Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

Pharmacological Diversity of Triazole Scaffolds: A Review

Author(s): Ramalakshmi Natarajan, Yuvarani Kesavan*, Amuthalakshmi Sivaperuman and Arunkumar Subramani

Volume 18, Issue 10, 2022

Published on: 10 June, 2022

Article ID: e070322201800 Pages: 25

DOI: 10.2174/1573407218666220307103154

Price: $65

Abstract

Background: Heterocyclic compounds possess a wide variety of roles in most fields of science, such as biochemistry, medicinal chemistry, veterinary products, agrochemicals, etc. Triazole, a heterocycle compound, serves as a building block for various compounds having multiple applications, mostly in medicine. Triazole is a five-membered ring containing compounds that occur in nature, found in several microorganisms, fungi, and marine organisms. The triazole nucleus is a boon for researchers with significant scope in the long-term. Triazole derivatives possess various pharmacological properties due to their ability to exert several non-covalent interactions, which can improve the solubility and the ability to bind to bimolecular targets.

Objective: We focused on the structure-activity relationship of triazole derivatives possessing various biological activities such as antibacterial, antifungal, anticonvulsant, antidiabetic, antimalarial, analgesic, anti-inflammatory, antioxidant, antidepressant, antitubercular, anticancer, etc.

Results: This study revealed the significance of certain substituents on triazole nuclei for different biological activities.

Conclusion: From this, we conclude that the triazole nucleus will be a lead for further research on drug discovery.

Keywords: Heterocyclic compounds, 1, 2, 3-triazole, 4-triazole, pharmacological activity, antifungal activity, antibacterial activity.

Graphical Abstract

[1]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[2]
Afreen, F.; Chakraborty, R.; Thakur, A. Synthesis of a triazole derivative and evaluation of their antituberculer activity. Int. J. Pharma. Chem, 2015, 5(10), 343-349.
[3]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[4]
El‐Sebaey, S.A. Recent advances in 1, 2, 4‐triazole scaffolds as antiviral agents. ChemistrySelect, 2020, 5(37), 11654-11680.
[http://dx.doi.org/10.1002/slct.202002830]
[5]
Kim, J.D.; Jun, M.S.; Di Vona, M.L. Nafion‐1, 2, 3‐triazole blend membranes for high temperature PEMFCs. Fuel Cells (Weinh.), 2013, 13(1), 65-71.
[http://dx.doi.org/10.1002/fuce.201200090]
[6]
Günday, S.T.; Bozkurt, A.; Meyer, W.H.; Wegner, G. Effects of different acid functional groups on proton conductivity of polymer‐1, 2, 4‐triazole blends. J. Polym. Sci., B, Polym. Phys., 2006, 44(23), 3315-3322.
[http://dx.doi.org/10.1002/polb.20956]
[7]
Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem., 2012, 19(2), 239-280.
[http://dx.doi.org/10.2174/092986712803414213] [PMID: 22320301]
[8]
Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; Sakhuja, R.; Ibrahim, T.S.; Abdel-Samii, Z.K.M.; Al-Mahmoudy, A.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105117.
[http://dx.doi.org/10.1016/j.bioorg.2021.105117] [PMID: 34214752]
[9]
Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A promising antitubercular agent. Chem. Biol. Drug Des., 2015, 86(4), 410-423.
[http://dx.doi.org/10.1111/cbdd.12527] [PMID: 25643871]
[10]
Dai, Z.C.; Chen, Y.F.; Zhang, M.; Li, S.K.; Yang, T.T.; Shen, L.; Wang, J.X.; Qian, S.S.; Zhu, H.L.; Ye, Y.H. Synthesis and antifungal activity of 1,2,3-triazole phenylhydrazone derivatives. Org. Biomol. Chem., 2015, 13(2), 477-486.
[http://dx.doi.org/10.1039/C4OB01758G] [PMID: 25374053]
[11]
Pasqualotto, A.C.; Thiele, K.O.; Goldani, L.Z. Novel triazole antifungal drugs: Focus on isavuconazole, ravuconazole and albaconazole. Curr. Opin. Investig. Drugs, 2010, 11(2), 165-174.
[PMID: 20112166]
[12]
Torres, H.A.; Hachem, R.Y.; Chemaly, R.F.; Kontoyiannis, D.P.; Raad, I.I. Posaconazole: A broad-spectrum triazole antifungal. Lancet Infect. Dis., 2005, 5(12), 775-785.
[http://dx.doi.org/10.1016/S1473-3099(05)70297-8] [PMID: 16310149]
[13]
Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem., 2016, 113, 34-49.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.041] [PMID: 26922227]
[14]
Dadmal, T.L.; Appalanaidu, K.; Kumbhare, R.M.; Mondal, T.; Ramaiah, M.J.; Bhadra, M.P. Synthesis and biological evaluation of triazole and isoxazole-tagged benzothiazole/benzoxazole derivatives as potent cytotoxic agents. New J. Chem., 2018, 42(19), 15546-15551.
[http://dx.doi.org/10.1039/C8NJ01249K]
[15]
Doiron, J.; Soultan, A.H.; Richard, R.; Touré, M.M.; Picot, N.; Richard, R.; Cuperlović-Culf, M.; Robichaud, G.A.; Touaibia, M. Synthesis and structure-activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem., 2011, 46(9), 4010-4024.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.074] [PMID: 21703734]
[16]
Namratha, B.; Gaonkar, S.L. 1, 2, 4-Triazoles: Synthetic strategies and pharmacological profiles. Int. J. Pharm. Pharm. Sci., 2014, 8, 73-80.
[17]
Asif, M. Anti-neuropathic and anticonvulsant activities of various substituted triazoles analogues. Chem. Int., 2015, 1(4), 174-183.
[18]
Sahu, J.K.; Ganguly, S.; Kaushik, A. Triazoles: A valuable insight into recent developments and biological activities. Chin. J. Nat. Med., 2013, 11(5), 456-465.
[http://dx.doi.org/10.1016/S1875-5364(13)60084-9] [PMID: 24359767]
[19]
Nagesh, H.N.; Naidu, K.M.; Rao, D.H.; Sridevi, J.P.; Sriram, D.; Yogeeswari, P.; Chandra Sekhar, K.V. Design, synthesis and evaluation of 6-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl)phenanthridine analogues as antimycobacterial agents. Bioorg. Med. Chem. Lett., 2013, 23(24), 6805-6810.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.016] [PMID: 24169232]
[20]
Velázquez, S.; Alvarez, R.; Pérez, C.; Gago, F.; De Clercq, E.; Balzarini, J.; Camarasa, M.J. Regiospecific synthesis and anti-human immunodeficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N,N-dialkylcarbamoyl 1,2,3-triazole-TSAO analogues. Antivir. Chem. Chemother., 1998, 9(6), 481-489.
[http://dx.doi.org/10.1177/095632029800900604] [PMID: 9865386]
[21]
Bonacorso, H.G.; Moraes, M.C.; Wiethan, C.W.; Luz, F.M.; Meyer, A.R.; Zanatta, N.; Martins, M.A. Synthesis of 1H-1, 2, 3-triazoles—Rufinamide analogs by 1, 3-dipolar cycloaddition and eletrocyclization reactions of trifluoroacetyl enolethers under thermal solventless conditions. J. Fluor. Chem., 2013, 156, 112-119.
[http://dx.doi.org/10.1016/j.jfluchem.2013.09.005]
[22]
Song, M.X.; Deng, X.Q. Recent developments on triazole nucleus in anticonvulsant compounds: A review. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 453-478.
[http://dx.doi.org/10.1080/14756366.2017.1423068] [PMID: 29383949]
[23]
Akbarzadeh, T.; Tabatabai, S.A.; Khoshnoud, M.J.; Shafaghi, B.; Shafiee, A. Design and synthesis of 4H-3-(2-phenoxy)phenyl-1,2,4-triazole derivatives as benzodiazepine receptor agonists. Bioorg. Med. Chem., 2003, 11(5), 769-773.
[http://dx.doi.org/10.1016/S0968-0896(02)00469-8] [PMID: 12538007]
[24]
Zhang, C.L.; Heinemann, U. Effects of the triazole derivative loreclezole (R72063) on stimulus induced ionic and field potential responses and on different patterns of epileptiform activity induced by low magnesium in rat entorhinal cortex-hippocampal slices. Naunyn Schmiedebergs Arch. Pharmacol., 1992, 346(5), 581-587.
[http://dx.doi.org/10.1007/BF00169016] [PMID: 1470229]
[25]
Dastjerdi, H.F.; Naderi, N.; Nematpour, M.; Rezaee, E.; Mahboubi-Rabbani, M.; Ebrahimi, M.; Hosseinipoor, S.; Hosseini, O.; Tabatabai, S.A. Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors. J. Mol. Struct., 2020, 1221, 128745.
[http://dx.doi.org/10.1016/j.molstruc.2020.128745]
[26]
Rbaa, M.; Abousalem, A.S.; Rouifi, Z.; Benkaddour, R.; Dohare, P.; Lakhrissi, M.; Warad, I.; Lakhrissi, B.; Zarrouk, A. Synthesis, antibacterial study and corrosion inhibition potential of newly synthesis oxathiolan and triazole derivatives of 8-hydroxyquinoline: Experimental and theoretical approach. Surf. Interfaces, 2020, 19, 100468.
[http://dx.doi.org/10.1016/j.surfin.2020.100468]
[27]
Gatadi, S.; Gour, J.; Shukla, M.; Kaul, G.; Das, S.; Dasgupta, A.; Malasala, S.; Borra, R.S.; Madhavi, Y.V.; Chopra, S.; Nanduri, S. Synthesis of 1,2,3-triazole linked 4(3H)-Quinazolinones as potent antibacterial agents against multidrug-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2018, 157, 1056-1067.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.070] [PMID: 30176536]
[28]
Chai, X.; Zhang, J.; Cao, Y.; Zou, Y.; Wu, Q.; Zhang, D.; Jiang, Y.; Sun, Q. Design, synthesis and molecular docking studies of novel triazole as antifungal agent. Eur. J. Med. Chem., 2011, 46(7), 3167-3176.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.022] [PMID: 21531485]
[29]
Wang, Y.; Xu, K.; Bai, G.; Huang, L.; Wu, Q.; Pan, W.; Yu, S. Synthesis and antifungal activity of novel triazole compounds containing piperazine moiety. Molecules, 2014, 19(8), 11333-11340.
[http://dx.doi.org/10.3390/molecules190811333] [PMID: 25090121]
[30]
Cacciapuoti, A.; Loebenberg, D.; Corcoran, E.; Menzel, F., Jr; Moss, E.L., Jr; Norris, C.; Michalski, M.; Raynor, K.; Halpern, J.; Mendrick, C.; Arnold, B.; Antonacci, B.; Parmegiani, R.; Yarosh-Tomaine, T.; Miller, G.H.; Hare, R.S. in vitro and in vivo activities of SCH 56592 (posaconazole), a new triazole antifungal agent, against Aspergillus and Candida. Antimicrob. Agents Chemother., 2000, 44(8), 2017-2022.
[http://dx.doi.org/10.1128/AAC.44.8.2017-2022.2000] [PMID: 10898669]
[31]
Sztanke, K.; Tuzimski, T.; Rzymowska, J.; Pasternak, K.; Kandefer-Szerszeń, M. Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2008, 43(2), 404-419.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.033] [PMID: 17531354]
[32]
Badar, A.D.; Sulakhe, S.M.; Muluk, M.B.; Rehman, N.N.; Dixit, P.P.; Choudhari, P.B.; Rekha, E.M.; Sriram, D.; Haval, K.P. Synthesis of isoniazid‐1, 2, 3‐triazole conjugates: Antitubercular, antimicrobial evaluation and molecular docking study. J. Heterocycl. Chem., 2020, 57(10), 3544-3557.
[http://dx.doi.org/10.1002/jhet.4072]
[33]
Shaikh, M.H.; Subhedar, D.D.; Arkile, M.; Khedkar, V.M.; Jadhav, N.; Sarkar, D.; Shingate, B.B. Synthesis and bioactivity of novel triazole incorporated benzothiazinone derivatives as antitubercular and antioxidant agent. Bioorg. Med. Chem. Lett., 2016, 26(2), 561-569.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.071] [PMID: 26642768]
[34]
Kharb, R.; Shahar Yar, M.; Sharma, P.C. Recent advances and future perspectives of triazole analogs as promising antiviral agents. Mini Rev. Med. Chem., 2011, 11(1), 84-96.
[http://dx.doi.org/10.2174/138955711793564051] [PMID: 21034403]
[35]
Al-Soud, Y.A.; Al-Dweri, M.N.; Al-Masoudi, N.A. Synthesis, antitumor and antiviral properties of some 1,2,4-triazole derivatives. Farmaco, 2004, 59(10), 775-783.
[http://dx.doi.org/10.1016/j.farmac.2004.05.006] [PMID: 15474054]
[36]
Shafi, S.; Alam, M.M.; Mulakayala, N.; Mulakayala, C.; Vanaja, G.; Kalle, A.M.; Pallu, R.; Alam, M.S. Synthesis of novel 2-mercapto benzothiazole and 1,2,3-triazole based bis-heterocycles: Their anti-inflammatory and anti-nociceptive activities. Eur. J. Med. Chem., 2012, 49, 324-333.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.032] [PMID: 22305614]
[37]
Ayati, A.; Emami, S.; Foroumadi, A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur. J. Med. Chem., 2016, 109, 380-392.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.009] [PMID: 26826582]
[38]
Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5- [2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett., 2004, 14(24), 6057-6059.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.072] [PMID: 15546729]
[39]
Khan, I.; Ali, S.; Hameed, S.; Rama, N.H.; Hussain, M.T.; Wadood, A.; Uddin, R.; Ul-Haq, Z.; Khan, A.; Ali, S.; Choudhary, M.I. Synthesis, antioxidant activities and urease inhibition of some new 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Eur. J. Med. Chem., 2010, 45(11), 5200-5207.
[http://dx.doi.org/10.1016/j.ejmech.2010.08.034] [PMID: 20828889]
[40]
Radhika, C.; Venkatesham, A.; Sarangapani, M. Synthesis and antidepressant activity of di substituted-5-aryl-1, 2, 4-triazoles. Med. Chem. Res., 2012, 21(11), 3509-3513.
[http://dx.doi.org/10.1007/s00044-011-9902-z]
[41]
Batra, N.; Rajendran, V.; Agarwal, D.; Wadi, I.; Ghosh, P.C.; Gupta, R.D.; Nath, M. Synthesis and antimalarial evaluation of [1, 2, 3]‐triazole‐tethered sulfonamide‐berberine hybrids. ChemistrySelect, 2018, 3(34), 9790-9793.
[http://dx.doi.org/10.1002/slct.201801905]
[42]
Hussein, M.A.; Shaker, R.M.; Ameen, M.A.; Mohammed, M.F. Synthesis, anti-inflammatory, analgesic, and antibacterial activities of some triazole, triazolothiadiazole, and triazolothiadiazine derivatives. Arch. Pharm. Res., 2011, 34(8), 1239-1250.
[http://dx.doi.org/10.1007/s12272-011-0802-z] [PMID: 21910044]
[43]
Karrouchi, K.; Chemlal, L.; Taoufik, J.; Cherrah, Y.; Radi, S.; Faouzi, M.E.; Ansar, M. Synthesis, antioxidant and analgesic activities of Schiff bases of 4-amino-1, 2, 4-triazole derivatives containing a pyrazole moiety. Ann. Pharm. Fr., 2016, 74(6), 431-438.
[44]
Pandeya, S.N.; Sriram, D.; Nath, G.; de Clercq, E. Synthesis, antibacterial, antifungal and anti-HIV evaluation of Schiff and Mannich bases of isatin and its derivatives with triazole. Arzneimittelforschung, 2000, 50(1), 55-59.
[PMID: 10683717]
[45]
Mohamed, M.A.; Abd Allah, O.A.; Bekhit, A.A.; Kadry, A.M.; El‐Saghier, A.M. Synthesis and antidiabetic activity of novel triazole derivatives containing amino acids. J. Heterocycl. Chem., 2020, 57(6), 2365-2378.
[http://dx.doi.org/10.1002/jhet.3951]
[46]
Liang, L.; Astruc, D. The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC)“click” reaction and its applications. An overview. Coord. Chem. Rev., 2011, 255(23-24), 2933-2945.
[http://dx.doi.org/10.1016/j.ccr.2011.06.028]
[47]
Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem., 2019, 27(16), 3511-3531.
[http://dx.doi.org/10.1016/j.bmc.2019.07.005] [PMID: 31300317]
[48]
Barluenga, J.; Valdés, C.; Beltrán, G.; Escribano, M.; Aznar, F. Developments in Pd catalysis: Synthesis of 1H-1,2,3-triazoles from sodium azide and alkenyl bromides. Angew. Chem. Int. Ed., 2006, 45(41), 6893-6896.
[http://dx.doi.org/10.1002/anie.200601045] [PMID: 17001730]
[49]
Jiang, Y.; Kuang, C.; Yang, Q. The use of calcium carbide in the synthesis of 1-monosubstituted aryl 1, 2, 3-triazole via click chemistry. Synlett, 2009, 2009(19), 3163-3166.
[http://dx.doi.org/10.1055/s-0029-1218346]
[50]
Aromí, G.; Barrios, L.A.; Roubeau, O.; Gamez, P. Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coord. Chem. Rev., 2011, 255(5-6), 485-546.
[http://dx.doi.org/10.1016/j.ccr.2010.10.038]
[51]
Holm, S.C.; Straub, B.F. Synthesis of n-substituted 1, 2, 4-triazoles. A review. Org. Prep. Proced. Int., 2011, 43(4), 319-347.
[http://dx.doi.org/10.1080/00304948.2011.593999]
[52]
Wang, L.Y.; Tsai, H.J.; Lin, H.Y.; Kaneko, K.; Cheng, F.Y.; Shih, H.S.; Wong, F.F.; Huang, J.J. One-flask synthesis of 1, 3, 5-trisubstituted 1, 2, 4-triazoles from nitriles and hydrazonoyl chlorides via 1, 3-dipolar cycloaddition. RSC Advances, 2014, 4(27), 14215-14220.
[http://dx.doi.org/10.1039/C4RA00113C]
[53]
Salih, NA; Ibraheem, HA Anew derivatives of benzodiazepine, imidazole, isatin, maleimide, pyrimidine and 1, 2, 4-triazole: Synthesis and chracterization. Um-Salama Sci. j, 2008, 2(5), 305-312.
[54]
Batchelor, D.V.; Beal, D.M.; Brown, T.B.; Ellis, D.; Gordon, D.W.; Johnson, P.S.; Mason, H.J.; Ralph, M.J.; Underwood, T.J.; Wheeler, S. A convenient synthesis of highly substituted 3-N, N-dialkylamino-1, 2, 4-triazoles. Synlett, 2008, 2008(16), 2421-2424.
[http://dx.doi.org/10.1055/s-2008-1078208]
[55]
Lin, J.; Zhou, S.; Xu, J.X.; Yao, W.Q.; Hao, G.F.; Li, Y.T. Design, synthesis, and structure-activity relationship of economical triazole sulfonamide aryl derivatives with high fungicidal activity. J. Agric. Food Chem., 2020, 68(25), 6792-6801.
[http://dx.doi.org/10.1021/acs.jafc.9b07887] [PMID: 32442369]
[56]
Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Chavan, P.S.; Deshpande, M.V. Synthesis and antimicrobial activity of β-lactam-bile acid conjugates linked via triazole. Bioorg. Med. Chem. Lett., 2008, 18(6), 2043-2047.
[http://dx.doi.org/10.1016/j.bmcl.2008.01.102] [PMID: 18267360]
[57]
Aher, N.G.; Pore, V.S.; Mishra, N.N.; Kumar, A.; Shukla, P.K.; Sharma, A.; Bhat, M.K. Synthesis and antifungal activity of 1,2,3-triazole containing fluconazole analogues. Bioorg. Med. Chem. Lett., 2009, 19(3), 759-763.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.026] [PMID: 19110424]
[58]
Wu, J.; Ni, T.; Chai, X.; Wang, T.; Wang, H.; Chen, J.; Jin, Y.; Zhang, D.; Yu, S.; Jiang, Y. Molecular docking, design, synthesis and antifungal activity study of novel triazole derivatives. Eur. J. Med. Chem., 2018, 143, 1840-1846.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.081] [PMID: 29133044]
[59]
Sadeghpour, H.; Khabnadideh, S.; Zomorodian, K.; Pakshir, K.; Hoseinpour, K.; Javid, N.; Faghih-Mirzaei, E.; Rezaei, Z. Design, synthesis, and biological activity of new triazole and nitro-triazole derivatives as antifungal agents. Molecules, 2017, 22(7), 1150.
[http://dx.doi.org/10.3390/molecules22071150] [PMID: 28698522]
[60]
Jiang, Z.; Gu, J.; Wang, C.; Wang, S.; Liu, N.; Jiang, Y.; Dong, G.; Wang, Y.; Liu, Y.; Yao, J.; Miao, Z.; Zhang, W.; Sheng, C. Design, synthesis and antifungal activity of novel triazole derivatives containing substituted 1,2,3-triazole-piperdine side chains. Eur. J. Med. Chem., 2014, 82, 490-497.
[http://dx.doi.org/10.1016/j.ejmech.2014.05.079] [PMID: 24934573]
[61]
Hashemi, S.M.; Badali, H.; Faramarzi, M.A.; Samadi, N.; Afsarian, M.H.; Irannejad, H.; Emami, S. Novel triazole alcohol antifungals derived from fluconazole: Design, synthesis, and biological activity. Mol. Divers., 2015, 19(1), 15-27.
[http://dx.doi.org/10.1007/s11030-014-9548-0] [PMID: 25182365]
[62]
Sheng, C.; Che, X.; Wang, W.; Wang, S.; Cao, Y.; Yao, J.; Miao, Z.; Zhang, W. Structure-based design, synthesis, and antifungal activity of new triazole derivatives. Chem. Biol. Drug Des., 2011, 78(2), 309-313.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01138.x] [PMID: 21585708]
[63]
Wang, W.; Wang, S.; Liu, Y.; Dong, G.; Cao, Y.; Miao, Z.; Yao, J.; Zhang, W.; Sheng, C. Novel conformationally restricted triazole derivatives with potent antifungal activity. Eur. J. Med. Chem., 2010, 45(12), 6020-6026.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.070] [PMID: 20950895]
[64]
Wang, X.; Dai, Z.C.; Chen, Y.F.; Cao, L.L.; Yan, W.; Li, S.K.; Wang, J.X.; Zhang, Z.G.; Ye, Y.H. Synthesis of 1,2,3-triazole hydrazide derivatives exhibiting anti-phytopathogenic activity. Eur. J. Med. Chem., 2017, 126, 171-182.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.006] [PMID: 27750151]
[65]
Hernández-López, H.; Leyva-Ramos, S.; Azael Gómez-Durán, C.F.; Pedraza-Alvarez, A.; Rodríguez-Gutiérrez, I.R.; Leyva-Peralta, M.A.; Razo-Hernández, R.S. Synthesis of 1,4-biphenyl-triazole derivatives as possible 17β-HSD1 inhibitors: An in silico study. ACS Omega, 2020, 5(23), 14061-14068.
[http://dx.doi.org/10.1021/acsomega.0c01519] [PMID: 32566872]
[66]
Bębenek, E.; Jastrzębska, M.; Kadela-Tomanek, M.; Chrobak, E.; Orzechowska, B.; Zwolińska, K.; Latocha, M.; Mertas, A.; Czuba, Z.; Boryczka, S. Novel triazole hybrids of betulin: Synthesis and biological activity profile. Molecules, 2017, 22(11), 1876.
[http://dx.doi.org/10.3390/molecules22111876] [PMID: 29104263]
[67]
Bhat, K.S.; Poojary, B.; Prasad, D.J.; Naik, P.; Holla, B.S. Synthesis and antitumor activity studies of some new fused 1,2,4-triazole derivatives carrying 2,4-dichloro-5-fluorophenyl moiety. Eur. J. Med. Chem., 2009, 44(12), 5066-5070.
[http://dx.doi.org/10.1016/j.ejmech.2009.09.010] [PMID: 19822384]
[68]
da Cruz, E.H.; Hussene, C.M.; Dias, G.G.; Diogo, E.B.; de Melo, I.M.; Rodrigues, B.L.; da Silva, M.G.; Valença, W.O.; Camara, C.A.; de Oliveira, R.N.; de Paiva, Y.G.; Goulart, M.O.; Cavalcanti, B.C.; Pessoa, C.; da Silva Júnior, E.N. 1,2,3-triazole-, arylamino- and thio-substituted 1,4-naphthoquinones: Potent antitumor activity, electrochemical aspects, and bioisosteric replacement of C-ring-modified lapachones. Bioorg. Med. Chem., 2014, 22(5), 1608-1619.
[http://dx.doi.org/10.1016/j.bmc.2014.01.033] [PMID: 24530030]
[69]
Ye, W.; Yao, Q.; Yu, S.; Gong, P.; Qin, M. Synthesis and antitumor activity of triazole-containing sorafenib analogs. Molecules, 2017, 22(10), 1759.
[http://dx.doi.org/10.3390/molecules22101759] [PMID: 29064424]
[70]
Chandrashekhar, M.; Nayak, V.L.; Ramakrishna, S.; Mallavadhani, U.V. Novel triazole hybrids of myrrhanone C, a natural polypodane triterpene: Synthesis, cytotoxic activity and cell based studies. Eur. J. Med. Chem., 2016, 114, 293-307.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.013] [PMID: 27015609]
[71]
Kamal, A.; Prabhakar, S.; Janaki Ramaiah, M.; Venkat Reddy, P.; Ratna Reddy, Ch.; Mallareddy, A.; Shankaraiah, N.; Lakshmi Narayan Reddy, T.; Pushpavalli, S.N.; Pal-Bhadra, M. Synthesis and anticancer activity of chalcone-pyrrolobenzodiazepine conjugates linked via 1,2,3-triazole ring side-armed with alkane spacers. Eur. J. Med. Chem., 2011, 46(9), 3820-3831.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.050] [PMID: 21676506]
[72]
Mandalapu, D.; Saini, K.S.; Gupta, S.; Sharma, V.; Yaseen Malik, M.; Chaturvedi, S.; Bala, V. Hamidullah; Thakur, S.; Maikhuri, J.P.; Wahajuddin, M.; Konwar, R.; Gupta, G.; Sharma, V.L. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines. Bioorg. Med. Chem. Lett., 2016, 26(17), 4223-4232.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.053] [PMID: 27496212]
[73]
Mustafa, M.; Anwar, S.; Elgamal, F.; Ahmed, E.R.; Aly, O.M. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur. J. Med. Chem., 2019, 183, 111697.
[http://dx.doi.org/10.1016/j.ejmech.2019.111697] [PMID: 31536891]
[74]
Rajasekaran, A.; Rajagopal, K.A. Synthesis of some novel triazole derivatives as anti-nociceptive and anti-inflammatory agents. Acta Pharm., 2009, 59(3), 355-364.
[http://dx.doi.org/10.2478/v10007-009-0026-7] [PMID: 19819831]
[75]
Zhang, H.J.; Wang, X.Z.; Cao, Q.; Gong, G.H.; Quan, Z.S. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg. Med. Chem. Lett., 2017, 27(18), 4409-4414.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.014] [PMID: 28823493]
[76]
Sambasiva Rao, P.; Kurumurthy, C.; Veeraswamy, B.; Santhosh Kumar, G.; Poornachandra, Y.; Ganesh Kumar, C.; Vasamsetti, S.B.; Kotamraju, S.; Narsaiah, B. Synthesis of novel 1,2,3-triazole substituted-N-alkyl/aryl nitrone derivatives, their anti-inflammatory and anticancer activity. Eur. J. Med. Chem., 2014, 80, 184-191.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.052] [PMID: 24780595]
[77]
Palaska, E.; Şahin, G.; Kelicen, P.; Durlu, N.T.; Altinok, G. Synthesis and anti-inflammatory activity of 1-acylthiosemicarbazides, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazole-3-thiones. Farmaco, 2002, 57(2), 101-107.
[http://dx.doi.org/10.1016/S0014-827X(01)01176-4] [PMID: 11902651]
[78]
Tang, R.; Jin, L.; Mou, C.; Yin, J.; Bai, S.; Hu, D.; Wu, J.; Yang, S.; Song, B. Synthesis, antifungal and antibacterial activity for novel amide derivatives containing a triazole moiety. Chem. Cent. J., 2013, 7(1), 30.
[http://dx.doi.org/10.1186/1752-153X-7-30] [PMID: 23402603]
[79]
Negi, B.; Kumar, D.; Kumbukgolla, W.; Jayaweera, S.; Ponnan, P.; Singh, R.; Agarwal, S.; Rawat, D.S. Anti-methicillin resistant Staphylococcus aureus activity, synergism with oxacillin and molecular docking studies of metronidazole-triazole hybrids. Eur. J. Med. Chem., 2016, 115, 426-437.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.041] [PMID: 27046397]
[80]
Ulusoy, N.; Gürsoy, A.; Otük, G. Synthesis and antimicrobial activity of some 1,2,4-triazole-3-mercaptoacetic acid derivatives. Farmaco, 2001, 56(12), 947-952.
[http://dx.doi.org/10.1016/S0014-827X(01)01128-4] [PMID: 11829115]
[81]
Pintilie, O.; Profire, L.; Sunel, V.; Popa, M.; Pui, A. Synthesis and antimicrobial activity of some new 1,3,4-thiadiazole and 1,2,4-triazole compounds having a D,L-methionine moiety. Molecules, 2007, 12(1), 103-113.
[http://dx.doi.org/10.3390/12010103] [PMID: 17693957]
[82]
Garg, A.; Borah, D.; Trivedi, P.; Gogoi, D.; Chaliha, A.K.; Ali, A.A.; Chetia, D.; Chaturvedi, V.; Sarma, D. A simple work-up-free, solvent-free approach to novel amino acid linked 1,4-disubstituted 1,2,3-triazoles as potent antituberculosis agents. ACS Omega, 2020, 5(46), 29830-29837.
[http://dx.doi.org/10.1021/acsomega.0c03862] [PMID: 33251417]
[83]
Ramprasad, J.; Nayak, N.; Dalimba, U.; Yogeeswari, P.; Sriram, D. One-pot synthesis of new triazole—Imidazo [2,1-b] [1,3,4] thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity. Bioorg. Med. Chem. Lett., 2015, 25(19), 4169-4173.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.009] [PMID: 26298500]
[84]
Shiradkar, M.R.; Ghodake, M.; Bothara, K.G.; Bhandari, S.V.; Nikalje, A.; Akula, K.C.; Desai, N.C.; Burange, P.J. Synthesis and anticonvulsant activity of clubbed thiazolidinone–barbituric acid and thiazolidinone–triazole derivatives. ARKIVOC, 2007, 14(14), 58-74.
[http://dx.doi.org/10.3998/ark.5550190.0008.e08]
[85]
Dehestani, L.; Ahangar, N.; Hashemi, S.M.; Irannejad, H.; Honarchian Masihi, P.; Shakiba, A.; Emami, S. Design, synthesis, in vivo and in silico evaluation of phenacyl triazole hydrazones as new anticonvulsant agents. Bioorg. Chem., 2018, 78, 119-129.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.001] [PMID: 29550532]
[86]
Rastegari, A.; Nadri, H.; Mahdavi, M.; Moradi, A.; Mirfazli, S.S.; Edraki, N.; Moghadam, F.H.; Larijani, B.; Akbarzadeh, T.; Saeedi, M. Design, synthesis and anti-Alzheimer’s activity of novel 1,2,3-triazole-chromenone carboxamide derivatives. Bioorg. Chem., 2019, 83, 391-401.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.065] [PMID: 30412794]
[87]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sharifzadeh, M.; Khanavi, M.; Akbarzadeh, T. Novel tacrine-coumarin hybrids linked to 1,2,3-triazole as anti-Alzheimer’s compounds: In vitro and in vivo biological evaluation and docking study. Bioorg. Chem., 2019, 83, 303-316.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.056] [PMID: 30396115]
[88]
Kaur, A.; Kaur, A.; Goyal, D.; Goyal, B. How does the mono-triazole derivative modulate aβ42 aggregation and disrupt a protofibril structure: Insights from molecular dynamics simulations. ACS Omega, 2020, 5(25), 15606-15619.
[http://dx.doi.org/10.1021/acsomega.0c01825] [PMID: 32637837]
[89]
Saraei, M.; Ghasemi, Z.; Dehghan, G.; Hormati, M.; Ojaghi, K. Synthesis of some novel 1, 2, 3-triazole derivatives containing kojic acid moiety and evaluation for their antioxidant activity. Monatsh. Chem., 2017, 148(5), 917-923.
[http://dx.doi.org/10.1007/s00706-016-1844-1]
[90]
Mermer, A.; Demirbaş, N.; Şirin, Y.; Uslu, H.; Özdemir, Z.; Demirbaş, A. Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg. Chem., 2018, 78, 236-248.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.017] [PMID: 29614435]
[91]
Maria de Lourdes, G.F.; Pinheiro, L.C.; Santos-Filho, O.A.; Peçanha, M.D.; Sacramento, C.Q.; Machado, V.; Ferreira, V.F.; Souza, T.M.; Boechat, N. Design, synthesis, and antiviral activity of new 1 H-1, 2, 3-triazole nucleoside ribavirin analogs. Med. Chem. Res., 2014, 23(3), 1501-1511.
[http://dx.doi.org/10.1007/s00044-013-0762-6]
[92]
El-Sayed, W.A.; Khalaf, H.S.; Mohamed, S.F.; Hussien, H.A.; Kutkat, O.M.; Amr, A.E. Synthesis and antiviral activity of 1, 2, 3-triazole glycosides based substituted pyridine via click cycloaddition. Russ. J. Gen. Chem., 2017, 87(10), 2444-2453.
[http://dx.doi.org/10.1134/S1070363217100279]
[93]
Ebdrup, S.; Sørensen, L.G.; Olsen, O.H.; Jacobsen, P. Synthesis and structure-activity relationship for a novel class of potent and selective carbamoyl-triazole based inhibitors of hormone sensitive lipase. J. Med. Chem., 2004, 47(2), 400-410.
[http://dx.doi.org/10.1021/jm031004s] [PMID: 14711311]
[94]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules, 2017, 22(9), 1555.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[95]
Gharehnaghadeh, S.; Salehi, P.; Bararjanian, M.; Pecio, Ł.; Babanezhad‐Harikandei, K.; Khoramjouy, M.; Shahhosseini, S.; Faizi, M. Novel triazole‐tethered derivatives of nor‐codeine: Synthesis, radioligand binding assay, docking study and evaluation of their analgesic properties. ChemistrySelect, 2020, 5(46), 14753-14758.
[http://dx.doi.org/10.1002/slct.202003684]
[96]
Alam, M.M.; Shaharyar, M.; Hamid, H.; Nazreen, S.; Haider, S.; Alam, M.S. Synthesis of novel 8-hydroxy quinolin based 1,3,4-oxadiazoles and S-substituted 1,2,4-triazole derivatives and evaluation of their anti-inflammatory, analgesic, ulcerogenic and anti-microbial activities. Med. Chem., 2011, 7(6), 663-673.
[http://dx.doi.org/10.2174/157340611797928334] [PMID: 22313306]
[97]
Saadeh, H.A.; Mosleh, I.M.; Al-Bakri, A.G.; Mubarak, M.S. Synthesis and antimicrobial activity of new 1, 2, 4-triazole-3-thiol metronidazole derivatives. Monatsh. Chem., 2010, 141(4), 471-478.
[http://dx.doi.org/10.1007/s00706-010-0281-9]
[98]
Nielsen, B.E.; Stabile, S.; Vitale, C.; Bouzat, C. Design, synthesis, and functional evaluation of a novel series of phosphonate-functionalized 1,2,3-triazoles as positive allosteric modulators of α7 nicotinic acetylcholine receptors. ACS Chem. Neurosci., 2020, 11(17), 2688-2704.
[http://dx.doi.org/10.1021/acschemneuro.0c00348] [PMID: 32786318]
[99]
Wang, B.L.; Shi, Y.X.; Ma, Y.; Liu, X.H.; Li, Y.H.; Song, H.B.; Li, B.J.; Li, Z.M. Synthesis and biological activity of some novel trifluoromethyl-substituted 1,2,4-triazole and bis(1,2,4-triazole) Mannich bases containing piperazine rings. J. Agric. Food Chem., 2010, 58(9), 5515-5522.
[http://dx.doi.org/10.1021/jf100300a] [PMID: 20384340]
[100]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[101]
Song, M.X.; Huang, Y.S.; Zhou, Q.G.; Deng, X.Q.; Yao, X.D. Synthesis of ring-opened derivatives of triazole-containing quinolinones and their antidepressant and anticonvulsant activities. Bioorg. Chem., 2021, 106, 104505.
[http://dx.doi.org/10.1016/j.bioorg.2020.104505] [PMID: 33279249]
[102]
Moghimi, S.; Goli-Garmroodi, F.; Allahyari-Devin, M.; Pilali, H.; Hassanzadeh, M.; Mahernia, S.; Mahdavi, M.; Firoozpour, L.; Amanlou, M.; Foroumadi, A. Synthesis, evaluation, and molecular docking studies of aryl urea-triazole-based derivatives as anti-urease agents. Arch. Pharm. (Weinheim), 2018, 351(7), e1800005.
[http://dx.doi.org/10.1002/ardp.201800005] [PMID: 29797597]
[103]
Bekircan, O.; Menteşe, E.; Ülker, S.; Kucuk, C. Synthesis of some new 1,2,4-triazole derivatives starting from 3-(4-chlorophenyl)-5-(4-methoxybenzyl)-4H-1,2,4-triazol with anti-lipase and anti-urease activities. Arch. Pharm. (Weinheim), 2014, 347(6), 387-397.
[http://dx.doi.org/10.1002/ardp.201300344] [PMID: 24532369]
[104]
Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorg. Med. Chem., 2010, 18(23), 8243-8256.
[http://dx.doi.org/10.1016/j.bmc.2010.10.009] [PMID: 21044845]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy