Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Molecular Cloning and Characterization of a Novel Antimicrobial Peptide from the Skin of Kaloula pulchra

Author(s): Yahua Gao, Jinwei Chai, Jiena Wu, Qingye Zeng, Ruiyin Guo, Xin Chen* and Xueqing Xu*

Volume 23, Issue 15, 2022

Published on: 23 May, 2022

Page: [1873 - 1882] Pages: 10

DOI: 10.2174/1389201023666220304204645

Price: $65

Abstract

Background: Bacterial resistance to all currently available conventional antibiotics has caused a global public health crisis and led to an imperative search for new agents. Antimicrobial peptides (AMPs) are essential components of host innate immune defense against microbial invasions.

Objectives: The objective of this study was to report a novel AMP, brevinin-2KP, from the skin of the black Kaloula pulchra frog and describe its structural and biological characterization.

Materials and Methods: The physical and chemical parameters of brevinin-2KP were predicted with the ExPASy Bioinformatics Resource Portal. The assembled sequences were aligned with ClustalW, and the phylogenetic tree was constructed using Mega. Circular dichroism (CD) experiments were carried out to identify the secondary structure and the stability of peptide in different solvent environments. The cytotoxicity of brevinin-2KP was evaluated by the MTT test. To determine antibacterial activity of brevinin- 2KP, a standard two-fold broth dilution method was used. SEM was carried out to observe the morphological change in the bacterial treated by brevinin-2KP. The live/dead bacterial viability was measured with a LIVE/DEAD® BacLight kit. Histamine release and mast cell degranulation assays were performed.

Results: The precursor of brevinin-2KP contains 72 amino acid residues, including a conserved signal peptide, acidic propeptide with KR residues, and mature peptide with a sequence of GVITDALKGAAKTVAAELLKKAHCKLTNSC. Phylogenetic analysis based on the amino acid sequences of 34 brevinin-2 peptides from 30 anuran species demonstrates that K. pulchra is genetically closely related to the genus Hylarana. The CD spectra analysis indicates that brevinin-2KP adopts random coil in the water and an organized α-helical conformation in SDS solution. Further, this secondary structure is stable under high salt and high-temperature conditions. Brevinin-2KP is weakly active towards the tested Gram-positive and Gram-negative bacteria as well as fungi due to its membranolytic action. Moreover, brevinin-2KP inhibits the proliferation of several mammal cells with IC50 values ranging from 3.27 to 59.75 μM. In addition, brevinin-2KP promotes degranulation and histamine release of mast cells, indicating that it is involved in the inflammatory response.

Conclusion: This is the first report on AMP identified from the skin of K. pulchra. Brevinin-2KP adopts a typical amphipathic α-helix conformation in membrane mimic environment and shows antimicrobial and antitumor activities by potential membranolytic mechanism. In addition, brevinin-2KP can promote degranulation and histamine release of mast cells. Brevinin-2KP is expected to become a good drug temple molecule.

Keywords: Antimicrobial peptide, amphibian, brevinin-2, antitumor, innate immunity, Kaloula pulchra.

Graphical Abstract

[1]
Xu, X.; Lai, R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem. Rev., 2015, 115(4), 1760-1846.
[http://dx.doi.org/10.1021/cr4006704] [PMID: 25594509]
[2]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[3]
Mangoni, M.L. Temporins, anti-infective peptides with expanding properties. Cell. Mol. Life Sci., 2006, 63(9), 1060-1069.
[http://dx.doi.org/10.1007/s00018-005-5536-y] [PMID: 16572270]
[4]
Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Transl. Res., 2019, 11(7), 3919-3931.
[PMID: 31396309]
[5]
Mangoni, M.L.; Luca, V.; McDermott, A.M. Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides, 2015, 71, 286-295.
[http://dx.doi.org/10.1016/j.peptides.2015.04.018] [PMID: 25959536]
[6]
Bacalum, M.; Radu, M. Cationic antimicrobial peptides cytotoxicity on mammalian cells: An analysis using therapeutic index integrative concept. Int. J. Pept. Res. Ther., 2015, 21(1), 47-55.
[http://dx.doi.org/10.1007/s10989-014-9430-z]
[7]
Shartouny, J.R.; Jacob, J. Mining the tree of life: Host defense peptides as antiviral therapeutics. Semin. Cell Dev. Biol., 2019, 88, 147-155.
[http://dx.doi.org/10.1016/j.semcdb.2018.03.001] [PMID: 29524585]
[8]
Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog skin innate immune defences: Sensing and surviving pathogens. Front. Immunol., 2019, 9(3128), 3128.
[http://dx.doi.org/10.3389/fimmu.2018.03128] [PMID: 30692997]
[9]
Conlon, J.M.; Power, G.J.; Abdel-Wahab, Y.H.; Flatt, P.R.; Jiansheng, H.; Coquet, L.; Leprince, J.; Jouenne, T.; Vaudry, H. A potent, non-toxic insulin-releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura:Ranidae). Regul. Pept., 2008, 151(1-3), 153-159.
[http://dx.doi.org/10.1016/j.regpep.2008.04.002] [PMID: 18501981]
[10]
Savelyeva, A.; Ghavami, S.; Davoodpour, P.; Asoodeh, A.; Łos, M.J. An overview of brevinin superfamily: Structure, function and clinical perspectives. In: Anticancer genes; Springer, 2014; pp. 197-212.
[http://dx.doi.org/10.1007/978-1-4471-6458-6_10]
[11]
Marenah, L.; Flatt, P.R.; Orr, D.F.; Shaw, C.; Abdel-Wahab, Y.H. Skin secretions of Rana saharica frogs reveal antimicrobial peptides es-culentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J. Endocrinol., 2006, 188(1), 1-9.
[http://dx.doi.org/10.1677/joe.1.06293] [PMID: 16394170]
[12]
Popovic, f\S.; Urbán, E.; Lukic, M.; Conlon, J.M. Peptides with antimicrobial and anti476 inflammatory activities that have therapeutic potential for treatment of acne vulgaris. Peptides, 2012, 34(2), 275-282.
[http://dx.doi.org/10.1016/j.peptides.2012.02.010] [PMID: 22374306]
[13]
Zhang, Y.; Wang, M.; Wei, S. Isolation and characterization of a trypsin inhibitor from the skin secretions of Kaloula pulchra hainana. Toxicon, 2010, 56(4), 502-507.
[http://dx.doi.org/10.1016/j.toxicon.2010.05.006] [PMID: 20580731]
[14]
Wei, S.; Chi, T.; Meng, A.; Chen, C.; An, T.; Wang, M.; Zhang, Y. Characteristics of hemolytic activity induced by skin secretions of the frog Kaloula pulchra hainana. J. Venom. Anim. Toxins Incl. Trop. Dis., 2013, 19(1), 9.
[http://dx.doi.org/10.1186/1678-9199-19-9] [PMID: 24499077]
[15]
Zeng, B.; Chai, J.; Deng, Z.; Ye, T.; Chen, W.; Li, D.; Chen, X.; Chen, M.; Xu, X. Functional characterization of a novel lipopolysaccha-ride-binding antimicrobial and anti485 inflammatory peptide in vitro and in vivo. J. Med. Chem., 2018, 61(23), 10709-10723.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01358] [PMID: 30427189]
[16]
Buchan, D.W.A.; Jones, D.T. The psipred protein analysis workbench: 20 years on. Nucleic Acids Res., 2019, 47(W1), W402-W407.
[http://dx.doi.org/10.1093/nar/gkz297] [PMID: 31251384]
[17]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004, 32(Web Server issue)(Suppl. 2)), W526-31.
[http://dx.doi.org/10.1093/nar/gkh468] [PMID: 15215442]
[18]
Lu, Y.; Li, J.; Yu, H.; Xu, X.; Liang, J.; Tian, Y.; Ma, D.; Lin, G.; Huang, G.; Lai, R. Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides, 2006, 27(12), 3085-3091.
[http://dx.doi.org/10.1016/j.peptides.2006.08.017] [PMID: 17000029]
[19]
Graham, C.; Richter, S.C.; McClean, S.; O’Kane, E.; Flatt, P.R.; Shaw, C. Histamine-releasing and antimicrobial peptides from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides, 2006, 27(6), 1313-1319.
[http://dx.doi.org/10.1016/j.peptides.2005.11.021] [PMID: 16386333]
[20]
Chen, T.; Reid, C.N.; Walker, B.; Zhou, M.; Shaw, C. Kassinakinin S: a novel histamine-releasing heptadecapeptide from frog (Kassina senegalensis) skin secretion. Biochem. Biophys. Res. Commun., 2005, 337(2), 474-480.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.072] [PMID: 16188226]
[21]
Baker, L.B. Physiology of sweat gland function: The roles of sweating and sweat composition in human health. Temperature, 2019, 6(3), 211-259.
[http://dx.doi.org/10.1080/23328940.2019.1632145] [PMID: 31608304]
[22]
Zhou, J.; McClean, S.; Thompson, A.; Zhang, Y.; Shaw, C.; Rao, P.; Bjourson, A.J. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides, 2006, 27(12), 3077-3084.
[http://dx.doi.org/10.1016/j.peptides.2006.08.007] [PMID: 16979798]
[23]
Zasloff, M. Antimicrobial peptides of multicellular organisms: My perspective. In: Antimicrobial peptides. Adv. Exp. Med. Biol., 2019, 1117, 3-6.
[http://dx.doi.org/10.1007/978-981-13-3588-4_1] [PMID: 30980349]
[24]
Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev., 2019, 39(3), 831-859.
[http://dx.doi.org/10.1002/med.21542] [PMID: 30353555]
[25]
Cole, C.L.; Rushton, G.; Jayson, G.C.; Avizienyte, E. Ovarian cancer cell heparan sulfate 6-O-sulfotransferases regulate an angiogenic program induced by heparin-binding epidermal growth factor (EGF)-like growth factor/EGF receptor signaling. J. Biol. Chem., 2014, 289(15), 10488-10501.
[http://dx.doi.org/10.1074/jbc.M113.534263] [PMID: 24563483]
[26]
Osinaga, E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life, 2007, 59(4-5), 269-273.
[http://dx.doi.org/10.1080/15216540601188553] [PMID: 17505964]
[27]
Liu, J.; Wu, Q.; Li, L.; Xi, X.; Wu, D.; Zhou, M.; Chen, T.; Shaw, C.; Wang, L. Discovery of phylloseptins that defense against gram-positive bacteria and inhibit the proliferation of the non-small cell lung cancer cell line, from the skin secretions of phyllomedusa frogs. Molecules, 2017, 22(9), 1428.
[http://dx.doi.org/10.3390/molecules22091428] [PMID: 28850103]
[28]
Yuan, Y.; Zai, Y.; Xi, X.; Ma, C.; Wang, L.; Zhou, M.; Shaw, C.; Chen, T. A novel membrane-disruptive antimicrobial peptide from frog skin secretion against cystic fibrosis isolates and evaluation of anti-MRSA effect using Galleria mellonella model. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(5), 849-856.
[http://dx.doi.org/10.1016/j.bbagen.2019.02.013] [PMID: 30802593]
[29]
Ghavami, S.; Asoodeh, A.; Klonisch, T.; Halayko, A.J.; Kadkhoda, K.; Kroczak, T.J.; Gibson, S.B.; Booy, E.P.; Naderi-Manesh, H.; Los, M. Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med., 2008, 12(3), 1005-1022.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00129.x] [PMID: 18494941]
[30]
Rajasekaran, G.; Dinesh Kumar, S.; Nam, J.; Jeon, D.; Kim, Y.; Lee, C.W.; Park, I.S.; Shin, S.Y. Antimicrobial and anti-inflammatory activities of chemokine CXCl14-derived antimicrobial peptide and its analogs. Biochim. Biophys. Acta Biomembr., 2019, 1861(1), 256-267.
[http://dx.doi.org/10.1016/j.bbamem.2018.06.016] [PMID: 29959905]
[31]
Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57.
[http://dx.doi.org/10.1016/j.drup.2016.04.002] [PMID: 27180309]
[32]
Ogasawara, H.; Furuno, M.; Edamura, K.; Noguchi, M. Peptides of major basic protein and eosinophil cationic protein activate human mast cells. Biochem. Biophys. Rep., 2019, 21(100719), 100719.
[PMID: 32072023]
[33]
Conlon, J.M.; Al-Ghaferi, N.; Abraham, B.; Jiansheng, H.; Cosette, P.; Leprince, J.; Jouenne, T.; Vaudry, H. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides, 2006, 27(9), 2111-2117.
[http://dx.doi.org/10.1016/j.peptides.2006.03.002] [PMID: 16621155]
[34]
Conlon, J.M.; Kolodziejek, J.; Nowotny, N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim. Biophys. Acta, 2004, 1696(1), 1-14.
[http://dx.doi.org/10.1016/j.bbapap.2003.09.004] [PMID: 14726199]
[35]
Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395.
[http://dx.doi.org/10.1038/415389a] [PMID: 11807545]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy