Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Association of the Liver and Spleen Signal Intensity on MRI with Anemia in Gynecological Cancer

Author(s): Xiao-Li Chen, Guang-Wen Chen, Peng Zhou and Hang Li*

Volume 18, Issue 9, 2022

Published on: 07 March, 2022

Article ID: e070322201823 Pages: 8

DOI: 10.2174/1568026622666220307123736

Price: $65

conference banner
Abstract

Objective: This study investigates the association of the liver and spleen signal intensity on MRI with anemia in patients with gynecologic cancer.

Methods: 332 patients with gynecological cancer and 78 healthy women underwent MRI examination. Liver and spleen MRI parameters and laboratory tests were obtained within 1 week. The signal intensity ratios of liver and spleen to the paraspinal muscle were calculated on gradient-echo T1-weighted images (T1WI) and T2-weighted images (T2WI) in both patients and healthy women, respectively.

Results: The ratios of liver and spleen to paraspinal muscle on T1WI and T2WI were lower in patients than in the healthy women, respectively (P<0.0001). The ratios of the liver and spleen to paraspinal muscle on T1WI and T2WI decreased with the increasing stage of anemia and decreasing hemoglobin levels (P<0.001). The ratios of the liver to paraspinal muscle on T1WI, spleen to paraspinal muscle on T1WI, and the liver and spleen to paraspinal muscle on T2WI could predict anemia stage≥1 (AUC=0.576, 0.643, 0.688, and 0.756, respectively), ≥2 (AUC=0.743, 0.714, 0.891, and 0.922, respectively) and 3 (AUC=0.851, 0.822, 0.854, and 0.949, respectively).

Conclusion: T2WI-based spleen signal intensity ratios showed the highest potential for non-invasive evaluation of anemia in gynecological cancer.

Keywords: Liver, spleen, signal intensity, anemia, gynecological cancer, MRI.

Graphical Abstract

[1]
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Carneiro AAO, Fernandes JP. An alternating current superconductor susceptometric system to evaluate liver iron overload. Rev Sci Instrum 2003; 30: 98-3103.
[http://dx.doi.org/10.1063/1.1570946]
[3]
Ghugre NR, Coates TD, Nelson MD, Wood JC. Mechanisms of tissue-iron relaxivity: Nuclear magnetic resonance studies of human liver biopsy specimens. Magn Reson Med 2005; 54(5): 1185-93.
[http://dx.doi.org/10.1002/mrm.20697] [PMID: 16215963]
[4]
Ooi GC, Khong PL, Chan GC, et al. Magnetic resonance screening of iron status in transfusion-dependent beta-thalassaemia patients. Br J Haematol 2004; 124(3): 385-90.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04772.x] [PMID: 14717788]
[5]
Gossuin Y, Muller RN, Gillis P. Relaxation induced by ferritin: A better understanding for an improved MRI iron quantification. NMR Biomed 2004; 17(7): 427-32.
[http://dx.doi.org/10.1002/nbm.903] [PMID: 15526352]
[6]
Brittenham GM, Badman DG. Noninvasive measurement of iron: Report of an NIDDK workshop. Blood 2003; 101(1): 15-9.
[http://dx.doi.org/10.1182/blood-2002-06-1723] [PMID: 12393526]
[7]
Papakonstantinou O, Drakonaki EE, Maris T, Vasiliadou A, Papadakis A, Gourtsoyiannis N. MR imaging of spleen in beta-thalassemia major. Abdom Imaging 2015; 40(7): 2777-82.
[http://dx.doi.org/10.1007/s00261-015-0461-5] [PMID: 26023008]
[8]
Madeddu C, Gramignano G, Astara G, et al. Pathogenesis and treatment options of cancer related anemia: Perspective for a targeted mecha-nism-based approach. Front Physiol 2018; 9: 1294.
[http://dx.doi.org/10.3389/fphys.2018.01294] [PMID: 30294279]
[9]
Gilreath JA, Stenehjem DD, Rodgers GM. Diagnosis and treatment of cancer-related anemia. Am J Hematol 2014; 89(2): 203-12.
[http://dx.doi.org/10.1002/ajh.23628] [PMID: 24532336]
[10]
Liu YM, Ni LQ, Wang SS, Lv QL, Chen WJ, Ying SP. Outcome and prognostic factors in cervical cancer patients treated with surgery and concurrent chemoradiotherapy: A retrospective study. World J Surg Oncol 2018; 16(1): 18.
[http://dx.doi.org/10.1186/s12957-017-1307-0] [PMID: 29378625]
[11]
Sirlin CB, Reeder SB. Magnetic resonance imaging quantification of liver iron. Magn Reson Imaging Clin N Am 2010; 18(3): 359-81. ix.
[http://dx.doi.org/10.1016/j.mric.2010.08.014] [PMID: 21094445]
[12]
Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004; 363(9406): 357-62.
[http://dx.doi.org/10.1016/S0140-6736(04)15436-6] [PMID: 15070565]
[13]
Hurter B, Bush NJ. Cancer-related anemia: Clinical review and management update. Clin J Oncol Nurs 2007; 11(3): 349-59.
[http://dx.doi.org/10.1188/07.CJON.349-359] [PMID: 17623620]
[14]
Wunderlich AP, Cario H, Bommer M, Beer M, Schmidt SA, Juchems MS. MRI-based liver iron content determination at 3T in regularly transfused patients by signal intensity ratio using an alternative analysis approach based on R2* theory. Röfo Fortschr Geb Röntgenstr Neuen Bildgeb Verfahr 2016; 188(9): 846-52.
[http://dx.doi.org/10.1055/s-0042-108859] [PMID: 27299667]
[15]
Schwenzer NF, Machann J, Haap MM, et al. T2* relaxometry in liver, pancreas, and spleen in a healthy cohort of one hundred twenty-nine subjects-correlation with age, gender, and serum ferritin. Invest Radiol 2008; 43(12): 854-60.
[http://dx.doi.org/10.1097/RLI.0b013e3181862413] [PMID: 19002057]
[16]
Metens T, Ferraresi KF, Farchione A, Moreno C, Bali MA, Matos C. Normal hepatic parenchyma visibility and ADC quantification on dif-fusion-weighted MRI at 3 T: Influence of age, gender, and iron content. Eur Radiol 2014; 24(12): 3123-33.
[http://dx.doi.org/10.1007/s00330-014-3353-0] [PMID: 25097130]
[17]
Papakonstantinou O, Maris TG, Kostaridou S, Ladis V, Vasiliadou A, Gourtsoyiannis NC. Abdominal lymphadenopathy in beta-thalassemia: MRI features and correlation with liver iron overload and posttransfusion chronic hepatitis C. AJR Am J Roentgenol 2005; 185(1): 219-24.
[http://dx.doi.org/10.2214/ajr.185.1.01850219] [PMID: 15972427]
[18]
Han CY, Koo JH, Kim SH, et al. Hepcidin inhibits Smad3 phosphorylation in hepatic stellate cells by impeding ferroportin-mediated regula-tion of Akt. Nat Commun 2016; 7: 13817.
[http://dx.doi.org/10.1038/ncomms13817] [PMID: 28004654]
[19]
Ganz T, Nemeth E. Hepcidin and iron homeostasis. Biochim Biophys Acta 2012; 1823(9): 1434-43.
[http://dx.doi.org/10.1016/j.bbamcr.2012.01.014] [PMID: 22306005]
[20]
Drakesmith H, Nemeth E, Ganz T. Ironing out Ferroportin. Cell Metab 2015; 22(5): 777-87.
[http://dx.doi.org/10.1016/j.cmet.2015.09.006] [PMID: 26437604]
[21]
Recalcati S, Gammella E, Buratti P, Cairo G. Molecular regulation of cellular iron balance. IUBMB Life 2017; 69(6): 389-98.
[http://dx.doi.org/10.1002/iub.1628] [PMID: 28480557]
[22]
Daher R, Karim Z. Iron metabolism: State of the art. Transfus Clin Biol 2017; 24(3): 115-9.
[http://dx.doi.org/10.1016/j.tracli.2017.06.015] [PMID: 28694024]
[23]
Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogene-sis-a critical review. Crit Rev Oncol Hematol 2014; 89(1): 1-15.
[http://dx.doi.org/10.1016/j.critrevonc.2013.10.008] [PMID: 24275533]
[24]
Kreeftenberg HG Jr, Mooyaart EL, Huizenga JR, Sluiter WJ. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Neth J Med 2000; 56(4): 133-7.
[http://dx.doi.org/10.1016/S0300-2977(00)00003-6] [PMID: 10727758]
[25]
Rund D, Rachmilewitz E. Beta-thalassemia. N Engl J Med 2005; 353(11): 1135-46.
[http://dx.doi.org/10.1056/NEJMra050436] [PMID: 16162884]
[26]
Gibson JN, Jellen LC, Unger EL, et al. Genetic analysis of iron-deficiency effects on the mouse spleen. Mamm Genome 2011; 22(9-10): 556-62.
[http://dx.doi.org/10.1007/s00335-011-9344-4] [PMID: 21732193]
[27]
Siegelman ES, Mitchell DG, Rubin R, et al. Parenchymal versus reticuloendothelial iron overload in the liver: Distinction with MR imaging. Radiology 1991; 179(2): 361-6.
[http://dx.doi.org/10.1148/radiology.179.2.2014275] [PMID: 2014275]
[28]
Sarigianni M, Liakos A, Vlachaki E, et al. Accuracy of magnetic resonance imaging in diagnosis of liver iron overload: A systematic review and meta-analysis. Clin Gastroenterol Hepatol 2015; 13(1): 55-63.e5.
[http://dx.doi.org/10.1016/j.cgh.2014.05.027] [PMID: 24993364]
[29]
Labranche R, Gilbert G, Cerny M, et al. Liver iron quantification with MR imaging: A primer for radiologists. Radiographics 2018; 38(2): 392-412.
[http://dx.doi.org/10.1148/rg.2018170079] [PMID: 29528818]
[30]
Jensen PD, Jensen FT, Christensen T, Ellegaard J. Non-invasive assessment of tissue iron overload in the liver by magnetic resonance im-aging. Br J Haematol 1994; 87(1): 171-84.
[http://dx.doi.org/10.1111/j.1365-2141.1994.tb04888.x] [PMID: 7947241]
[31]
Storey P, Thompson AA, Carqueville CL, Wood JC, de Freitas RA, Rigsby CK. R2* imaging of transfusional iron burden at 3T and compar-ison with 1.5T. J Magn Reson Imaging 2007; 25(3): 540-7.
[http://dx.doi.org/10.1002/jmri.20816] [PMID: 17326089]
[32]
Maris TG, Papakonstantinou O, Chatzimanoli V, et al. Myocardial and liver iron status using a fast T*2 quantitative MRI (T*2qMRI) tech-nique. Magn Reson Med 2007; 57(4): 742-53.
[http://dx.doi.org/10.1002/mrm.21204] [PMID: 17390359]
[33]
Mavrogeni SI, Markussis V, Kaklamanis L, et al. A comparison of magnetic resonance imaging and cardiac biopsy in the evaluation of heart iron overload in patients with &#946;-thalassemia major. Eur J Haematol 2005; 75(3): 241-7.
[http://dx.doi.org/10.1111/j.1600-0609.2005.00474.x] [PMID: 16104881]
[34]
Jensen PD. Evaluation of iron overload. Br J Haematol 2004; 124: 697-711.
[http://dx.doi.org/10.1111/j.1365-2141.2004.04838.x]
[35]
Christoforidis A, Haritandi A, Tsitouridis I, et al. Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. J Pediatr Hematol Oncol 2006; 28(5): 311-5.
[http://dx.doi.org/10.1097/01.mph.0000212915.22265.3b] [PMID: 16772883]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy