Review Article

A Review on the Neuroprotective Effect of Berberine against Chemotherapy- induced Cognitive Impairment

Author(s): Kuleshwar Sahu, Sukhdev Singh, Bhawna Devi, Charan Singh and Arti Singh*

Volume 23, Issue 9, 2022

Published on: 13 May, 2022

Page: [913 - 923] Pages: 11

DOI: 10.2174/1389450123666220303094752

Price: $65

Abstract

Chemobrain is one of the major side effects of chemotherapy; despite increased research, the mechanisms underlying chemotherapy-induced cognitive changes remain unknown. Several possibly important candidate mechanisms have been identified and will be studied further in the future. Chemobrain is characterized by memory loss, cognitive impairment, difficulty in language, concentration, acceleration, and learning. The major characteristic of chemobrain is oxidative stress, mitochondrial dysfunction, immune dysregulation, hormonal alteration, white matter abnormalities, and DNA damage. Berberine (BBR) is an isoquinoline alkaloid extracted from various berberine species. BBR is a small chemical that easily passes the blood-brain barrier (BBB), making it useful for treating neurodegenerative diseases. Many studies on the pharmacology of BBR have been reported in the past. Furthermore, several clinical and experimental research indicates that BBR has a variety of pharmacological effects. So, in this review, we explore the pathogenesis of chemobrain and the neuroprotective potential of BBR against chemobrain. We also introduced the therapeutic role of BBR in various neurodegenerative and neurological diseases such as Alzheimer's, Parkinson's disease, mental depression, schizophrenia, anxiety, and also some stroke.

Keywords: Berberine, mitochondrial dysfunction, oxidative stress, chemobrain, cognitive impairment, neurodegenerative diseases.

Graphical Abstract

[1]
Wigmore P. The effect of systemic chemotherapy on neurogenesis, plasticity and memory. Neurogene Neural Plastic 2012; pp. 211-40.
[http://dx.doi.org/10.1007/7854_2012_235]
[2]
Li J, O W, Li W, Jiang ZG, Ghanbari HA. Oxidative stress and neurodegenerative disorders. Int J Mol Sci 2013; 14(12): 24438-75.
[http://dx.doi.org/10.3390/ijms141224438] [PMID: 24351827]
[3]
Monje M, Dietrich J. Cognitive side effects of cancer therapy demonstrate a functional role for adult neurogenesis. Behav Brain Res 2012; 227(2): 376-9.
[http://dx.doi.org/10.1016/j.bbr.2011.05.012] [PMID: 21621557]
[4]
Dietrich J. Chemotherapy associated central nervous system damage. Adv Exp Med Biol 2010; 77-85.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_11]
[5]
Silberfarb PM, Philibert D, Levine PM. Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. Am J Psychiatry 1980; 137(5): 597-601.
[http://dx.doi.org/10.1176/ajp.137.5.597] [PMID: 7369406]
[6]
Koppelmans V, Breteler MM, Boogerd W, Seynaeve C, Gundy C, Schagen SB. Neuropsychological performance in survivors of breast cancer more than 20 years after adjuvant chemotherapy. J Clin Oncol 2012; 30(10): 1080-6.
[http://dx.doi.org/10.1200/JCO.2011.37.0189] [PMID: 22370315]
[7]
Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: Results of a prospective, randomized, longitudinal trial. Cancer 2004; 100(11): 2292-9.
[http://dx.doi.org/10.1002/cncr.20272] [PMID: 15160331]
[8]
Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: An update on the state of the science. J Clin Oncol 2012; 30(30): 3675-86.
[http://dx.doi.org/10.1200/JCO.2012.43.0116] [PMID: 23008308]
[9]
Cull A, Hay C, Love SB, Mackie M, Smets E, Stewart M. What do cancer patients mean when they complain of concentration and memory problems? Br J Cancer 1996; 74(10): 1674-9.
[http://dx.doi.org/10.1038/bjc.1996.608] [PMID: 8932354]
[10]
Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin 2016; 66(4): 271-89.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[11]
Schagen SB, van Dam FS, Muller MJ, Boogerd W, Lindeboom J, Bruning PF. Cognitive deficits after postoperative adjuvant chemothera-py for breast carcinoma. Cancer 1999; 85(3): 640-50.
[http://dx.doi.org/10.1002/(SICI)1097-0142(19990201)85:3<640::AID-CNCR14>3.0.CO;2-G] [PMID: 10091737]
[12]
Brezden CB, Phillips K-A, Abdolell M, Bunston T, Tannock IF. Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol 2000; 18(14): 2695-701.
[http://dx.doi.org/10.1200/JCO.2000.18.14.2695] [PMID: 10894868]
[13]
Ahles TA, Saykin AJ, Furstenberg CT, et al. Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol 2002; 20(2): 485-93.
[http://dx.doi.org/10.1200/JCO.2002.20.2.485] [PMID: 11786578]
[14]
Tchen N, Juffs HG, Downie FP, et al. Cognitive function, fatigue, and menopausal symptoms in women receiving adjuvant chemotherapy for breast cancer. J Clin Oncol 2003; 21(22): 4175-83.
[http://dx.doi.org/10.1200/JCO.2003.01.119] [PMID: 14615445]
[15]
Ren X, Keeney JTR, Miriyala S, et al. The triangle of death of neurons: Oxidative damage, mitochondrial dysfunction, and loss of cho-line-containing biomolecules in brains of mice treated with doxorubicin. Advanced insights into mechanisms of chemotherapy induced cognitive impairment (“chemobrain”) involving TNF-α. Free Radic Biol Med 2019; 134: 1-8.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.029] [PMID: 30593843]
[16]
Cardoso CV, de Barros MP, Bachi ALL, et al. Chemobrain in rats: Behavioral, morphological, oxidative and inflammatory effects of doxorubicin administration. Behav Brain Res 2020; 378: 112233.
[http://dx.doi.org/10.1016/j.bbr.2019.112233] [PMID: 31521736]
[17]
Sirichoat A, Suwannakot K, Chaisawang P, et al. Melatonin attenuates 5-fluorouracil-induced spatial memory and hippocampal neuro-genesis impairment in adult rats. Life Sci 2020; 248: 117468.
[http://dx.doi.org/10.1016/j.lfs.2020.117468] [PMID: 32105705]
[18]
ElBeltagy M, Mustafa S, Umka J, et al. Fluoxetine improves the memory deficits caused by the chemotherapy agent 5-fluorouracil. Behav Brain Res 2010; 208(1): 112-7.
[http://dx.doi.org/10.1016/j.bbr.2009.11.017] [PMID: 19914299]
[19]
Alhowail AH, Chigurupati S, Sajid S, Mani V. Ameliorative effect of metformin on cyclophosphamide-induced memory impairment in mice. Eur Rev Med Pharmacol Sci 2019; 23(21): 9660-6.
[PMID: 31773717]
[20]
Akomolafe SF, Olasehinde TA, Oyeleye SI, Aluko TB, Adewale OO, Ijomone OM. Curcumin administration mitigates cyclophosphamide-induced oxidative damage and restores alteration of enzymes associated with cognitive function in rats’ brain. Neurotox Res 2020; 38(1): 199-210.
[http://dx.doi.org/10.1007/s12640-020-00205-0] [PMID: 32405958]
[21]
Chiu GS, Maj MA, Rizvi S, et al. Pifithrin-μ prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res 2017; 77(3): 742-52.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1817] [PMID: 27879267]
[22]
Zhou W, Kavelaars A, Heijnen CJ. Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS One 2016; 11(3): e0151890.
[http://dx.doi.org/10.1371/journal.pone.0151890] [PMID: 27018597]
[23]
Helal GK, Aleisa AM, Helal OK, et al. Metallothionein induction reduces caspase-3 activity and TNFalpha levels with preservation of cognitive function and intact hippocampal neurons in carmustine-treated rats. Oxid Med Cell Longev 2009; 2(1): 26-35.
[http://dx.doi.org/10.4161/oxim.2.1.7901] [PMID: 20046642]
[24]
Mondie CM, Vandergrift KA, Wilson CL, Gulinello ME, Weber ET. The chemotherapy agent, thioTEPA, yields long-term impairment of hippocampal cell proliferation and memory deficits but not depression-related behaviors in mice. Behav Brain Res 2010; 209(1): 66-72.
[http://dx.doi.org/10.1016/j.bbr.2010.01.016] [PMID: 20096731]
[25]
Myers JS. Neuropsychologic testing for chemotherapy-related cognitive impairment. Adv Exp Med Biol 2010; 55-69.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_9]
[26]
Vardy J, Rourke S, Tannock IF. Evaluation of cognitive function associated with chemotherapy: A review of published studies and rec-ommendations for future research. J Clin Oncol 2007; 25(17): 2455-63.
[http://dx.doi.org/10.1200/JCO.2006.08.1604] [PMID: 17485710]
[27]
Vardy J, Wefel JS, Ahles T, Tannock IF, Schagen SB. Cancer and cancer-therapy related cognitive dysfunction: An international perspective from the Venice cognitive workshop. Ann Oncol 2008; 19(4): 623-9.
[http://dx.doi.org/10.1093/annonc/mdm500] [PMID: 17974553]
[28]
Wefel JS, Vardy J, Ahles T, Schagen SB. International cognition and cancer task force recommendations to harmonise studies of cogni-tive function in patients with cancer. Lancet Oncol 2011; 12(7): 703-8.
[http://dx.doi.org/10.1016/S1470-2045(10)70294-1] [PMID: 21354373]
[29]
Chang W, Zhang M, Li J, et al. Berberine attenuates ischemiareperfusion injury via regulation of adenosine-5′-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart. Cardiovasc Drugs Ther 2012; 26(6): 467-78.
[http://dx.doi.org/10.1007/s10557-012-6422-0] [PMID: 23179953]
[30]
Ortiz LM, Lombardi P, Tillhon M, Scovassi AI. Berberine, an epiphany against cancer. Molecules 2014; 19(8): 12349-67.
[http://dx.doi.org/10.3390/molecules190812349] [PMID: 25153862]
[31]
Kong W, Wei J, Abidi P, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 2004; 10(12): 1344-51.
[http://dx.doi.org/10.1038/nm1135] [PMID: 15531889]
[32]
Kulkarni SK, Dhir A. Berberine: A plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res 2010; 24(3): 317-24.
[http://dx.doi.org/10.1002/ptr.2968] [PMID: 19998323]
[33]
Siow YL, Sarna L, Karmin O. Redox regulation in health and disease-Therapeutic potential of berberine. Food Res Int 2011; 44(8): 2409-17.
[http://dx.doi.org/10.1016/j.foodres.2010.12.038]
[34]
Imenshahidi M, Hosseinzadeh H. Berberis vulgaris and berberine: An update review. Phytother Res 2016; 30(11): 1745-64.
[http://dx.doi.org/10.1002/ptr.5693] [PMID: 27528198]
[35]
Chen Y, Chen Y, Liang Y, Chen H, Ji X, Huang M. Berberine mitigates cognitive decline in an Alzheimer’s Disease Mouse Model by targeting both tau hyperphosphorylation and autophagic clearance. Biomed Pharmacother 2020; 121: 109670.
[http://dx.doi.org/10.1016/j.biopha.2019.109670] [PMID: 31810131]
[36]
Ghotbi Ravandi S, Shabani M, Bashiri H, Saeedi Goraghani M, Khodamoradi M, Nozari M. Ameliorating effects of berberine on MK-801-induced cognitive and motor impairments in a neonatal rat model of schizophrenia. Neurosci Lett 2019; 706: 151-7.
[http://dx.doi.org/10.1016/j.neulet.2019.05.029] [PMID: 31103726]
[37]
Yi L, Zhu J, Dong S, Chen M, Li C. Berberine exerts antidepressant-like effects via regulating miR-34a-synaptotagmin1/Bcl-2 axis. Chin Herb Med 2021; 13(1): 116-23.
[http://dx.doi.org/10.1016/j.chmed.2020.11.001]
[38]
Peng W-H, Wu C-R, Chen C-S, Chen CF, Leu ZC, Hsieh MT. Anxiolytic effect of berberine on exploratory activity of the mouse in two experimental anxiety models: Interaction with drugs acting at 5-HT receptors. Life Sci 2004; 75(20): 2451-62.
[http://dx.doi.org/10.1016/j.lfs.2004.04.032] [PMID: 15350820]
[39]
Liu Y-T, Hao H-P, Xie H-G, et al. Extensive intestinal first-pass elimination and predominant hepatic distribution of berberine explain its low plasma levels in rats. Drug Metab Dispos 2010; 38(10): 1779-84.
[http://dx.doi.org/10.1124/dmd.110.033936] [PMID: 20634337]
[40]
Chen W, Miao Y-Q, Fan D-J, et al. Bioavailability study of berberine and the enhancing effects of TPGS on intestinal absorption in rats. AAPS PharmSciTech 2011; 12(2): 705-11.
[http://dx.doi.org/10.1208/s12249-011-9632-z] [PMID: 21637946]
[41]
Pan GY, Wang GJ, Liu XD, Fawcett JP, Xie YY. The involvement of P-glycoprotein in berberine absorption. Pharmacol Toxicol 2002; 91(4): 193-7.
[http://dx.doi.org/10.1034/j.1600-0773.2002.t01-1-910403.x] [PMID: 12530470]
[42]
Rabbani GH, Butler T, Knight J, Sanyal SC, Alam K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to entero-toxigenic Escherichia coli and Vibrio cholerae. J Infect Dis 1987; 155(5): 979-84.
[http://dx.doi.org/10.1093/infdis/155.5.979] [PMID: 3549923]
[43]
Yan Q-N, Zhang S, Zhang Z-Q. Study on the tissue distribution of berberine from Rhizoma coptidis and compatibility with Rhizoma coptidis and Cortex cinnamomi in rats. Zhong Yao Cai 2009; 32(4): 575-8.
[PMID: 19645246]
[44]
Comparsi B, Meinerz DF, Franco JL, et al. Diphenyl ditelluride targets brain selenoproteins in vivo: Inhibition of cerebral thioredoxin reductase and glutathione peroxidase in mice after acute exposure. Mol Cell Biochem 2012; 370(1-2): 173-82.
[http://dx.doi.org/10.1007/s11010-012-1408-6] [PMID: 22886391]
[45]
Dudek H, Farbiszewski R, Michno T, Kozłowski A. Activity of glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R) and superoxide dismutase (SOD-1) in single brain metastasis. Wiadomosci Lekarskie 2002; 55: 252-6.
[46]
Rodríguez VM, Del Razo LM, Limón-Pacheco JH, et al. Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver. Toxicol Sci 2005; 84(1): 157-66.
[http://dx.doi.org/10.1093/toxsci/kfi057] [PMID: 15601678]
[47]
Singh R, Pathak DN. Lipid peroxidation and glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase activities in FeCl3-induced epileptogenic foci in the rat brain. Epilepsia 1990; 31(1): 15-26.
[http://dx.doi.org/10.1111/j.1528-1157.1990.tb05354.x] [PMID: 2303008]
[48]
Uchoa MF, de Souza LF, Dos Santos DB, et al. Modulation of brain glutathione reductase and peroxiredoxin 2 by α-tocopheryl phos-phate. Cell Mol Neurobiol 2016; 36(6): 1015-22.
[http://dx.doi.org/10.1007/s10571-015-0298-z] [PMID: 26749581]
[49]
Lee D-U, Kang YJ, Park MK, et al. Effects of 13-alkyl-substituted berberine alkaloids on the expression of COX-II, TNF-α iNOS, and IL-12 production in LPS-stimulated macrophages. Life Sci 2003; 73(11): 1401-12.
[http://dx.doi.org/10.1016/S0024-3205(03)00435-1] [PMID: 12850501]
[50]
Hwang J-M, Wang C-J, Chou F-P, et al. Inhibitory effect of berberine on tert-butyl hydroperoxide-induced oxidative damage in rat liver. Arch Toxicol 2002; 76(11): 664-70.
[http://dx.doi.org/10.1007/s00204-002-0351-9] [PMID: 12415430]
[51]
Adil M, Kandhare AD, Dalvi G, et al. Ameliorative effect of berberine against gentamicin-induced nephrotoxicity in rats via attenuation of oxidative stress, inflammation, apoptosis and mitochondrial dysfunction. Ren Fail 2016; 38(6): 996-1006.
[http://dx.doi.org/10.3109/0886022X.2016.1165120] [PMID: 27056079]
[52]
Tan Y, Tang Q, Hu BR, Xiang JZ. Antioxidant properties of berberine on cultured rabbit corpus cavernosum smooth muscle cells injured by hydrogen peroxide. Acta Pharmacol Sin 2007; 28(12): 1914-8.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00705.x] [PMID: 18031604]
[53]
Thirupurasundari CJ, Padmini R, Devaraj SN. Effect of berberine on the antioxidant status, ultrastructural modifications and protein bound carbohydrates in azoxymethane-induced colon cancer in rats. Chem Biol Interact 2009; 177(3): 190-5.
[http://dx.doi.org/10.1016/j.cbi.2008.09.027] [PMID: 18951886]
[54]
Liu WH, Hei ZQ, Nie H, et al. Berberine ameliorates renal injury in streptozotocin-induced diabetic rats by suppression of both oxidative stress and aldose reductase. Chin Med J (Engl) 2008; 121(8): 706-12.
[http://dx.doi.org/10.1097/00029330-200804020-00009] [PMID: 18701023]
[55]
Wu Y-Z, Zhang L, Wu Z-X, et al. Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway. Oxid Med Cellul Long 2019; 2019: 2150394.
[56]
El-Agamy SE, Abdel-Aziz AK, Wahdan S, Esmat A, Azab SS. Astaxanthin ameliorates doxorubicin-induced cognitive impairment (chemobrain) in experimental rat model: Impact on oxidative, inflammatory, and apoptotic machineries. Mol Neurobiol 2018; 55(7): 5727-40.
[http://dx.doi.org/10.1007/s12035-017-0797-7] [PMID: 29039023]
[57]
Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA. Glutathione elevation by γ-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: Implication for chemobrain. J Neurosci Res 2007; 85(3): 497-503.
[http://dx.doi.org/10.1002/jnr.21158] [PMID: 17171703]
[58]
Zhang Q, Piao X-L, Piao X-S, Lu T, Wang D, Kim SW. Preventive effect of Coptis chinensis and berberine on intestinal injury in rats challenged with lipopolysaccharides. Food Chem Toxicol 2011; 49(1): 61-9.
[http://dx.doi.org/10.1016/j.fct.2010.09.032] [PMID: 20932871]
[59]
Hsu W-H, Hsieh Y-S, Kuo H-C, et al. Berberine induces apoptosis in SW620 human colonic carcinoma cells through generation of reactive oxygen species and activation of JNK/p38 MAPK and FasL. Arch Toxicol 2007; 81(10): 719-28.
[http://dx.doi.org/10.1007/s00204-006-0169-y] [PMID: 17673978]
[60]
Hu J, Chai Y, Wang Y, et al. PI3K p55γ promoter activity enhancement is involved in the anti-apoptotic effect of berberine against cerebral ischemia-reperfusion. Eur J Pharmacol 2012; 674(2-3): 132-42.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.014] [PMID: 22119079]
[61]
Germoush MO, Mahmoud AM. Berberine mitigates cyclophosphamide-induced hepatotoxicity by modulating antioxidant status and inflammatory cytokines. J Cancer Res Clin Oncol 2014; 140(7): 1103-9.
[http://dx.doi.org/10.1007/s00432-014-1665-8] [PMID: 24744190]
[62]
Luo A, Fan Y. Antioxidant activities of berberine hydrochloride. J Med Plants Res 2011; 5: 3702-7.
[63]
Bhutada P, Mundhada Y, Bansod K, et al. Protection of cholinergic and antioxidant system contributes to the effect of berberine amelio-rating memory dysfunction in rat model of streptozotocin-induced diabetes. Behav Brain Res 2011; 220(1): 30-41.
[http://dx.doi.org/10.1016/j.bbr.2011.01.022] [PMID: 21262264]
[64]
He W, Wang C, Chen Y, He Y, Cai Z. Berberine attenuates cognitive impairment and ameliorates tau hyperphosphorylation by limiting the self-perpetuating pathogenic cycle between NF-κB signaling, oxidative stress and neuroinflammation. Pharmacol Rep 2017; 69(6): 1341-8.
[http://dx.doi.org/10.1016/j.pharep.2017.06.006] [PMID: 29132092]
[65]
He X-F, Zhang L, Zhang C-H, et al. Berberine alleviates oxidative stress in rats with osteoporosis through receptor activator of NF-kB/receptor activator of NF-kB ligand/osteoprotegerin (RANK/RANKL/OPG) pathway. Bosn J Basic Med Sci 2017; 17(4): 295-301.
[PMID: 29055350]
[66]
Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem 2007; 76(1): 701-22.
[http://dx.doi.org/10.1146/annurev.biochem.76.052305.091720] [PMID: 17227225]
[67]
Silva JP, Köhler M, Graff C, et al. Impaired insulin secretion and β-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 2000; 26(3): 336-40.
[http://dx.doi.org/10.1038/81649] [PMID: 11062475]
[68]
Thornton C, Hagberg H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin Chim Acta 2015; 451(Pt A): 35-8.
[http://dx.doi.org/10.1016/j.cca.2015.01.026] [PMID: 25661091]
[69]
Bernardi P, Krauskopf A, Basso E, et al. The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 2006; 273(10): 2077-99.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05213.x] [PMID: 16649987]
[70]
Niquet J, Seo D-W, Wasterlain C. Mitochondrial pathways of neuronal necrosis. Biochem Soc Trans 2006; 34(pt 6): 1347-51.
[http://dx.doi.org/10.1042/BST0341347]
[71]
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders. Neuron 2008; 60(5): 748-66.
[http://dx.doi.org/10.1016/j.neuron.2008.10.010] [PMID: 19081372]
[72]
English K, Shepherd A, Uzor N-E, Trinh R, Kavelaars A, Heijnen CJ. Astrocytes rescue neuronal health after cisplatin treatment through mitochondrial transfer. Acta Neuropathol Commun 2020; 8(1): 36.
[http://dx.doi.org/10.1186/s40478-020-00897-7] [PMID: 32197663]
[73]
Devine MJ, Kittler JT. Mitochondria at the neuronal presynapse in health and disease. Nat Rev Neurosci 2018; 19(2): 63-80.
[http://dx.doi.org/10.1038/nrn.2017.170] [PMID: 29348666]
[74]
Chiu GS, Boukelmoune N, Chiang ACA, et al. Nasal administration of mesenchymal stem cells restores cisplatin-induced cognitive impairment and brain damage in mice. Oncotarget 2018; 9(85): 35581-97.
[http://dx.doi.org/10.18632/oncotarget.26272] [PMID: 30473752]
[75]
Keeney JTR, Ren X, Warrier G, et al. Doxorubicin-induced elevated oxidative stress and neurochemical alterations in brain and cognitive decline: Protection by MESNA and insights into mechanisms of chemotherapy-induced cognitive impairment (“chemobrain”). Oncotarget 2018; 9(54): 30324-39.
[http://dx.doi.org/10.18632/oncotarget.25718] [PMID: 30100992]
[76]
Joshi G, Aluise CD, Cole MP, et al. Alterations in brain antioxidant enzymes and redox proteomic identification of oxidized brain pro-teins induced by the anti-cancer drug adriamycin: Implications for oxidative stress-mediated chemobrain. Neuroscience 2010; 166(3): 796-807.
[http://dx.doi.org/10.1016/j.neuroscience.2010.01.021] [PMID: 20096337]
[77]
Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 1997; 68(1): 255-64.
[http://dx.doi.org/10.1046/j.1471-4159.1997.68010255.x] [PMID: 8978733]
[78]
Alfarhan M, Jafari E, Narayanan SP. Acrolein: A potential mediator of oxidative damage in diabetic retinopathy. Biomolecules 2020; 10(11): 1579.
[http://dx.doi.org/10.3390/biom10111579] [PMID: 33233661]
[79]
Rashedinia M, Lari P, Abnous K, Hosseinzadeh H. Protective effect of crocin on acrolein-induced tau phosphorylation in the rat brain. Acta Neurobiol Exp (Warsz) 2015; 75(2): 208-19.
[PMID: 26232997]
[80]
Cheng A, Hou Y, Mattson MP. Mitochondria and neuroplasticity. ASN Neuro 2010; 2(5): e00045.
[http://dx.doi.org/10.1042/AN20100019] [PMID: 20957078]
[81]
Mattson MP. Mitochondrial regulation of neuronal plasticity. Neurochem Res 2007; 32(4-5): 707-15.
[http://dx.doi.org/10.1007/s11064-006-9170-3] [PMID: 17024568]
[82]
Cardoso S, Santos RX, Carvalho C, et al. Doxorubicin increases the susceptibility of brain mitochondria to Ca(2+)-induced permeability transition and oxidative damage. Free Radic Biol Med 2008; 45(10): 1395-402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.08.008] [PMID: 18775776]
[83]
Persaud N, Davidson M, Maniscalco B, et al. Awareness-related activity in prefrontal and parietal cortices in blindsight reflects more than superior visual performance. Neuroimage 2011; 58(2): 605-11.
[http://dx.doi.org/10.1016/j.neuroimage.2011.06.081] [PMID: 21763441]
[84]
Tangpong J, Sompol P, Vore M, St Clair W, Butterfield DA, St Clair DK. Tumor necrosis factor alpha-mediated nitric oxide production enhances manganese superoxide dismutase nitration and mitochondrial dysfunction in primary neurons: An insight into the role of glial cells. Neuroscience 2008; 151(2): 622-9.
[http://dx.doi.org/10.1016/j.neuroscience.2007.10.046] [PMID: 18160224]
[85]
Liang Y, Huang M, Jiang X, Liu Q, Chang X, Guo Y. The neuroprotective effects of Berberine against amyloid β-protein-induced apoptosis in primary cultured hippocampal neurons via mitochondria-related caspase pathway. Neurosci Lett 2017; 655: 46-53.
[http://dx.doi.org/10.1016/j.neulet.2017.06.048] [PMID: 28668383]
[86]
Zhou X-Q, Zeng X-N, Kong H, Sun X-L. Neuroprotective effects of berberine on stroke models in vitro and in vivo. Neurosci Lett 2008; 447(1): 31-6.
[http://dx.doi.org/10.1016/j.neulet.2008.09.064] [PMID: 18838103]
[87]
Drachman DA, Leavitt J. Human memory and the cholinergic system. A relationship to aging? Arch Neurol 1974; 30(2): 113-21.
[http://dx.doi.org/10.1001/archneur.1974.00490320001001] [PMID: 4359364]
[88]
Bowen DM, Allen SJ, Benton JS, et al. Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease. J Neurochem 1983; 41(1): 266-72.
[http://dx.doi.org/10.1111/j.1471-4159.1983.tb11838.x] [PMID: 6306169]
[89]
Bartus RT, Dean RL III, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982; 217(4558): 408-14.
[http://dx.doi.org/10.1126/science.7046051] [PMID: 7046051]
[90]
Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: A disorder of cortical cholinergic innervation. Science 1983; 219(4589): 1184-90.
[http://dx.doi.org/10.1126/science.6338589] [PMID: 6338589]
[91]
Cummings JL. Cholinesterase inhibitors: A new class of psychotropic compounds. Am J Psychiatry 2000; 157(1): 4-15.
[http://dx.doi.org/10.1176/ajp.157.1.4] [PMID: 10618007]
[92]
Patil S, Tawari S, Mundhada D, Nadeem S. Protective effect of berberine, an isoquinoline alkaloid ameliorates ethanol-induced oxidative stress and memory dysfunction in rats. Pharmacol Biochem Behav 2015; 136: 13-20.
[http://dx.doi.org/10.1016/j.pbb.2015.07.001] [PMID: 26159088]
[93]
Wang K, Chen Q, Wu N, et al. Berberine Ameliorates Spatial Learning Memory Impairment and Modulates Cholinergic Anti-Inflammatory Pathway in Diabetic Rats. Front Pharmacol 2019; 10: 1003.
[http://dx.doi.org/10.3389/fphar.2019.01003] [PMID: 31551793]
[94]
Mallampalli RK, Ryan AJ, Salome RG, Jackowski S. Tumor necrosis factor-alpha inhibits expression of CTP: phosphocholine cytidyl-yltransferase. J Biol Chem 2000; 275(13): 9699-708.
[http://dx.doi.org/10.1074/jbc.275.13.9699] [PMID: 10734122]
[95]
Ji HF, Shen L. Molecular basis of inhibitory activities of berberine against pathogenic enzymes in Alzheimer’s disease. ScientificWorldJournal 2012; 2012: 823201.
[http://dx.doi.org/10.1100/2012/823201] [PMID: 22262957]
[96]
Jiang W, Wei W, Gaertig MA, Li S, Li XJ. Therapeutic Effect of Berberine on Huntington’s Disease Transgenic Mouse Model. PLoS One 10(7): e0134142.
[http://dx.doi.org/10.1371/journal.pone.0134142] [PMID: 26225560]
[97]
Chang CF, Lee YC, Lee KH, et al. Therapeutic effect of berberine on TDP-43-related pathogenesis in FTLD and ALS. J Biomed Sci 2016; 23(1): 72.
[http://dx.doi.org/10.1186/s12929-016-0290-z] [PMID: 27769241]
[98]
Chai YS, Hu J, Lei F, et al. Effect of berberine on cell cycle arrest and cell survival during cerebral ischemia and reperfusion and correla-tions with p53/cyclin D1 and PI3K/Akt. Eur J Pharmacol 2013; 708(1-3): 44-55.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.041] [PMID: 23499694]
[99]
Fan J, Zhang K, Jin Y, et al. Pharmacological effects of berberine on mood disorders. J Cell Mol Med 2019; 23(1): 21-8.
[http://dx.doi.org/10.1111/jcmm.13930] [PMID: 30450823]
[100]
Han AM, Heo H, Kwon YK. Berberine promotes axonal regeneration in injured nerves of the peripheral nervous system. J Med Food 2012; 15(4): 413-7.
[http://dx.doi.org/10.1089/jmf.2011.2029] [PMID: 22316297]
[101]
Peng WH, Lo KL, Lee YH, Hung TH, Lin YC. Berberine produces antidepressant-like effects in the forced swim test and in the tail sus-pension test in mice. Life Sci 2007; 81(11): 933-8.
[http://dx.doi.org/10.1016/j.lfs.2007.08.003] [PMID: 17804020]
[102]
Yoo KY, Hwang IK, Lim BO, et al. Berberry extract reduces neuronal damage and N-Methyl-D-aspartate receptor 1 immunoreactivity in the gerbil hippocampus after transient forebrain ischemia. Biol Pharm Bull 2006; 29(4): 623-8.
[http://dx.doi.org/10.1248/bpb.29.623] [PMID: 16595891]
[103]
Lee B, Sur B, Shim I, Lee H, Hahm DH. Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats. Korean J Physiol Pharmacol 2012; 16(2): 79-89.
[http://dx.doi.org/10.4196/kjpp.2012.16.2.79] [PMID: 22563252]
[104]
Lin TY, Lin YW, Lu CW, Huang SK, Wang SJ. Berberine Inhibits the Release of Glutamate in Nerve Terminals from Rat Cerebral Cortex. PLoS One 2013; 8(6): e67215.
[http://dx.doi.org/10.1371/journal.pone.0067215] [PMID: 23840629]
[105]
Singh DP, Chopra K. Verapamil augments the neuroprotectant action of berberine in rat model of transient global cerebral ischemia. Eur J Pharmacol 2013; 720(1-3): 98-106.
[http://dx.doi.org/10.1016/j.ejphar.2013.10.043] [PMID: 24177287]
[106]
Wang F, Zhao G, Cheng L, Zhou HY, Fu LY, Yao WX. Effects of berberine on potassium currents in acutely isolated CA1 pyramidal neurons of rat hippocampus. Brain Res 2004; 999(1): 91-7.
[http://dx.doi.org/10.1016/j.brainres.2003.11.036] [PMID: 14746925]
[107]
Aski ML, Rezvani ME, Khaksari M, et al. Neuroprotective effect of berberine chloride on cognitive impairment and hippocampal damage in experimental model of vascular dementia. Iran J Basic Med Sci 2018; 21(1): 53-8.
[http://dx.doi.org/10.22038/IJBMS.2017.23195.5865] [PMID: 29372037]
[108]
Abdel Moneim AE. The neuroprotective effect of berberine in mercury-induced neurotoxicity in rats. Metab Brain Dis 2015; 30(4): 935-42.
[http://dx.doi.org/10.1007/s11011-015-9652-6] [PMID: 25600690]
[109]
Allameh H, Fatemi I, Malayeri AR, Nesari A, Mehrzadi S, Goudarzi M. Pretreatment with berberine protects against cisplatin-induced renal injury in male Wistar rats. Naunyn Schmiedebergs Arch Pharmacol 2020; 393(10): 1825-33.
[http://dx.doi.org/10.1007/s00210-020-01877-3] [PMID: 32410067]
[110]
Chen Q, Mo R, Wu N, et al. Berberine Ameliorates Diabetes-Associated Cognitive Decline through Modulation of Aberrant Inflammation Response and Insulin Signaling Pathway in DM Rats. Front Pharmacol 2017; 8: 334.
[http://dx.doi.org/10.3389/fphar.2017.00334] [PMID: 28634451]
[111]
Simões Pires EN, Frozza RL, Hoppe JB, Menezes Bde M, Salbego CG. Berberine was neuroprotective against an in vitro model of brain ischemia: survival and apoptosis pathways involved. Brain Res 2014; 1557: 26-33.
[http://dx.doi.org/10.1016/j.brainres.2014.02.021] [PMID: 24560603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy