Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Mini-Review Article

Exploring the Potentials of Phytochemicals for Targeting Coronavirus

Author(s): Shirin Khanna, Aravindhan Ganesan and Subha Kalyaanamoorthy*

Volume 12, Issue 6, 2022

Published on: 30 March, 2022

Article ID: e020322201588 Pages: 10

DOI: 10.2174/2210315512666220302102611

Price: $65

Abstract

Since the initial outbreak in December 2019, the COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 3 million deaths worldwide. There is an urgent need for developing a potential therapy against SARS-CoV-2. Exploring the potentials of phytochemicals towards inhibition of SARS-CoV-2 proteins remains of significant scientific interest. The therapeutic values of phytochemicals in the treatment of diseases, such as viral infections, are known for a long time. In this review, we present a brief overview of the past experimental and computational efforts on evaluating phytochemicals against SARS coronaviruses, an earlier coronavirus strain. We discuss natural metabolites of different structural and chemical scaffolds, including polyphenols, flavonoids, and phytosterols, which can be promising compounds for screening against the currently evolving SARS-CoV-2 virus.

Keywords: Coronavirus, phytochemicals, polyphenols, flavonoids, phytosterols, SARS-CoV-2.

Graphical Abstract

[1]
Chen, J.; Lu, H. New challenges to fighting COVID-19: Virus variants, potential vaccines, and development of antivirals. Biosci. Trends, 2021, 15(2), 126-128.
[http://dx.doi.org/10.5582/bst.2021.01092] [PMID: 33746183]
[2]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[3]
Pereira, F. Evolutionary dynamics of the SARS-CoV-2 ORF8 accessory gene. Infect. Genet. Evol., 2020, 85104525
[http://dx.doi.org/10.1016/j.meegid.2020.104525] [PMID: 32890763]
[4]
Liu, X.H.; Zhang, X.; Lu, Z.H.; Zhu, Y.S.; Wang, T. Potential molecular targets of nonstructural proteins for the development of antiviral drugs against SARS-CoV-2 infection. Biomed. Pharmacother., 2021, 133111035
[http://dx.doi.org/10.1016/j.biopha.2020.111035] [PMID: 33254013]
[5]
Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305.
[http://dx.doi.org/10.1021/acscombsci.0c00058] [PMID: 32402186]
[6]
V’kovski, P.; Kratzel, A.; Steiner, S.; Stalder, H.; Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol., 2021, 19(3), 155-170.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[7]
Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L.W.; Wang, Q.; Lou, Z.; Rao, Z. Struc-ture of the RNA-dependent RNA polymerase from COVID-19 virus. Science, 2020, 368(6492), 779-782.
[http://dx.doi.org/10.1126/science.abb7498] [PMID: 32277040]
[8]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[9]
Calixto, J.B. The role of natural products in modern drug discovery; Academia Brasileira de Ciencias: Rio de Janeiro, Brazil, 2019.
[10]
Devaux, C.A.; Rolain, J.M.; Colson, P.; Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int. J. Antimicrob. Agents, 2020, 55(5)105938
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105938] [PMID: 32171740]
[11]
Fan, Q.; Zhang, B.; Ma, J.; Zhang, S. Safety profile of the antiviral drug remdesivir: An update. Biomed. Pharmacother., 2020, 130110532
[http://dx.doi.org/10.1016/j.biopha.2020.110532] [PMID: 32707440]
[12]
Attia, Y.A.; Alagawany, M.M.; Farag, M.R.; Alkhatib, F.M.; Khafaga, A.F.; Abdel-Moneim, A.E.; Asiry, K.A.; Mesalam, N.M.; Shafi, M.E.; Al-Harthi, M.A.; Abd El-Hack, M.E. Phytogenic products and phytochemicals as a candidate strategy to improve tolerance to coro-navirus. Front. Vet. Sci., 2020, 7(783)573159
[http://dx.doi.org/10.3389/fvets.2020.573159] [PMID: 33195565]
[13]
Kaushik, P. Letter to the Editor: Phytochemicals a potential cure for COVID-19. In: Emerg. Med. News;, 2020, 12, . (42).
[14]
Majnooni, M.B. Phytochemicals: Potential therapeutic interventions against coronavirus-associated lung injury. Front. Pharmacol., 1744, 2020, 11.
[PMID: 33658931]
[15]
Swain, S.S.; Panda, S.K.; Luyten, W. Phytochemicals against SARS-CoV as potential drug leads. Biomed. J., 2021, 44(1), 74-85.
[http://dx.doi.org/10.1016/j.bj.2020.12.002] [PMID: 33736953]
[16]
Jahan, I.; Onay, A. Potentials of plant-based substance to inhabit and probable cure for the COVID-19. Turkish J. Biol., 2020, 44(3), 228-241.
[17]
Jain, R.P.; Pettersson, H.I.; Zhang, J.; Aull, K.D.; Fortin, P.D.; Huitema, C.; Eltis, L.D.; Parrish, J.C.; James, M.N.; Wishart, D.S.; Vederas, J.C. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. J. Med. Chem., 2004, 47(25), 6113-6116.
[http://dx.doi.org/10.1021/jm0494873] [PMID: 15566280]
[18]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[19]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[20]
Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res., 2012, 3(4), 200-201.
[http://dx.doi.org/10.4103/2231-4040.104709] [PMID: 23378939]
[21]
Lin, C-W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[22]
Mani, J.S.; Johnson, J.B.; Steel, J.C.; Broszczak, D.A.; Neilsen, P.M.; Walsh, K.B.; Naiker, M. Natural product-derived phytochemicals as potential agents against coronaviruses: A review. Virus Res., 2020, 284197989
[http://dx.doi.org/10.1016/j.virusres.2020.197989] [PMID: 32360300]
[23]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: Could they be encouraging structural models against SARS-CoV-2? Nat. Prod. Bioprospect., 2020, 10(4), 171-186.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[24]
Porras, G.; Chassagne, F.; Lyles, J.T.; Marquez, L.; Dettweiler, M.; Salam, A.M.; Samarakoon, T.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. Ethnobotany and the role of plant natural products in antibiotic drug discovery. Chem. Rev., 2021, 121(6), 3495-3560.
[http://dx.doi.org/10.1021/acs.chemrev.0c00922] [PMID: 33164487]
[25]
Alam, S.P. Virtual screening of plant metabolites against main protease, RNA-dependent RNA polymerase and Spike protein of SARS-CoV-2: Therapeutics option of COVID-19. 2020.
[26]
Xian, Y.; Zhang, J.; Bian, Z.; Zhou, H.; Zhang, Z.; Lin, Z.; Xu, H. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B, 2020, 10(7), 1163-1174.
[http://dx.doi.org/10.1016/j.apsb.2020.06.002] [PMID: 32834947]
[27]
Jan, J-T.; Cheng, T.R.; Juang, Y.P.; Ma, H.H.; Wu, Y.T.; Yang, W.B.; Cheng, C.W.; Chen, X.; Chou, T.H.; Shie, J.J.; Cheng, W.C.; Chein, R.J.; Mao, S.S.; Liang, P.H.; Ma, C.; Hung, S.C.; Wong, C.H. Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proc. Natl. Acad. Sci. USA, 2021, 118(5)e2021579118
[http://dx.doi.org/10.1073/pnas.2021579118] [PMID: 33452205]
[28]
Bacha, U.; Barrila, J.; Velazquez-Campoy, A.; Leavitt, S.A.; Freire, E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry, 2004, 43(17), 4906-4912.
[http://dx.doi.org/10.1021/bi0361766] [PMID: 15109248]
[29]
Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhib-itors of the SARS coronavirus main proteinase. Chem. Biol., 2004, 11(10), 1445-1453.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.011] [PMID: 15489171]
[30]
Hsu, J.T.; Kuo, C.J.; Hsieh, H.P.; Wang, Y.C.; Huang, K.K.; Lin, C.P.; Huang, P.F.; Chen, X.; Liang, P.H. Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett., 2004, 574(1-3), 116-120.
[http://dx.doi.org/10.1016/j.febslet.2004.08.015] [PMID: 15358550]
[31]
Kao, R.Y.; To, A.P.; Ng, L.W.; Tsui, W.H.; Lee, T.S.; Tsoi, H.W.; Yuen, K.Y. Characterization of SARS-CoV main protease and identifica-tion of biologically active small molecule inhibitors using a continuous fluorescence-based assay. FEBS Lett., 2004, 576(3), 325-330.
[http://dx.doi.org/10.1016/j.febslet.2004.09.026] [PMID: 15498556]
[32]
Shie, J-J.; Fang, J.M.; Kuo, C.J.; Kuo, T.H.; Liang, P.H.; Huang, H.J.; Yang, W.B.; Lin, C.H.; Chen, J.L.; Wu, Y.T.; Wong, C.H. Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease. J. Med. Chem., 2005, 48(13), 4469-4473.
[http://dx.doi.org/10.1021/jm050184y] [PMID: 15974598]
[33]
Shie, J.J.; Fang, J.M.; Kuo, T.H.; Kuo, C.J.; Liang, P.H.; Huang, H.J.; Wu, Y.T.; Jan, J.T.; Cheng, Y.S.; Wong, C.H. Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha, beta-unsaturated esters. Bioorg. Med. Chem., 2005, 13(17), 5240-5252.
[http://dx.doi.org/10.1016/j.bmc.2005.05.065] [PMID: 15994085]
[34]
Wu, C-Y.; Jan, J.T.; Ma, S.H.; Kuo, C.J.; Juan, H.F.; Cheng, Y.S.; Hsu, H.H.; Huang, H.C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10012-10017.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[35]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[36]
Yu, M.S.; Lee, J.; Lee, J.M.; Kim, Y.; Chin, Y.W.; Jee, J.G.; Keum, Y.S.; Jeong, Y.J. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg. Med. Chem. Lett., 2012, 22(12), 4049-4054.
[http://dx.doi.org/10.1016/j.bmcl.2012.04.081] [PMID: 22578462]
[37]
Gorshkov, K.; Chen, C.Z.; Bostwick, R.; Rasmussen, L.; Tran, B.N.; Cheng, Y.S.; Xu, M.; Pradhan, M.; Henderson, M.; Zhu, W.; Oh, E.; Susumu, K.; Wolak, M.; Shamim, K.; Huang, W.; Hu, X.; Shen, M.; Klumpp-Thomas, C.; Itkin, Z.; Shinn, P.; Carlos de la Torre, J.; Sime-onov, A.; Michael, S.G.; Hall, M.D.; Lo, D.C.; Zheng, W. The SARS-CoV-2 cytopathic effect is blocked by lysosome alkalizing small mol-ecules. ACS Infect. Dis., 2021, 7(6), 1389-1408.
[http://dx.doi.org/10.1021/acsinfecdis.0c00349] [PMID: 33346633]
[38]
Wen, C-C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; Hou, C.C.; Hsiao, P.W.; Chien, S.C.; Shyur, L.F.; Yang, N.S. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respirato-ry syndrome coronavirus. J. Med. Chem., 2007, 50(17), 4087-4095.
[http://dx.doi.org/10.1021/jm070295s] [PMID: 17663539]
[39]
Resnick, S.J. A simplified cell-based assay to identify coronavirus 3CL protease inhibitors. bioRxiv, 2020, 2020.272864
[http://dx.doi.org/10.1101/2020.08.29.272864]
[40]
Feng, T.; Kalyaanamoorthy, S.; Barakat, K. L-Type calcium channels: Structure and functions. Ion Channels in Health and Sickness;, Shad, K.F., Ed.; Intech Open., 2018.
[http://dx.doi.org/10.5772/intechopen.77305]
[41]
Feng, T.; Kalyaanamoorthy, S.; Ganesan, A.; Barakat, K. Atomistic modeling and molecular dynamics analysis of human CaV1.2 channel using external electric field and ion pulling simulations. Biochim. Biophys. Acta, Gen. Subj., 2019, 1863(6), 1116-1126.
[http://dx.doi.org/10.1016/j.bbagen.2019.04.006] [PMID: 30978379]
[42]
Ganesan, A. Molecular ‘time-machines’ to unravel key biological events for drug design. In: WIRES Comput.Mol. Sci, 2017, 7, p. (4)e1306.
[http://dx.doi.org/10.1002/wcms.1306]
[43]
Weng, Y.L.; Naik, S.R.; Dingelstad, N.; Lugo, M.R.; Kalyaanamoorthy, S.; Ganesan, A. Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Sci. Rep., 2021, 11(1), 7429.
[http://dx.doi.org/10.1038/s41598-021-86471-0] [PMID: 33795718]
[44]
Williams, J.C.; Kalyaanamoorthy, S. PoseFilter: A PyMOL Plugin for filtering and analyzing small molecule docking in symmetric binding sites. Bioinformatics, 2021, 2021btab188
[http://dx.doi.org/10.1093/bioinformatics/btab188] [PMID: 33742661]
[45]
Leelananda, S.P.; Lindert, S. Computational methods in drug discovery. Beilstein J. Org. Chem., 2016, 12, 2694-2718.
[http://dx.doi.org/10.3762/bjoc.12.267] [PMID: 28144341]
[46]
Sousa, S.F.; Fernandes, P.A.; Ramos, M.J. Protein-ligand docking: current status and future challenges. Proteins, 2006, 65(1), 15-26.
[http://dx.doi.org/10.1002/prot.21082] [PMID: 16862531]
[47]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of dock-ing accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[48]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[49]
Naik, S.R.; Bharadwaj, P.; Dingelstad, N.; Kalyaanamoorthy, S.; Mandal, S.C.; Ganesan, A.; Chattopadhyay, D.; Palit, P. Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 8, 1-18.
[http://dx.doi.org/10.1080/07391102.2021.1891969] [PMID: 33682632]
[50]
Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688.
[http://dx.doi.org/10.1002/jcc.20290] [PMID: 16200636]
[51]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecu-lar dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[52]
Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Mol. Model. Ann., 2001, 7(8), 306-317.
[53]
Ganesan, A.; Ahmed, M.; Okoye, I.; Arutyunova, E.; Babu, D.; Turnbull, W.L.; Kundu, J.K.; Shields, J.; Agopsowicz, K.C.; Xu, L.; Taba-na, Y.; Srivastava, N.; Zhang, G.; Moon, T.C.; Belovodskiy, A.; Hena, M.; Kandadai, A.S.; Hosseini, S.N.; Hitt, M.; Walker, J.; Smylie, M.; West, F.G.; Siraki, A.G.; Lemieux, M.J.; Elahi, S.; Nieman, J.A.; Tyrrell, D.L.; Houghton, M.; Barakat, K. Comprehensive in vitro charac-terization of PD-L1 small molecule inhibitors. Sci. Rep., 2019, 9(1), 12392.
[http://dx.doi.org/10.1038/s41598-019-48826-6] [PMID: 31455818]
[54]
Elkarhat, Z. Potential inhibitors of SARS-cov-2 RNA dependent RNA polymerase protein: Molecular docking, molecular dynamics simu-lations and MM-PBSA analyses. J. Biomol. Struct. Dyn., 2020, 40(1), 361-374.
[PMID: 32873176]
[55]
Bhuiyan, F.R.; Howlader, S.; Raihan, T.; Hasan, M. Plants metabolites: Possibility of natural therapeutics against the COVID-19 pandemic. Front. Med. (Lausanne), 2020, 7(444), 444.
[http://dx.doi.org/10.3389/fmed.2020.00444] [PMID: 32850918]
[56]
Chen, C.N.; Lin, C.P.; Huang, K.K.; Chen, W.C.; Hsieh, H.P.; Liang, P.H.; Hsu, J.T. Inhibition of SARS-CoV 3C-like protease activity by theaflavin-3,3′-digallate (TF3). Evid. Based Complement. Alternat. Med., 2005, 2(2), 209-215.
[http://dx.doi.org/10.1093/ecam/neh081] [PMID: 15937562]
[57]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papa-in-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[58]
Keum, Y.S. Flavonoid which suppresses SARS coronavirus helicase and a pharmaceutically acceptable derivative and salt thereof, and a composition and a health functional food containing the same for treating or preventing SARS. Patent KR1020130031551, 2013.
[59]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J.W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591] [PMID: 23323951]
[60]
Nascimento, Junior, J.A.C.; Santos, A.M.; Quintans-Júnior, L.J.; Walker, C.I.B.; Borges, L.P.; Serafini, M.R. SARS, MERS and SARS-CoV-2 (COVID-19) treatment: A patent review. Expert Opin. Ther. Pat., 2020, 30(8), 567-579.
[http://dx.doi.org/10.1080/13543776.2020.1772231] [PMID: 32429703]
[61]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J.Y.; Kim, D.; Nguyen, T.T.; Park, S.J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[62]
Swargiary, A.; Mahmud, S.; Saleh, M.A. Screening of phytochemicals as potent inhibitor of 3-chymotrypsin and papain-like proteases of SARS-CoV2: An in silico approach to combat COVID-19. J. Biomol. Struct. Dyn., 2020, 40(5), 2067-2081.
[http://dx.doi.org/10.1080/07391102.2020.1835729] [PMID: 33089730]
[63]
Subbaiyan, A. In silico molecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J. Pure Appl. Microbiol., 2020, 14, 989.
[http://dx.doi.org/10.22207/JPAM.14.SPL1.37]
[64]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[65]
Gupta, S.; Singh, A.K.; Kushwaha, P.P.; Prajapati, K.S.; Shuaib, M.; Senapati, S.; Kumar, S. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J. Biomol. Struct. Dyn., 2021, 39(12), 4334-4345.
[http://dx.doi.org/10.1080/07391102.2020.1776157] [PMID: 32476576]
[66]
Pandeya, K.B.; Ganeshpurkar, A.; Mishra, M.K. Natural RNA dependent RNA polymerase inhibitors: Molecular docking studies of some biologically active alkaloids of Argemone mexicana. Med. Hypotheses, 2020, 144109905
[http://dx.doi.org/10.1016/j.mehy.2020.109905] [PMID: 32535456]
[67]
Basu, A.; Sarkar, A.; Maulik, U. Molecular docking study of potential phytochemicals and their effects on the complex of SARS-CoV2 spike protein and human ACE2. Sci. Rep., 2020, 10(1), 17699.
[http://dx.doi.org/10.1038/s41598-020-74715-4] [PMID: 33077836]
[68]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[PMID: 32373991]
[69]
Laksmiani, N.P.L. Active compounds activity from the medicinal plants against SARS-CoV-2 using in silico assay. Biomed. Pharmacol. J., 2020, 13(2), 873-881.
[http://dx.doi.org/10.13005/bpj/1953]
[70]
Narkhede, R.R.; Pise, A.V.; Cheke, R.S.; Shinde, S.D. Recognition of natural products as potential inhibitors of COVID-19 Main Protease (Mpro): In-silico evidences. Nat. Prod. Bioprospect., 2020, 10(5), 297-306.
[http://dx.doi.org/10.1007/s13659-020-00253-1] [PMID: 32557405]
[71]
Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. In silico identification of potential inhibitors from Cinnamon against main protease and spike glycoprotein of SARS CoV-2. J. Biomol. Struct. Dyn., 2021, 39(13), 4618-4632.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[72]
Sayed, A.M. Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale. RSC Advances, 2020, 10(34), 19790-19802.
[http://dx.doi.org/10.1039/D0RA04199H]
[73]
Zhang, D.H.; Wu, K.L.; Zhang, X.; Deng, S.Q.; Peng, B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J. Integr. Med., 2020, 18(2), 152-158.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy