Generic placeholder image

当代阿耳茨海默病研究

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

与糖尿病相关的阿尔茨海默病认知测试和脑成像结果之间的差异

卷 19, 期 2, 2022

发表于: 07 March, 2022

页: [95 - 103] 页: 9

弟呕挨: 10.2174/1567205019666220228152655

价格: $65

conference banner
摘要

背景:尽管已经对阿尔茨海默病与2型糖尿病之间的关系有了大量的研究调查,但迄今为止与DM有关的AD的隐含病理生理学并未得到完全阐明。我们比较了患有DM的AD患者和未患DM的AD患者的认知功能和脑成像结果来表明患有DM的AD患者的认知功能和脑成像结果之间的关系。 方法:将126位未患有DM的AD患者【AD-DM】和51位患有DM的AD患者【AD+DM】的认知功能和脑成像结果进行比较,包括通过磁共振分析成像的内侧颞叶萎缩和通过单光发射计算机断层扫描的顶叶、后扣带、额区的灌注不足。分析了与认知-成像相关的因素,包括教育、职业、休闲活动、并发症、虚弱程度以及人口统计学。 结果:【AD+DM】组明显地表现出比【AD-DM】组更为严重的认知障碍,尽管二者脑成像结果异常程度类似。在与认知成像相关的因素中,【AD+DM】组休闲活动水平明显低于【AD-DM】。但二者之间的其他因素并未表现出显著差异。 结论:患有DM的AD患者表现出的认知成像差异可能与他们低认知储备有关,可能是由他们休闲活动少造成的。我们的发现表明生活方式的干预,包括身体、认知、社会活动,可能会减少他们认知功能的下降程度。

关键词: 阿尔茨海默病,糖尿病患者,认知,脑成像,认知储备,休闲活动

[1]
Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: A systematic review. Lancet Neurol 2006; 5(1): 64-74.
[http://dx.doi.org/10.1016/S1474-4422(05)70284-2] [PMID: 16361024]
[2]
Biessels GJ, Despa F. Cognitive decline and dementia in diabetes mellitus: Mechanisms and clinical implications. Nat Rev Endocrinol 2018; 14(10): 591-604.
[http://dx.doi.org/10.1038/s41574-018-0048-7] [PMID: 30022099]
[3]
Sato T, Hanyu H, Koyama Y, et al. Discrepancy between the degree of cognitive impairment and brain imaging abnormalities in Alzheimer disease patients is associated with cognitive reserve. J Alzheimers Dis 2021; 84(1): 273-81.
[http://dx.doi.org/10.3233/JAD-210728] [PMID: 34542077]
[4]
Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 2012; 11(11): 1006-12.
[http://dx.doi.org/10.1016/S1474-4422(12)70191-6] [PMID: 23079557]
[5]
McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011; 7(3): 263-9.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[6]
The diabetes committee on the diagnosis and classification of diabetes mellitus. Report of the expert committee on the diagnosis and clasification of diabets mellitus. Diabetes Care 1997; 20: 1183-97.
[http://dx.doi.org/10.2337/diacare.20.7.1183]
[7]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351] [PMID: 3496763]
[8]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6] [PMID: 1202204]
[9]
Mitchell AJ, Bird V, Rizzo M, Meader N. Diagnostic validity and added value of the Geriatric Depression Scale for depression in primary care: A meta-analysis of GDS30 and GDS15. J Affect Disord 2010; 125(1-3): 10-7.
[http://dx.doi.org/10.1016/j.jad.2009.08.019] [PMID: 19800132]
[10]
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 695-9.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[11]
Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J Chronic Dis 1987; 40(5): 373-83.
[http://dx.doi.org/10.1016/0021-9681(87)90171-8] [PMID: 3558716]
[12]
Anderson TM, Sachdev PS, Brodaty H, Trollor JN, Andrews G. Effects of sociodemographic and health variables on Mini-Mental State Exam scores in older Australians. Am J Geriatr Psychiatry 2007; 15: 467-76.
[13]
Sewo Sampaio PY, Sampaio RA, Yamada M, Arai H. Systematic review of the Kihon checklist: Is it a reliable assessment of frailty? Geriatr Gerontol Int 2016; 16(8): 893-902.
[http://dx.doi.org/10.1111/ggi.12833] [PMID: 27444395]
[14]
Satake S, Senda K, Hong YJ, et al. Validity of the Kihon checklist for assessing frailty status. Geriatr Gerontol Int 2016; 16(6): 709-15.
[http://dx.doi.org/10.1111/ggi.12543] [PMID: 26171645]
[15]
Marseglia A, Wang H-X, Rizzuto D, Fratiglioni L, Xu W. Participating in mental, social, and physical leisure activities and having a rich social network reduce the incidence of diabetes-related dementia in a cohort of Swedish older adults. Diabetes Care 2019; 42(2): 232-9.
[http://dx.doi.org/10.2337/dc18-1428] [PMID: 30523030]
[16]
Apostrova LG. Structural neuroimaging in degenerative dementias. In: Nair AK, Sabbagh MN, Eds. Geriatric Neurology. UK: John Wiley & Sons, Ltd 2014; pp. 138-45.
[17]
Fleisher AS, Drzezga A. Functional imaging in dementia.Geriatric Neurology. UK: John Wiley & Sons, Ltd 2014; pp. 146-61.
[18]
Hirata Y, Matsuda H, Nemoto K, et al. Voxel-based morphometry to discriminate early Alzheimer’s disease from controls. Neurosci Lett 2005; 382(3): 269-74.
[http://dx.doi.org/10.1016/j.neulet.2005.03.038] [PMID: 15925102]
[19]
Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995; 36(7): 1238-48.
[PMID: 7790950]
[20]
Ishii K, Ito K, Nakanishi A, Kitamura S, Terashima A. Computer-assisted system for diagnosing degenerative dementia using cerebral blood flow SPECT and 3D-SSP: A multicenter study. Jpn J Radiol 2014; 32(7): 383-90.
[http://dx.doi.org/10.1007/s11604-014-0329-6] [PMID: 24838777]
[21]
Haaksma ML, Vilela LR, Marengoni A, et al. Comorbidity and progression of late onset Alzheimer’s disease: A systematic review. PLoS One 2017; 12(5): e0177044.
[http://dx.doi.org/10.1371/journal.pone.0177044] [PMID: 28472200]
[22]
Wallace LMK, Theou O, Godin J, Andrew MK, Bennett DA, Rockwood K. Investigation of frailty as a moderator of the relationship between neuropathology and dementia in Alzheimer’s disease: A cross-sectional analysis of data from the Rush Memory and Aging Project. Lancet Neurol 2019; 18(2): 177-84.
[http://dx.doi.org/10.1016/S1474-4422(18)30371-5] [PMID: 30663607]
[23]
Ihle A, Mons U, Perna L, et al. The relation of obesity to performance in verbal abilities, processing speed, and cognitive flexibility in old age: The role of cognitive reserve. Dement Geriatr Cogn Disord 2016; 42(1-2): 117-26.
[http://dx.doi.org/10.1159/000448916] [PMID: 27632695]
[24]
Alagiakrishnan K, Zhao N, Mereu L, Senior P, Senthilselvan A. Montreal Cognitive Assessment is superior to Standardized Mini-Mental Status Exam in detecting mild cognitive impairment in the middle-aged and elderly patients with type 2 diabetes mellitus. BioMed Res Int 2013; 2013: 186106.
[http://dx.doi.org/10.1155/2013/186106] [PMID: 23936778]
[25]
Yamakawa H, Okita M, Fukasawa R, Hatanaka H, Namioka N, Hanyu H. A comparison between the mini-mental state examination and montreal cognitive assessment in assessing cognitive function in patients with diabetes-related dementia. Psychogeriatrics 2018; 18(1): 72-3.
[http://dx.doi.org/10.1111/psyg.12277] [PMID: 28664625]
[26]
Ferreira D, Nordberg A, Westman E. Biological subtypes of Alzheimer disease: A systematic review and meta-analysis. Neurology 2020; 94(10): 436-48.
[http://dx.doi.org/10.1212/WNL.0000000000009058] [PMID: 32047067]
[27]
Yokoyama S, Kajiya Y, Yoshinaga T, Tani A, Hirano H. Imaging discrepancies between magnetic resonance imaging and brain perfusion single-photon emission computed tomography in the diagnosis of Alzheimer’s disease, and verification with amyloid positron emission tomography. Psychogeriatrics 2014; 14(2): 110-7.
[http://dx.doi.org/10.1111/psyg.12047] [PMID: 24954834]
[28]
Peña-González P, Mondragón-Maya A, Silva-Pereyra J, Roa-Rojas P. Cognitive reserve and executive functions in adults with type 2 diabetes. J Diabetes Res 2020; 7941543.
[http://dx.doi.org/10.1155/2020/7941543]
[29]
Buchman AS, Yu L, Wilson RS, et al. Physical activity, common brain pathologies, and cognition in community-dwelling older adults. Neurology 2019; 92(8): e811-22.
[http://dx.doi.org/10.1212/WNL.0000000000006954] [PMID: 30651386]
[30]
Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA 2008; 300(9): 1027-37.
[http://dx.doi.org/10.1001/jama.300.9.1027] [PMID: 18768414]
[31]
Demurtas J, Schoene D, Torbahn G, et al. Physical activity and exercise in mild cognitive impairment and dementia: An umbrella review of intervention and observational studies. J Am Med Dir Assoc 2020; 21(10): 1415-1422.e6.
[http://dx.doi.org/10.1016/j.jamda.2020.08.031] [PMID: 32981668]
[32]
Hamer M, Chida Y. Physical activity and risk of neurodegenerative disease: A systematic review of prospective evidence. Psychol Med 2009; 39(1): 3-11.
[http://dx.doi.org/10.1017/S0033291708003681] [PMID: 18570697]
[33]
Scarmeas N, Zarahn E, Anderson KE, et al. Association of life activities with cerebral blood flow in Alzheimer disease: Implications for the cognitive reserve hypothesis. Arch Neurol 2003; 60(3): 359-65.
[http://dx.doi.org/10.1001/archneur.60.3.359] [PMID: 12633147]
[34]
Takenoshita N, Shimizu S, Kanetaka H, et al. Classification of clinically diagnosed Alzheimer disease associated with diabetes based on amyloid and tau PET results. J Alzheimers Dis 2019; 71(1): 261-71.
[http://dx.doi.org/10.3233/JAD-190620] [PMID: 31356213]
[35]
Franzmeier N, Duering M, Weiner M, Dichgans M, Ewers M. Left frontal cortex connectivity underlies cognitive reserve in prodromal Alzheimer disease. Neurology 2017; 88(11): 1054-61.
[http://dx.doi.org/10.1212/WNL.0000000000003711] [PMID: 28188306]
[36]
Lee DH, Lee P, Seo SW, et al. Neural substrates of cognitive reserve in Alzheimer’s disease spectrum and normal aging. Neuroimage 2019; 186: 690-702.
[http://dx.doi.org/10.1016/j.neuroimage.2018.11.053] [PMID: 30503934]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy