Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Apparent Diffusion Coefficient as a Noninvasive Biomarker for the Early Response in Hepatocellular Carcinoma After Transcatheter Arterial Chemoembolization Using Drug-eluting Beads

Author(s): Basen Li, Lei Zhou, Anhui Xu, Qin Li, Huihua Xiang, Yanrong Huang, Ling Peng, Kun Xiang, Mingfeng Zhang and Nan Wang*

Volume 18, Issue 11, 2022

Published on: 05 April, 2022

Article ID: e040322201745 Pages: 9

DOI: 10.2174/1573405618666220304141632

Price: $65

Abstract

Background: Prognostic evaluation for Hepatocellular Carcinoma (HCC) after Transcatheter Arterial Chemoembolization (TACE) using Drug-Eluting Beads (DEBs) is essential for guiding the personalized treatment and follow-up strategy. Apparent Diffusion Coefficient (ADC) has been reported as a biomarker in conventional TACE.

Objective: This study aimed to evaluate the diagnostic value of ADCbaseline, ADC change, and ADCratio in predicting the early objective response for HCC after DEB-TACE.

Methods: This prospective single-center study included 32 consecutive patients undergoing dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging before and 1 month after DEB-TACE. After DEB-TACE, patients were grouped based on the modified Response Evaluation Criteria in Solid Tumors (mRECIST) criteria into responders (complete response [CR], partial response [PR]) and nonresponders (stable disease [SD], progressive disease [PD]). The Mann– Whitney U test and receiver operating characteristic (ROC) curves were performed to assess the statistical differences in ADCbaseline, ADC change, and ADCratio between responders and nonresponders.

Results: At post-DEB-TACE follow-up MRI, 62.5% (n = 20, 11 CRs, and 9 PRs) of patients showed objective response, and 37.5% (n = 12, 7 SDs, and 5 PDs) did not respond to chemoembolization. Nonresponders had a significantly higher ADCbaseline value than responders (p < 0.001). The ROC for identifying the response to chemoembolization demonstrated that the threshold ADCbaseline value of 0.920 × 10−3 mm2/s had 100% sensitivity and 70% specificity. The ADC change and ADCratio of responders were higher than that of nonresponders (p < 0.001).

Conclusion: ADCbaseline, ADC change, and ADCratio may be utilized as a noninvasive biomarker for predicting the early response of HCC to DEB-TACE.

Keywords: Hepatocellular carcinoma, transcatheter arterial chemoembolization, magnetic resonance imaging, drug-eluting beads, diffusion-weighted imaging, apparent diffusion coefficient, response.

Graphical Abstract

[1]
Tang A, Hallouch O, Chernyak V, Kamaya A, Sirlin CB. Epidemiology of hepatocellular carcinoma: Target population for surveillance and diagnosis. Abdom Radiol (NY) 2018; 43(1): 13-25.
[http://dx.doi.org/10.1007/s00261-017-1209-1] [PMID: 28647765]
[2]
Song MJ, Chun HJ, Song DS, et al. Comparative study between doxorubicin-eluting beads and conventional transarterial chemoembolization for treatment of hepatocellular carcinoma. J Hepatol 2012; 57(6): 1244-50.
[http://dx.doi.org/10.1016/j.jhep.2012.07.017] [PMID: 22824821]
[3]
Huang K, Zhou Q, Wang R, Cheng D, Ma Y. Doxorubicin-eluting beads versus conventional transarterial chemoembolization for the treat-ment of hepatocellular carcinoma. J Gastroenterol Hepatol 2014; 29(5): 920-5.
[http://dx.doi.org/10.1111/jgh.12439] [PMID: 24224722]
[4]
Chung WS, Lee KH, Park MS, et al. Enhancement patterns of hepatocellular carcinoma after transarterial chemoembolization using drug-eluting beads on arterial phase CT images: A pilot retrospective study. AJR Am J Roentgenol 2012; 199(2): 349-59.
[http://dx.doi.org/10.2214/AJR.11.7563] [PMID: 22826396]
[5]
Najmi Varzaneh F, Pandey A, Aliyari Ghasabeh M, et al. Prediction of post-TACE necrosis of hepatocellular carcinoma using volumetric enhancement on MRI and volumetric oil deposition on CT, with pathological correlation. Eur Radiol 2018; 28(7): 3032-40.
[http://dx.doi.org/10.1007/s00330-017-5198-9] [PMID: 29383518]
[6]
Chen Y, Qin X, Long L, et al. Diagnostic value of Gd-EOB-DTPA-enhanced MRI for the expression of Ki67 and microvascular density in hepatocellular carcinoma. J Magn Reson Imaging 2020; 51(6): 1755-63.
[http://dx.doi.org/10.1002/jmri.26974] [PMID: 31675163]
[7]
Kloeckner R, Otto G, Biesterfeld S, Oberholzer K, Dueber C, Pitton MB. MDCT versus MRI assessment of tumor response after transarterial chemoembolization for the treatment of hepatocellular carcinoma. Cardiovasc Intervent Radiol 2010; 33(3): 532-40.
[http://dx.doi.org/10.1007/s00270-009-9728-y] [PMID: 19847482]
[8]
Kokabi N, Ludwig JM, Camacho JC, Xing M, Mittal PK, Kim HS. Baseline and early MR apparent diffusion coefficient quantification as a predictor of response of unresectable hepatocellular carcinoma to doxorubicin drug-eluting bead chemoembolization. J Vasc Interv Radiol 2015; 26(12): 1777-86.
[http://dx.doi.org/10.1016/j.jvir.2015.08.023] [PMID: 26603497]
[9]
Mannelli L, Kim S, Hajdu CH, Babb JS, Taouli B. Serial diffusion-weighted MRI in patients with hepatocellular carcinoma: Prediction and assessment of response to transarterial chemoembolization. Preliminary experience. Eur J Radiol 2013; 82(4): 577-82.
[http://dx.doi.org/10.1016/j.ejrad.2012.11.026] [PMID: 23246330]
[10]
Prajapati HJ, Spivey JR, Hanish SI, et al. mRECIST and EASL responses at early time point by contrast-enhanced dynamic MRI predict survival in patients with unresectable hepatocellular carcinoma (HCC) treated by doxorubicin drug-eluting beads transarterial chemoemboli-zation (DEB TACE). Ann Oncol 2013; 24(4): 965-73.
[11]
Llovet JM, Real MI, Montaña X, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresec-table hepatocellular carcinoma: A randomised controlled trial. Lancet 2002; 359(9319): 1734-9.
[http://dx.doi.org/10.1016/S0140-6736(02)08649-X] [PMID: 12049862]
[12]
Ou HY, Cheng YF, Chuang YH, et al. Quantification of functional MR predicts early response in post-doxorubicin drug-eluting beads che-moembolization for hepatocellular carcinoma. Dig Dis Sci 2020; 65(8): 2433-41.
[http://dx.doi.org/10.1007/s10620-019-05951-6] [PMID: 31732907]
[13]
Yuan Z, Ye XD, Dong S, et al. Role of magnetic resonance diffusion-weighted imaging in evaluating response after chemoembolization of hepatocellular carcinoma. Eur J Radiol 2010; 75(1): e9-e14.
[http://dx.doi.org/10.1016/j.ejrad.2009.05.040] [PMID: 19540083]
[14]
Sahin H, Harman M, Cinar C, Bozkaya H, Parildar M, Elmas N. Evaluation of treatment response of chemoembolization in hepatocellular carcinoma with diffusion-weighted imaging on 3.0-T MR imaging. J Vasc Interv Radiol 2012; 23(2): 241-7.
[http://dx.doi.org/10.1016/j.jvir.2011.08.030] [PMID: 22019180]
[15]
Niekamp A, Abdel-Wahab R, Kuban J, et al. Baseline apparent diffusion coefficient as a predictor of response to liver-directed therapies in hepatocellular carcinoma. J Clin Med 2018; 7(4): E83.
[http://dx.doi.org/10.3390/jcm7040083] [PMID: 29661994]
[16]
Tang J, Liu F, Yuan H, et al. Pretreatment apparent diffusion coefficient as a predictor of response to transcatheter arterial chemoemboliza-tion immediately combined with radiofrequency ablation for treatment of solitary large hepatocellular carcinoma. Cancer Manag Res 2020; 12: 10127-38.
[http://dx.doi.org/10.2147/CMAR.S270470] [PMID: 33116868]
[17]
Drewes R, Heinze C, Pech M, et al. Apparent diffusion coefficient can predict therapy response of hepatocellular carcinoma to transcatheter arterial chemoembolization. Dig Dis 2021.
[http://dx.doi.org/10.1159/000520716] [PMID: 34749359]
[18]
Rastegar RF, Hou D, Harris A, et al. Is a liver biopsy necessary? Investigation of a suspected hepatocellular carcinoma: A pictorial essay of hepatocellular carcinoma and the revised American Association for the Study of Liver Disease criteria. Can Assoc Radiol J 2012; 63(4): 329-40.
[http://dx.doi.org/10.1016/j.carj.2011.09.004]
[19]
Vandecaveye V, Michielsen K, De Keyzer F, et al. Chemoembolization for hepatocellular carcinoma: 1-month response determined with apparent diffusion coefficient is an independent predictor of outcome. Radiology 2014; 270(3): 747-57.
[http://dx.doi.org/10.1148/radiol.13130591] [PMID: 24475816]
[20]
Vandecaveye V, Dirix P, De Keyzer F, et al. Diffusion-weighted magnetic resonance imaging early after chemoradiotherapy to monitor treatment response in head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 2012; 82(3): 1098-107.
[http://dx.doi.org/10.1016/j.ijrobp.2011.02.044] [PMID: 21514067]
[21]
Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 2000; 92(3): 205-16.
[http://dx.doi.org/10.1093/jnci/92.3.205] [PMID: 10655437]
[22]
Tsuchida Y, Therasse P. Response evaluation criteria in solid tumors (RECIST): New guidelines. Med Pediatr Oncol 2001; 37(1): 1-3.
[http://dx.doi.org/10.1002/mpo.1154] [PMID: 11466715]
[23]
Kamel IR, Liapi E, Reyes DK, Zahurak M, Bluemke DA, Geschwind JF. Unresectable hepatocellular carcinoma: Serial early vascular and cellular changes after transarterial chemoembolization as detected with MR imaging. Radiology 2009; 250(2): 466-73.
[http://dx.doi.org/10.1148/radiol.2502072222] [PMID: 19188315]
[24]
Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis 2010; 30(1): 52-60.
[http://dx.doi.org/10.1055/s-0030-1247132] [PMID: 20175033]
[25]
Chen X, Xiao E, Shu D, et al. Evaluating the therapeutic effect of hepatocellular carcinoma treated with transcatheter arterial chemoemboli-zation by magnetic resonance perfusion imaging. Eur J Gastroenterol Hepatol 2014; 26(1): 109-13.
[http://dx.doi.org/10.1097/MEG.0b013e328363716e] [PMID: 24284371]
[26]
Dong S, Ye XD, Yuan Z, Xu LC, Xiao XS. Relationship of apparent diffusion coefficient to survival for patients with unresectable primary hepatocellular carcinoma after chemoembolization. Eur J Radiol 2012; 81(3): 472-7.
[http://dx.doi.org/10.1016/j.ejrad.2010.12.081] [PMID: 21296517]
[27]
Labeur TA, Runge JH, Klompenhouwer EG, Klümpen HJ, Takkenberg RB, van Delden OM. Diffusion-weighted imaging of hepatocellular carcinoma before and after transarterial chemoembolization: Role in survival prediction and response evaluation. Abdom Radiol (NY) 2019; 44(8): 2740-50.
[http://dx.doi.org/10.1007/s00261-019-02030-2] [PMID: 31069479]
[28]
Barat M, Fohlen A, Cassinotto C, et al. One-month apparent diffusion coefficient correlates with response to radiofrequency ablation of hepatocellular carcinoma. J Magn Reson Imaging 2017; 45(6): 1648-58.
[http://dx.doi.org/10.1002/jmri.25521] [PMID: 27766709]
[29]
Shao GL, Zheng JP, Guo LW, Chen YT, Zeng H, Yao Z. Evaluation of efficacy of transcatheter arterial chemoembolization combined with computed tomography-guided radiofrequency ablation for hepatocellular carcinoma using magnetic resonance diffusion weighted imaging and computed tomography perfusion imaging: A prospective study. Medicine (Baltimore) 2017; 96(3): e5518.
[http://dx.doi.org/10.1097/MD.0000000000005518] [PMID: 28099329]
[30]
Kokabi N, Camacho JC, Xing M, Edalat F, Mittal PK, Kim HS. Immediate post-doxorubicin drug-eluting beads chemoembolization Mr Ap-parent diffusion coefficient quantification predicts response in unresectable hepatocellular carcinoma: A pilot study. J Magn Reson Imaging 2015; 42(4): 981-9.
[http://dx.doi.org/10.1002/jmri.24845] [PMID: 25683022]
[31]
Wu XM, Wang JF, Ji JS, Chen MG, Song JG. Evaluation of efficacy of transcatheter arterial chemoembolization for hepatocellular carcinoma using magnetic resonance diffusion-weighted imaging. OncoTargets Ther 2017; 10: 1637-43.
[http://dx.doi.org/10.2147/OTT.S115568] [PMID: 28352195]
[32]
Rosenkrantz AB, Sigmund EE, Winnick A, et al. Assessment of hepatocellular carcinoma using apparent diffusion coefficient and diffusion kurtosis indices: Preliminary experience in fresh liver explants. Magn Reson Imaging 2012; 30(10): 1534-40.
[http://dx.doi.org/10.1016/j.mri.2012.04.020] [PMID: 22819175]
[33]
Maric J, Boban J, Ivkovic-Kapicl T, Djilas D, Vucaj-Cirilovic V, Bogdanovic-Stojanovic D. Differentiation of breast lesions and distinguish-ing their histological subtypes using diffusion-weighted imaging and ADC values. Front Oncol 2020; 10: 332.
[http://dx.doi.org/10.3389/fonc.2020.00332] [PMID: 32232007]
[34]
Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in pros-tate cancer at 3.0 Tesla. Invest Radiol 2009; 44(9): 572-6.
[http://dx.doi.org/10.1097/RLI.0b013e3181b4c10e] [PMID: 19692841]
[35]
Thakur SB, Durando M, Milans S, et al. Apparent diffusion coefficient in estrogen receptor-positive and lymph node-negative invasive breast cancers at 3.0T DW-MRI: A potential predictor for an oncotype Dx test recurrence score. J Magn Reson Imaging 2018; 47(2): 401-9.
[http://dx.doi.org/10.1002/jmri.25796] [PMID: 28640531]
[36]
Tacar O, Sriamornsak P, Dass CR. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 2013; 65(2): 157-70.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy