Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Wedelolactone, a Component from Eclipta prostrata (L.) L., Inhibits the Proliferation and Migration of Head and Neck Squamous Cancer Cells through the AhR Pathway

Author(s): Yi-xuan Zou, Zhen-qiang Mu, Jie Wang, Shuo Tian, Yilin Li and Yanqiu Liu*

Volume 23, Issue 15, 2022

Published on: 29 April, 2022

Page: [1883 - 1892] Pages: 10

DOI: 10.2174/1389201023666220307110554

Price: $65

Abstract

Background: Ecliptae prostrata (L.) L. has been widely used in East Asia with reported biological activities, including anti-cancer properties.

Objectives: We aimed to investigate the effect of ethyl acetate extract of Ecliptae prostrata (L.) L. (EAE) and its component wedelolactone on the proliferation and migration of head and neck squamous cancer cells.

Methods: The proliferation of human SCC-4 and mouse CU110-1 tongue squamous carcinoma cells was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) method. Scratch wound assays were performed to assess cell migration rates. The levels of Ecadherin and vimentin were used as markers of the epithelial-to-mesenchymal transition (EMT). AhR, CYP1A1, and CYP1B1 levels were examined to uncover the mechanism of inhibition of cell migration by wedelolactone.

Results: We found that EAE and wedelolactone decreased the proliferation of human SCC-4 cells and mouse CU110-1 cells at doses of EAE at > 25 μg/ml and wedelolactone at > 6.25 μg/ml. Similarly, both EAE and wedelolactone produced inhibitory effects against migration, but the effective doses that significantly inhibited migration were lower than those affecting proliferation. Wedelolactone below 12.5 μg/ml inhibited the epithelial-to-mesenchymal transition (EMT) with increased expression of E-cadherin and decreased expression of vimentin in SCC-4 and CU110-1 cells. Further analysis showed wedelolactone inhibited the expression of AhR and its downstream target molecules CYP1A1 and CYP1B1 in both squamous carcinoma cells at the same doses inhibiting cell migration. The addition of benzo (a)pyrene [B(a)P], an agonist of AhR, stimulated migration, especially in the CU110-1 cells with reported cancer stem cell-like characteristics. Instructively, B(a)P reversed the inhibitory effects of wedelolactone on AhR expression and cell migration, suggesting that wedelolactone antagonizes cell migration through the AhR pathway. Moreover, the higher activity of EAE and wedelolactone against the migration of cancer stem-like CU110-1 cells relative to SCC-4 cells suggests selective activity against cancer stem cells.

Conclusion: Our study identifies wedelolactone as a major active component of Ecliptae prostrata (L.) L. with promising anti-cancer properties against head and neck squamous cancer cells.

Keywords: Wedelolactone, Ecliptae prostrata (L.) L., head and neck squamous cancer cells, AhR, CYP1A1, CYP1B1.

Graphical Abstract

[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[3]
Haddad, R.I.; Shin, D.M. Recent advances in head and neck cancer. N. Engl. J. Med., 2008, 359(11), 1143-1154.
[http://dx.doi.org/10.1056/NEJMra0707975] [PMID: 18784104]
[4]
Maxwell, J.H.; Grandis, J.R.; Ferris, R.L. HPV-associated head and neck cancer: Unique features of epidemiology and clinical management. Annu. Rev. Med., 2016, 67(1), 91-101.
[http://dx.doi.org/10.1146/annurev-med-051914-021907] [PMID: 26332002]
[5]
Alexandrov, L.B.; Ju, Y.S.; Haase, K.; Van Loo, P.; Martincorena, I.; Nik-Zainal, S.; Totoki, Y.; Fujimoto, A.; Nakagawa, H.; Shibata, T.; Campbell, P.J.; Vineis, P.; Phillips, D.H.; Stratton, M.R. Mutational signatures associated with tobacco smoking in human cancer. Science, 2016, 354(6312), 618-622.
[http://dx.doi.org/10.1126/science.aag0299] [PMID: 27811275]
[6]
Wang, G.Z.; Zhang, L.; Zhao, X.C.; Gao, S.H.; Qu, L.W.; Yu, H.; Fang, W.F.; Zhou, Y.C.; Liang, F.; Zhang, C.; Huang, Y.C.; Liu, Z.; Fu, Y.X.; Zhou, G.B. The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat. Commun., 2019, 10(1), 1125.
[http://dx.doi.org/10.1038/s41467-019-08887-7] [PMID: 30850589]
[7]
Zou, W.; Wolchok, J.D.; Chen, L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci. Transl. Med., 2016, 8(328), 328rv4.
[http://dx.doi.org/10.1126/scitranslmed.aad7118] [PMID: 26936508]
[8]
Nelson, V.K.; Sahoo, N.K.; Sahu, M.; Sudhan, H.H.; Pullaiah, C.P.; Muralikrishna, K.S. In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complement. Med. Ther., 2020, 20(1), 355.
[http://dx.doi.org/10.1186/s12906-020-03118-9] [PMID: 33225921]
[9]
Zhang, J.S.; Guo, Q.M. [Studies on the chemical constituents of Eclipta prostrata (L)]. Yao Xue Xue Bao, 2001, 36(1), 34-37.
[PMID: 12579857]
[10]
Wu, J.; Hou, W.B.; Zhang, T.J.; Han, Y.M. Chemical constituents of Eclipta prostrate. Chin. Tradit. Herbal Drugs, 2008, 39, 814-816.
[11]
Alam, F.; Shafique, Z.; Amjad, S.T.; Bin Asad, M.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res., 2019, 33(1), 41-54.
[http://dx.doi.org/10.1002/ptr.6211] [PMID: 30417583]
[12]
Yu, S.J.; Yu, J.H.; He, F.; Bao, J.; Zhang, J.S.; Wang, Y.Y.; Zhang, H. New antibacterial thiophenes from Eclipta prostrata. Fitoterapia, 2020, 142, 104471.
[http://dx.doi.org/10.1016/j.fitote.2020.104471] [PMID: 31917302]
[13]
Lirdprapamongkol, K.; Kramb, J.P.; Chokchaichamnankit, D.; Srisomsap, C.; Surarit, R.; Sila-Asna, M.; Bunyaratvej, A.; Dannhardt, G.; Svasti, J. Juice of eclipta prostrata inhibits cell migration in vitro and exhibits anti-angiogenic activity in vivo. In Vivo, 2008, 22(3), 363-368.
[PMID: 18610749]
[14]
Chen, Z.Q.; Chen, Y.; Mai, Z.X.; Yang, Z.H.; Zhong, C.; Li, J. Mechanism of Erzhiwan on hepatocellular carcinoma based on network pharmacology. Zhongguo Shiyan Fangjixue Zazhi, 2020, 26, 166-174.
[15]
Chen, Z.; Sun, X.; Shen, S.; Zhang, H.; Ma, X.; Liu, J.; Kuang, S.; Yu, Q. Wedelolactone, a naturally occurring coumestan, enhances interferon-γ signaling through inhibiting STAT1 protein dephosphorylation. J. Biol. Chem., 2013, 288(20), 14417-14427.
[http://dx.doi.org/10.1074/jbc.M112.442970] [PMID: 23580655]
[16]
Hsieh, C.J.; Kuo, P.L.; Hou, M.F.; Hung, J.Y.; Chang, F.R.; Hsu, Y.C.; Huang, Y.F.; Tsai, E.M.; Hsu, Y.L. Wedelolactone inhibits breast cancer-induced osteoclastogenesis by decreasing Akt/mTOR signaling. Int. J. Oncol., 2015, 46(2), 555-562.
[http://dx.doi.org/10.3892/ijo.2014.2769] [PMID: 25421824]
[17]
Nehybova, T.; Smarda, J.; Daniel, L.; Brezovsky, J.; Benes, P. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J. Steroid Biochem. Mol. Biol., 2015, 152, 76-83.
[http://dx.doi.org/10.1016/j.jsbmb.2015.04.019] [PMID: 25934092]
[18]
Yu, S.S.; Cirillo, N. The molecular markers of cancer stem cells in head and neck tumors. J. Cell. Physiol., 2020, 235(1), 65-73.
[http://dx.doi.org/10.1002/jcp.28963] [PMID: 31206697]
[19]
Liao, M.Y.; Chuang, C.Y.; Hsieh, M.J.; Chou, Y.E.; Lin, C.W.; Chen, W.R.; Lai, C.T.; Chen, M.K.; Yang, S.F. Antimetastatic effects of Eclipta prostrata extract on oral cancer cells. Environ. Toxicol., 2018, 33(9), 923-930.
[PMID: 29962088]
[20]
Liu, Y.Q.; Zhan, L.B.; Liu, T.; Cheng, M.C.; Liu, X.Y.; Xiao, H.B. Inhibitory effect of Ecliptae herba extract and its component wedelolactone on pre-osteoclastic proliferation and differentiation. J. Ethnopharmacol., 2014, 157, 206-211.
[http://dx.doi.org/10.1016/j.jep.2014.09.033] [PMID: 25267578]
[21]
Chen, X.; Cao, Y.; Sedhom, W.; Lu, L.; Liu, Y.; Wang, H.; Oka, M.; Bornstein, S.; Said, S.; Song, J.; Lu, S.L. Distinct roles of PIK3CA in the enrichment and maintenance of cancer stem cells in head and neck squamous cell carcinoma. Mol. Oncol., 2020, 14(1), 139-158.
[http://dx.doi.org/10.1002/1878-0261.12584] [PMID: 31600013]
[22]
van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol., 2011, 731, 237-245.
[http://dx.doi.org/10.1007/978-1-61779-080-5_20] [PMID: 21516412]
[23]
Kashyap, D.; Sharma, A.; Tuli, H.S.; Sak, K.; Mukherjee, T.; Bishayee, A. Molecular targets of celastrol in cancer: Recent trends and advancements. Crit. Rev. Oncol. Hematol., 2018, 128, 70-81.
[http://dx.doi.org/10.1016/j.critrevonc.2018.05.019] [PMID: 29958633]
[24]
Hennessy, B.T.; Gonzalez-Angulo, A.M.; Stemke-Hale, K.; Gilcrease, M.Z.; Krishnamurthy, S.; Lee, J.S.; Fridlyand, J.; Sahin, A.; Agarwal, R.; Joy, C.; Liu, W.; Stivers, D.; Baggerly, K.; Carey, M.; Lluch, A.; Monteagudo, C.; He, X.; Weigman, V.; Fan, C.; Palazzo, J.; Hortobagyi, G.N.; Nolden, L.K.; Wang, N.J.; Valero, V.; Gray, J.W.; Perou, C.M.; Mills, G.B. Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res., 2009, 69(10), 4116-4124.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3441] [PMID: 19435916]
[25]
Cheong, J.E.; Sun, L. Targeting the IDO1/TDO2-KYN-AhR Pathway for Cancer Immunotherapy - Challenges and Opportunities. Trends Pharmacol. Sci., 2018, 39(3), 307-325.
[http://dx.doi.org/10.1016/j.tips.2017.11.007] [PMID: 29254698]
[26]
Murray, I.A.; Patterson, A.D.; Perdew, G.H. Aryl hydrocarbon receptor ligands in cancer: Friend and foe. Nat. Rev. Cancer, 2014, 14(12), 801-814.
[http://dx.doi.org/10.1038/nrc3846] [PMID: 25568920]
[27]
Maheswari, P.; Harish, S.; Navaneethan, M.; Muthamizhchelvan, C.; Ponnusamy, S.; Hayakawa, Y. Bio-modified TiO2 nanoparticles with Withania somnifera, Eclipta prostrata and Glycyrrhiza glabra for anticancer and antibacterial applications. Mater. Sci. Eng. C, 2020, 108, 110457.
[http://dx.doi.org/10.1016/j.msec.2019.110457] [PMID: 31924033]
[28]
Lee, M.K.; Ha, N.R.; Yang, H.; Sung, S.H.; Kim, G.H.; Kim, Y.C. Antiproliferative activity of triterpenoids from Eclipta prostrata on hepatic stellate cells. Phytomedicine, 2008, 15(9), 775-780.
[http://dx.doi.org/10.1016/j.phymed.2007.10.004] [PMID: 18061418]
[29]
Liu, Q.M.; Zhao, H.Y.; Zhong, X.K.; Jiang, J.G. Eclipta prostrata L. phytochemicals: Isolation, structure elucidation, and their antitumor activity. Food Chem. Toxicol., 2012, 50(11), 4016-4022.
[http://dx.doi.org/10.1016/j.fct.2012.08.007] [PMID: 22902823]
[30]
Benes, P.; Alexova, P.; Knopfova, L.; Spanova, A.; Smarda, J. Redox state alters anti-cancer effects of wedelolactone. Environ. Mol. Mutagen., 2012, 53(7), 515-524.
[http://dx.doi.org/10.1002/em.21712] [PMID: 22733624]
[31]
Sarveswaran, S.; Ghosh, R.; Parikh, R.; Ghosh, J. Wedelolactone, an anti-inflammatory botanical, interrupts c-myc oncogenic signaling and synergizes with enzalutamide to induce apoptosis in prostate cancer cells. Mol. Cancer Ther., 2016, 15(11), 2791-2801.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0861] [PMID: 27474149]
[32]
Dong, J.; Li, J.; Li, Y.; Ma, Z.; Yu, Y.; Wang, C.Y. Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat. Commun., 2021, 12(1), 3974.
[http://dx.doi.org/10.1038/s41467-021-24137-1] [PMID: 34172737]
[33]
Nathansen, J.; Lukiyanchuk, V.; Hein, L.; Stolte, M.I.; Borgmann, K.; Löck, S.; Kurth, I.; Baumann, M.; Krause, M.; Linge, A.; Dubrovska, A. Oct4 confers stemness and radioresistance to head and neck squamous cell carcinoma by regulating the homologous recombination factors PSMC3IP and RAD54L. Oncogene, 2021, 40(24), 4214-4228.
[http://dx.doi.org/10.1038/s41388-021-01842-1] [PMID: 34079088]
[34]
Lytle, N.K.; Barber, A.G.; Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer, 2018, 18(11), 669-680.
[http://dx.doi.org/10.1038/s41568-018-0056-x] [PMID: 30228301]
[35]
Wang, G.Z.; Cheng, X.; Zhou, B.; Wen, Z.S.; Huang, Y.C.; Chen, H.B.; Li, G.F.; Huang, Z.L.; Zhou, Y.C.; Feng, L.; Wei, M.M.; Qu, L.W.; Cao, Y.; Zhou, G.B. The chemokine CXCL13 in lung cancers associated with environmental polycyclic aromatic hydrocarbons pollution. eLife, 2015, 4, e09419.
[http://dx.doi.org/10.7554/eLife.09419] [PMID: 26565418]
[36]
Labadie, B.W.; Bao, R.; Luke, J.J. Reimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-Aryl hydrocarbon axis. Clin. Cancer Res., 2019, 25(5), 1462-1471.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2882] [PMID: 30377198]
[37]
Al-Dhfyan, A.; Alhoshani, A.; Korashy, H.M. Aryl hydrocarbon receptor/cytochrome P450 1A1 pathway mediates breast cancer stem cells expansion through PTEN inhibition and β-Catenin and Akt activation. Mol. Cancer, 2017, 16(1), 14.
[http://dx.doi.org/10.1186/s12943-016-0570-y] [PMID: 28103884]
[38]
Wang, Z.; Snyder, M.; Kenison, J.E.; Yang, K.; Lara, B.; Lydell, E.; Bennani, K.; Novikov, O.; Federico, A.; Monti, S.; Sherr, D.H. How the AHR became important in cancer: The role of chronically active AHR in cancer aggression. Int. J. Mol. Sci., 2020, 22(1), 387.
[http://dx.doi.org/10.3390/ijms22010387] [PMID: 33396563]
[39]
Gan, M.; Ding, H.; Chen, G. 6-Formylindolo[3,2-b]carbazole reduces apoptosis induced by benzo[a]pyrene in a mitochondrial-dependent manner. Cell Biol. Int., 2020, 44(12), 2427-2437.
[http://dx.doi.org/10.1002/cbin.11450] [PMID: 32808713]
[40]
Cheng, Y.H.; Li, L.A.; Lin, P.; Cheng, L.C.; Hung, C.H.; Chang, N.W.; Lin, C. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol. Appl. Pharmacol., 2012, 263(3), 360-367.
[http://dx.doi.org/10.1016/j.taap.2012.07.010] [PMID: 22820424]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy