMID: 33735069]
[51]
Hoover A, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter re-sponse. IEEE Trans Med Imaging 2000; 19(3): 203-10.
[http://dx.doi.org/10.1109/42.845178] [PMID: 10875704]
[52]
Staal J, Abràmoff MD, Niemeijer M, Viergever MA, van Ginneken B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 2004; 23(4): 501-9.
[http://dx.doi.org/10.1109/TMI.2004.825627] [PMID: 15084075]
[53]
Zhang Z, Liu J, Yin F, et al. Introducing ORIGA: An online retinal fundus image database for glaucoma analysis and research. Arvo 2011; 3065-8.
[54]
Fumero F, Alayon S, Sanchez JL, Sigut J, Gonzalez-Hernandez M. RIM-ONE: An open retinal image database for optic nerve evaluation. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS); 2011 Jun 27-30; Bristol, UK, pp. 2-7.
[55]
Abràmoff MD, Folk JC, Han DP, et al. Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol 2013; 131(3): 351-7.
[http://dx.doi.org/10.1001/jamaophthalmol.2013.1743] [PMID: 23494039]
[56]
Bankhead P, Scholfield CN, McGeown JG, Curtis TM. Fast retinal vessel detection and measurement using wavelets and edge location re-finement. PLoS One 2012; 7(3): e32435.
[http://dx.doi.org/10.1371/journal.pone.0032435] [PMID: 22427837]
[57]
Kauppi T, Kalesnykiene V, Kamarainen JK, et al. The DIARETDB1 diabetic retinopathy database and evaluation protocol. In: Proceedings of the British Machine Vision Conference. 2007 Sep 10-13; University of Warwick, UK.
[http://dx.doi.org/10.5244/C.21.15]
[58]
Sivaswamy J, Gopal SRK, Joshi D, Jain M, Syed Tabish U. DRISHTI-GS : Retinal image dataset for optic nerve head (ONH) segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI); 2014 Apr 29-May 2; Beijing, China; pp. 53- 6.
[59]
Orlando JI, Fu H, Barbosa Breda J, et al. REFUGE Challenge: A unified framework for evaluating automated methods for glauco-ma assessment from fundus photographs. Med Image Anal 2020; 59: 101570.
[http://dx.doi.org/10.1016/j.media.2019.101570] [PMID: 31630011]
[60]
Carmona EJ, Rincón M, García-Feijoó J, Martínez-de-la-Casa JM. Identification of the optic nerve head with genetic algorithms. Artif Intell Med 2008; 43(3): 243-59.
[http://dx.doi.org/10.1016/j.artmed.2008.04.005] [PMID: 18534830]
[61]
Odstrcilik J, Kolar R, Budai A, et al. Retinal vessel segmentation by improved matched filtering: Evaluation on a new high-resolution fun-dus image database. IET Image Process 2013; 7(4): 373-83.
[http://dx.doi.org/10.1049/iet-ipr.2012.0455]
[62]
Fraz MM, Rudnicka AR, Owen CG, Barman SA. Delineation of blood vessels in pediatric retinal images using decision trees-based ensem-ble classification. Int J CARS 2014; 9(5): 795-811.
[http://dx.doi.org/10.1007/s11548-013-0965-9] [PMID: 24366332]
[63]
Porwal P, Pachade S, Kamble R, et al. Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening re-search. Data (Basel) 2018; 3(3): 1-8.
[http://dx.doi.org/10.3390/data3030025]
[64]
Fu H, Li F, Orlando JI, et al. ADAM: Automatic Detection challenge on Age-related Macular degeneration. IEEE Dataport. Available from: https://ieee-dataport.org/documents/adam-automatic-detection-challenge-age-related-macular-degeneration
[65]
Pachade S, Porwal P, Thulkar D, et al. Retinal Fundus Multi-disease Image Dataset (RFMiD): A dataset for multi-disease detection research. Data 2021; 6(2): 14.
[66]
Meindert N, van Ginneken B, Cree MJ, et al. Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs. IEEE Trans Med Imaging 2010; 29(1): 185-95.
[67]
Zhang Z, Liu J, Yin F, Lee BH, Wong DWK, Sung KR. ACHIKO-K: Database of fundus images from glaucoma patients. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA); 2013 Jun 19-21; Melbourne, VIC, Australia; pp. 228-31.
[http://dx.doi.org/10.1109/ICIEA.2013.6566371]
[68]
Yin F, Liu J, Wong DWK, et al. ACHIKO-I retinal fundus image database and its evaluation on C cup-to-disc ratio measurement. In: 2013 IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). 2013 Jun 19-21; Melbourne, VIC, Australia. pp 224-7.
[69]
Lowell J, Hunter A, Steel D, et al. Optic nerve head segmentation. IEEE Trans Med Imaging 2004; 23(2): 256-64.
[http://dx.doi.org/10.1109/TMI.2003.823261] [PMID: 14964569]
[70]
Diaz-Pinto A, Morales S, Naranjo V, Köhler T, Mossi JM, Navea A. CNNs for automatic glaucoma assessment using fundus images: An extensive validation. Biomed Eng Online 2019; 18(1): 29.
[http://dx.doi.org/10.1186/s12938-019-0649-y] [PMID: 30894178]
[71]
Sng CC, Foo LL, Cheng CY, et al. Determinants of anterior chamber depth: The Singapore Chinese Eye Study. Ophthalmology 2012; 119(6): 1143-50.
[http://dx.doi.org/10.1016/j.ophtha.2012.01.011] [PMID: 22420959]
[72]
Liu J, Zhang Z, Wong DWK, et al. Automatic glaucoma diagnosis through medical imaging informatics. J Am Med Inform Assoc 2013; 20(6): 1021-7.
[http://dx.doi.org/10.1136/amiajnl-2012-001336] [PMID: 23538725]
[73]
Cheng J, Tao D, Liu J, et al. Peripapillary atrophy detection by sparse biologically inspired feature manifold. IEEE Trans Med Imaging 2012; 31(12): 2355-65.
[http://dx.doi.org/10.1109/TMI.2012.2218118] [PMID: 22987511]
[74]
Lu CK, Tang TB, Murray AF, Laude A, Dhillon B. Automatic parapapillary atrophy shape detection and quantification in colour fundus images. In: 2010 Biomedical Circuits and Systems Conference (BioCAS). 2010 Nov 3-5; Paphos, Cyprus. pp 86-9.
[http://dx.doi.org/10.1109/BIOCAS.2010.5709577]
[75]
Muramatsu C, Hatanaka Y, Sawada A, Yamamoto T, Fujita H. Computerized detection of peripapillary chorioretinal atrophy by texture analysis. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 Aug 30-Sep 3; Boston, MA, USA; pp. 5947-0.
[http://dx.doi.org/10.1109/IEMBS.2011.6091470]
[76]
Joshi GD, Sivaswamy J, Prashanth R, Krishnadas SR. Detection of peri-papillary atrophy and RNFL defect from retinal images. In: Campil-ho A, Kamel M, Eds. Image Analysis and Recognition. Berlin, Heidelberg: Springer 2012.
[77]
Majumdar J. A threshold based algorithm to detect peripapillary atrophy for glaucoma diagnosis. Int J Comput Appl 2015; 126(12): 1-5.
[78]
Zulfira FZ, Suyanto S. Multi-class peripapillary atrophy for detecting glaucoma in retinal fundus image. In: In: 2019 International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) 2019 Dec 5-5; Yogyakarta, Indonesia. pp 11-6.
[79]
Li H, Li H, Kang J, Feng Y, Xu J. Automatic detection of parapapillary atrophy and its association with children myopia. Comput Methods Programs Biomed 2020; 183: 105090.
[http://dx.doi.org/10.1016/j.cmpb.2019.105090] [PMID: 31590096]
[80]
Srivastava R, Cheng J, Wong DWK, Liu J. Using deep learning for robustness to parapapillary atrophy in optic disc segmentation. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI). 2015 Apr 16-19; Brooklyn, NY, USA. pp 768-1.
[http://dx.doi.org/10.1109/ISBI.2015.7163985]
[81]
Chai Y, Liu H, Xu J. A new convolutional neural network model for peripapillary atrophy area segmentation from retinal fundus images. Appl Soft Comput J 2020; 86: 105890.
[http://dx.doi.org/10.1016/j.asoc.2019.105890]
[82]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016 Jun 27-30; Las Vegas, NV, USA. pp 770-8.
[http://dx.doi.org/10.1109/CVPR.2016.90]
[83]
Sharma A, Agrawal M, Dutta Roy S, Gupta V, Vashisht P, Sidhu T. Deep learning to diagnose Peripapillary Atrophy in retinal images along with statistical features. Biomed Signal Process Control 2021; 64: 102254.
[http://dx.doi.org/10.1016/j.bspc.2020.102254]
[84]
Tan NM, Liu J, Wong DWK, et al. Automatic detection of pathological myopia using variational level set. In: 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2009 Sep 3-6; Minneapolis, MN, USA; pp. 3609-12.
[http://dx.doi.org/10.1109/IEMBS.2009.5333517]
[85]
Lee B, Wong DWK, Tan NM, et al. Fusion of pixel and texture features to detect pathological myopia. In: 2010 5th IEEE Conference on Industrial Electronics and Applications. 2010 Jun 15-17; Taichung, Taiwan. pp 2039-42.
[86]
Lu C-K, Tang TB, Laude A, Dhillon B, Murray AF. Parapapillary atrophy and optic disc region assessment (PANDORA): Retinal imaging tool for assessment of the optic disc and parapapillary atrophy. J Biomed Opt 2012; 17(10): 106010.
[http://dx.doi.org/10.1117/1.JBO.17.10.106010] [PMID: 23224009]
[87]
Liu J, Wong DWK, Lim JH, et al. Detection of pathological myopia by PAMELA with texture-based features through an SVM approach. J Healthc Eng 2010; 1(1): 1-11.
[http://dx.doi.org/10.1260/2040-2295.1.1.1]
[88]
Cheng J, Liu J, Wong DWK, et al. Automatic optic disc segmentation with peripapillary atrophy elimination. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 Aug 30-Sep 3; Boston, MA, USA; pp. 6224-7.
[89]
Septiarini A, Pulungan R, Harjoko A, Ekantini R. Peripapillary atrophy detection in fundus images based on sectors with scan lines ap-proach. In: 2018 Third International Conference on Informatics and Computing (ICIC). 2018 Oct 17-18; Palembang, Indonesia. pp 1-6.
[http://dx.doi.org/10.1109/IAC.2018.8780490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy