Generic placeholder image

Recent Advances in Computer Science and Communications

Editor-in-Chief

ISSN (Print): 2666-2558
ISSN (Online): 2666-2566

Review Article

Edge Computing Towards Smart Applications: A Survey

Author(s): Omar M. Ali* and Ahlam F. Mahmood

Volume 16, Issue 1, 2023

Published on: 27 July, 2022

Article ID: e270722201441 Pages: 18

DOI: 10.2174/2666255815666220225102615

Price: $65

Abstract

Background: The increasing demand for Internet of Things (IoT) devices has been accompanied by an increase in the amount of data generated by them that need to be transferred, processed, and stored. Transferring the data of these devices to cloud computing leads to the occurrence of bottlenecks in the data networks, and therefore, an increase in the delay. Edge computing is used to reduce the delay by executing the computing process close to the data source, and it provides an important security advantage by reducing the amount of data actually at risk in a single moment. Furthermore, it provides an affordable and scalable avenue, providing unparalleled reliability.

Objective: The study aimed to highlight the challenges associated with moving data from the cloud to the edge.

Methods: In this paper, a survey has been presented related to edge computing from the perspective of requirements and applications, mentioning the most important contributions made by researchers in this field.

Conclusion: The increase in the number of sensors in the Internet of Things revolution created a great momentum that can be addressed by relying on the edges close to the user to ensure the confidentiality of information, especially in real-time applications, such as health care systems and drones, etc.

Keywords: Cloud, Fog, Edge, Computing, Smart, Healthcare

Graphical Abstract

[1]
H. Tran-Dang, N. Krommenacker, P. Charpentier, and D. Kim, "Toward the internet of things for physical internet: Perspectives and challenges", IEEE Internet Things J., vol. 7, no. 6, pp. 4711-4736, 2020.
[http://dx.doi.org/10.1109/JIOT.2020.2971736]
[2]
A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakanlahiji, J. Kong, and J.P. Jue, "All one needs to know about fog computing and related edge computing paradigms: A complete survey", J. Systems Archit., vol. 98, pp. 289-330, 2019.
[http://dx.doi.org/10.1016/j.sysarc.2019.02.009]
[3]
R. Mun ˜oz,, R. Vilalta, N. Yoshikane, R. Casellas, R. Mart’ınez, T. Tsuritani, and I. Morita, "Integration of iot, transport sdn, and edge/cloud computing for dynamic distribution of iot analytics and efficient use of network resources", J. Lightwave Technol., vol. 36, no. 7, pp. 1420-1428, 2018.
[http://dx.doi.org/10.1109/JLT.2018.2800660]
[4]
F. Metzger, T. Hoßfeld, A. Bauer, S. Kounev, and P.E. Heegaard, "Modeling of aggregated iot traffic and its application to an iot cloud", Proc. IEEE, vol. 107, no. 4, pp. 679-694, 2019.
[http://dx.doi.org/10.1109/JPROC.2019.2901578]
[5]
H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and C. Lin, "Edge of things: The big picture on the integration of edge, iot and the cloud in a distributed computing environment", IEEE Access, vol. 6, pp. 1706-1717, 2018.
[http://dx.doi.org/10.1109/ACCESS.2017.2780087]
[6]
P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, and A. Leon-Garcia, "Fog computing: A comprehensive architectural survey", IEEE Access, vol. 8, pp. 105-169, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2983253]
[7]
U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, "Cloudlet deployment in local wireless networks: Motivation, architectures, applications, and open challenges", J. Netw. Comput. Appl., vol. 62, pp. 18-40, 2016.
[http://dx.doi.org/10.1016/j.jnca.2015.11.009]
[8]
L.U. Khan, I. Yaqoob, N.H. Tran, S.M.A. Kazmi, T.N. Dang, and C.S. Hong, "Edge-computing-enabled smart cities: A comprehensive survey", IEEE Internet Things J., vol. 7, no. 10, pp. 200-210, 2020.
[http://dx.doi.org/10.1109/JIOT.2020.2987070]
[9]
I. Sitto’n-Candanedo, R.S. Alonso, J.M. Corchado, S. Rodr’ıguez-Gonza’lez, and R. Casado-Vara, "A review of edge computing reference architectures and a new global edge proposal", Future Gener. Comput. Syst., vol. 99, pp. 278-294, 2019.
[http://dx.doi.org/10.1016/j.future.2019.04.016]
[10]
N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, "Mobile edge computing: A survey", IEEE Internet Things J., vol. 5, no. 1, pp. 450-465, 2018.
[http://dx.doi.org/10.1109/JIOT.2017.2750180]
[11]
W. Yu, F. Liang, X. He, W.G. Hatcher, C. Lu, J. Lin, and X. Yang, "A survey on the edge computing for the internet of things", IEEE Access, vol. 6, pp. 6900-6919, 2018.
[http://dx.doi.org/10.1109/ACCESS.2017.2778504]
[12]
V. Javidroozi, H. Shah, and G. Feldman, "Urban computing and smart cities: Towards changing city processes by applying enterprise systems integration practices", IEEE Access, vol. 7, pp. 023-108, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2933045]
[13]
W.Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, and A. Ahmed, "Edge computing: A survey", Future Gener. Comput. Syst., vol. 97, pp. 219-235, 2019.
[http://dx.doi.org/10.1016/j.future.2019.02.050]
[14]
R.M. Tanash, A.F. Khalifeh, and K.A. Darabkh, "Communication over cloud computing: A security survey", In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO)
20-24 May 2019. Opatija, Croatia, 2019 [http://dx.doi.org/10.23919/MIPRO.2019.8756926]
[15]
A.G. Prajapati, S.J. Sharma, and V.S. Badgujar, "All about cloud: A systematic survey", In 2018 International Conference on Smart City and Emerging Technology (ICSCET) 5-5 Jan., 2018 Mumbai, Indiapp. 1-6
[16]
H. Lokawati, and Y. Widyani, Monitoring system of multi-tenant software as a service (saas), 2019 International Conference on Data and Software Engineering (ICoDSE), 13-14 Nov. 2019, Pontianak, Indonesia., pp. 1-5.
[http://dx.doi.org/10.1109/ICoDSE48700.2019.9092741]
[17]
D.S. Linthicum, "Paas death watch?", IEEE Cloud Computing, vol. 4, no. 1, pp. 6-9, 2017.
[http://dx.doi.org/10.1109/MCC.2017.1]
[18]
W. Isharufe, F. Jaafar, and S. Butakov, "Study of security issues in platform-as-a-service (paas) cloud model", In 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE) 12-13 June, 2020 Istanbul, Turkeypp. 1-6
[http://dx.doi.org/10.1109/ICECCE49384.2020.9179414]
[19]
E. Ataie, R. Entezari-Maleki, L. Rashidi, K.S. Trivedi, D. Ardagna, and A. Movaghar, "Hierarchical stochastic models for performance, availability, and power consumption analysis of iaas clouds", IEEE Transac Cloud Comput., vol. 7, no. 4, pp. 1039-1056, 2019.
[http://dx.doi.org/10.1109/TCC.2017.2760836]
[20]
V. Arabnejad, K. Bubendorfer, and B. Ng, "Budget and deadline aware e-science workflow scheduling in clouds", IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 1, pp. 29-44, 2019.
[http://dx.doi.org/10.1109/TPDS.2018.2849396]
[21]
D.A. Shafiq, N.Z. Jhanjhi, A. Abdullah, and M.A. Alzain, "A load balancing algorithm for the data centres to optimize cloud computing applications", IEEE Access, vol. 9, pp. 731-741, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3065308]
[22]
S.H. Vidya, and R.M. Prakash, "Response time analysis of dynamic load balancing algorithms in cloud computing", In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), 8-10 Oct. 2015. Greater Noida, India, 2020, pp. 371-375
[http://dx.doi.org/10.1109/WorldS450073.2020.9210305]
[23]
F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet of things", In Proceedings of the 1st edition of the MCC workshop on Mobile cloud computing, August, 2012, pp. 13-16
[http://dx.doi.org/10.1145/2342509.2342513]
[24]
M. De Donno, K. Tange, and N. Dragoni, "Foundations and evolution of modern computing paradigms: Cloud, iot, edge, and fog", IEEE Access, vol. 7, pp. 936-150, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2947652]
[25]
K.H. Abdulkareem, M.A. Mohammed, S.S. Gunasekaran, M.N. Al-Mhiqani, A.A. Mutlag, S.A. Mostafa, N.S. Ali, and D.A. Ibrahim, "A review of fog computing and machine learning: Concepts, applications, challenges, and open issues", IEEE Access, vol. 7, pp. 123-153, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2947542]
[26]
M.P. Patel, and S. Chaudhary, "Edge computing: A review on computation offloading and light weight virtualization for iot framework", Inter. J. Fog Comput., vol. 3, no. 1, pp. 64-74, 2020.
[http://dx.doi.org/10.4018/IJFC.2020010104]
[27]
S. Nguyen, Z. Salcic, X. Zhang, and A. Bisht, "A low-cost two-tier fog computing testbed for streaming iot-based applications", IEEE Internet Things J., vol. 8, no. 8, pp. 6928-6939, 2021.
[http://dx.doi.org/10.1109/JIOT.2020.3036352]
[28]
B. Ali, M. Adeel Pasha, S.U. Islam, H. Song, and R. Buyya, "A volunteer-supported fog computing environment for delay-sensitive iot applications", IEEE Internet Things J., vol. 8, no. 5, pp. 3822-3830, 2021.
[http://dx.doi.org/10.1109/JIOT.2020.3024823]
[29]
I. Martinez, A.S. Hafid, and A. Jarray, "Design, resource management, and evaluation of fog computing systems: A survey", IEEE Internet Things J., vol. 8, no. 4, pp. 2494-2516, 2021.
[http://dx.doi.org/10.1109/JIOT.2020.3022699]
[30]
A. Alnoman, S.K. Sharma, W. Ejaz, and A. Anpalagan, "Emerging Edge Computing Technologies for Distributed IoT Systems", IEEE Netw., vol. 33, no. 6, pp. 140-147, 2019.
[http://dx.doi.org/10.1109/MNET.2019.1800543]
[31]
C.F. Huang, D-H. Huang, and Y-K. Lin, "Network reliability evaluation for a distributed network with edge computing", Comput. Ind. Eng., vol. 147, p. 106492, 2020.
[http://dx.doi.org/10.1016/j.cie.2020.106492]
[32]
F. Xhafa, B. Kilic, and P. Krause, "Evaluation of iot stream processing at edge computing layer for semantic data enrichment", Future Gener. Comput. Syst., vol. 105, pp. 730-736, 2020.
[http://dx.doi.org/10.1016/j.future.2019.12.031]
[33]
M. Losavio, "Fog computing, edge computing and a return to privacy and personal autonomy", Procedia Comput. Sci., vol. 171, pp. 1750-1759, 2020.
[http://dx.doi.org/10.1016/j.procs.2020.04.188]
[34]
T. T. Huong, T. P. Bac, D. M. Long, B. D. Thang, N. T. Binh, T. D. Luong, and T. K. Phuc, "Lockedge: Low-complexity cyberattack detection in iot edge computing", IEEE Access, vol. 9, pp. 696-29, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3058528]
[35]
T. Gopalakrishnan, D. Ruby, F. Al-Turjman, D. Gupta, I.V. Pustokhina, D.A. Pustokhin, and K. Shankar, "Deep learning enabled data offloading with cyber-attack detection model in mobile edge computing systems", IEEE Access, vol. 8, pp. 938-185, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3030726]
[36]
W. Jin, R. Xu, T. You, Y-G. Hong, and D. Kim, "Secure edge computing management based on independent microservices providers for gateway-centric iot networks", IEEE Access, vol. 8, pp. 975-187, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3030297]
[37]
Y. Hou, S. Garg, L. Hui, D.N.K. Jayakody, R. Jin, and M.S. Hossain, "A data security enhanced access control mechanism in mobile edge computing", IEEE Access, vol. 8, pp. 119-136, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3011477]
[38]
J. Li, J. Cai, F. Khan, A.U. Rehman, V. Balasubramaniam, J. Sun, and P. Venu, "A secured framework for sdn-based edge computing in iot-enabled healthcare system", IEEE Access, vol. 8, pp. 479-135, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3011503]
[39]
P. Zhang, C. Jiang, X. Pang, and Y. Qian, "Stec-iot: A security tactic by virtualizing edge computing on iot", IEEE Internet Things J., vol. 8, no. 4, pp. 2459-2467, 2021.
[http://dx.doi.org/10.1109/JIOT.2020.3017742]
[40]
C-H. Hong, and B. Varghese, "Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms", ACM Comput. Surv., vol. 52, no. 5, 2019.
[http://dx.doi.org/10.1145/3326066]
[41]
"E. Sˇlapak, J. Gazda, W. Guo, T. Maksymyuk, and M. Dohler, “Cost-effective resource allocation for multitier mobile edge computing in 5g mobile networks”", IEEE Access, vol. 9, pp. 658-28, 2021.
[42]
R-A. Cherrueau, A. Lebre, D. Pertin, F. Wuhib, and J.M. Soares, "Edge computing resource management system: A critical building block!", Initiating the debate via openstack, STACK Research Group- IMT-Atlantique, Inria, LS2N, France; Fetahi Wuhib, Ericsson Research, Canada; João Monteiro Soares, Ericsson Research, Sweden..
[43]
C. Avasalcai, C. Tsigkanos, and S. Dustdar, "Decentralized resource auctioning for latency-sensitive edge computing", In 2019 IEEE International Conference on Edge Computing (EDGE) 8-13 July, 2019 Milan, Italypp. 72-76
[http://dx.doi.org/10.1109/EDGE.2019.00027]
[44]
T. Ojima, and T. Fujii, "Resource management for mobile edge computing using user mobility prediction", In 2018 International Conference on Information Networking (ICOIN) 10-12 Jan. 2018, Chiang Mai, Thailandpp. 718-720
[http://dx.doi.org/10.1109/ICOIN.2018.8343212]
[45]
M. Zakarya, L. Gillam, H. Ali, I. Rahman, K. Salah, R. Khan, O. Rana, and R. Buyya, "epcaware: A game-based, energy, performance and cost efficient resource management technique for multi-access edge computing", IEEE Trans. Serv. Comput., vol. 15, pp. 1-1, 2020.
[http://dx.doi.org/10.1109/TSC.2020.3005347]
[46]
R. Buyya, and S.N. Srirama, Fog and edge computing: principles and paradigms., John Wiley & Sons, 2019.
[http://dx.doi.org/10.1002/9781119525080]
[47]
N. Hassan, S. Gillani, E. Ahmed, I. Yaqoob, and M. Imran, "The role of edge computing in internet of things", IEEE Commun. Mag., vol. 56, no. 11, pp. 110-115, 2018.
[http://dx.doi.org/10.1109/MCOM.2018.1700906]
[48]
W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, "Edge computing: Vision and challenges", IEEE Internet Things J., vol. 3, no. 5, pp. 637-646, 2016.
[http://dx.doi.org/10.1109/JIOT.2016.2579198]
[49]
X. Ma, S. Zhang, W. Li, P. Zhang, C. Lin, and X. Shen, "Cost-efficient workload scheduling in cloud assisted mobile edge computing", In 2017 IEEE/ACM 25th International Symposium on Quality of Service (IWQoS), 14-16 June 2017, Vilanova i la Geltrú, Spain.
[http://dx.doi.org/10.1109/IWQoS.2017.7969148]
[50]
Y. Shao, C. Li, Z. Fu, L. Jia, and Y. Luo, "Cost-effective replication management and scheduling in edge computing", J. Netw. Comput. Appl., vol. 129, pp. 46-61, 2019.
[http://dx.doi.org/10.1016/j.jnca.2019.01.001]
[51]
E.E. Haber, T.M. Nguyen, D. Ebrahimi, and C. Assi, "Computational cost and energy efficient task offloading inhierarchical edge- clouds,", In 2018 IEEE 29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) 9-12 Sept. 2018Bologna, Italy
[http://dx.doi.org/10.1109/PIMRC.2018.8580724]
[52]
P. Zhao, P. Wang, X. Yang, and J. Lin, "Towards cost-efficient edge intelligent computing with elastic deployment of container-based microservices", IEEE Access, vol. 8, pp. 947-102, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2998767]
[53]
S. Trinks, and C. Felden, "Edge computing architecture to support real time analytic applications: A state-of-the-art within the application area of smart factory and industry 4.0", In 2018 IEEE International Conference on Big Data (Big Data), 2018, pp. 2930-2939
[http://dx.doi.org/10.1109/BigData.2018.8622649]
[54]
S. Nastic, T. Rausch, O. Scekic, S. Dustdar, M. Gusev, B. Koteska, M. Kostoska, B. Jakimovski, S. Ristov, and R. Prodan, "A serverless real-time data analytics platform for edge computing", IEEE Internet Comput., vol. 21, no. 4, pp. 64-71, 2017.
[http://dx.doi.org/10.1109/MIC.2017.2911430]
[55]
G. Ananthanarayanan, P. Bahl, P. Bod’ık, K. Chintalapudi, M. Philipose, L. Ravindranath, and S. Sinha,, "Real-time video analytics: The killer app for edge computing", computer, vol. 50, no. 10, pp. 58-67, 2017.
[56]
H. Cao, M. Wachowicz, and S. Cha, "Developing an edge computing platform for real-time descriptive analytics", In 2017 IEEE International Conference on Big Data (Big Data), , 2017, pp. 4546-4554
[http://dx.doi.org/10.1109/BigData.2017.8258497]
[57]
Y. Huang, Y. Lu, F. Wang, X. Fan, J. Liu, and V.C. Leung, "An edge computing framework for real-time monitoring in smart grid", In 2018 IEEE International Conference on Industrial Internet (ICII), 2018, pp. 99-108
[http://dx.doi.org/10.1109/ICII.2018.00019]
[58]
S. Shannigrahi, S. Mastorakis, and F.R. Ortega, "Next-generation networking and edge computing for mixed reality real-time interactive systems", In 2020 IEEE International Conference on Communications Workshops (ICC Workshops),, 2020, pp. 1-6
[http://dx.doi.org/10.1109/ICCWorkshops49005.2020.9145075]
[59]
S. Yu, X. Chen, S. Wang, L. Pu, and D. Wu, "An edge computing-based photo crowdsourcing framework for real-time 3d reconstruction", IEEE Trans. Mobile Comput., pp. 1-1, 2020.
[http://dx.doi.org/10.1109/TMC.2020.3007654]
[60]
F. Al-Turjman, and F. Al-Turjman, Edge Computing., Springer, 2019.
[61]
L. Rui, S. Wang, Z. Wang, A. Xiong, and H. Liu, "A dynamic service migration strategy based on mobility prediction in edge computing", Int. J. Distrib. Sens. Netw., vol. 17, no. 2, p. 1550147721993403, 2021.
[http://dx.doi.org/10.1177/1550147721993403]
[62]
W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan, "Mobility-aware multi-user offloading optimization for mobile edge computing", IEEE Trans. Vehicular Technol., vol. 69, no. 3, pp. 3341-3356, 2020.
[http://dx.doi.org/10.1109/TVT.2020.2966500]
[63]
S.D.A. Shah, M.A. Gregory, S. Li, and R.D.R. Fontes, "Sdn enhanced multi-access edge computing (mec) for e2e mobility and qos management", IEEE Access, vol. 8, pp. 459-477, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2990292]
[64]
Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, "A joint service migration and mobility optimization approach for vehicular edge computing", IEEE Trans. Vehicular Technol., vol. 69, no. 8, pp. 9041-9052, 2020.
[http://dx.doi.org/10.1109/TVT.2020.2999617]
[65]
D. Sabella, A. Reznik, and R. Frazao, Multi-Access Edge Computing in Action., CRC Press, 2019.
[http://dx.doi.org/10.1201/9780429056499]
[66]
J. Koo, and N.M.F. Qureshi, "Fine-grained data processing framework for heterogeneous iot devices in sub-aquatic edge computing environment", Wirel. Pers. Commun., vol. 116, no. 2, pp. 1407-1422, 2021.
[http://dx.doi.org/10.1007/s11277-020-07803-3]
[67]
R.A. Cooke, and S.A. Fahmy, "A model for distributed in-network and near-edge computing with heterogeneous hardware", Future Gener. Comput. Syst., vol. 105, pp. 395-409, 2020.
[http://dx.doi.org/10.1016/j.future.2019.11.040]
[68]
Y. Zhang, B. Di, P. Wang, J. Lin, and L. Song, "Hetmec: Heterogeneous multi-layer mobile edge computing in the 6 g era", IEEE Trans. Vehicular Technol., vol. 69, no. 4, pp. 4388-4400, 2020.
[http://dx.doi.org/10.1109/TVT.2020.2975559]
[69]
A. Barbalace, M.L. Karaoui, W. Wang, T. Xing, P. Olivier, and B. Ravindran, "Edge computing: the case for heterogeneous-isa container migration", In Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, 2020, pp. 73-87
[http://dx.doi.org/10.1145/3381052.3381321]
[70]
K. Aruna, and G. Pradeep, "Performance and scalability improvement using iot-based edge computing container technologies", SN Comput. Sci., vol. 1, no. 2, pp. 1-7, 2020.
[http://dx.doi.org/10.1007/s42979-020-0106-9]
[71]
D. Spatharakis, I. Dimolitsas, D. Dechouniotis, G. Papathanail, I. Fotoglou, P. Papadimitriou, and S. Papavassiliou, "A scalable edge computing architecture enabling smart offloading for location based services", Pervasive Mobile Comput., vol. 67, p. 101217, 2020.
[http://dx.doi.org/10.1016/j.pmcj.2020.101217]
[72]
S. Khare, H. Sun, K. Zhang, J. Gascon-Samson, A. Gokhale, X. Koutsoukos, and H. Abdelaziz, "Scalable edge computing for low latency data dissemination in topic-based publish/subscribe", In 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp. 214-227
[http://dx.doi.org/10.1109/SEC.2018.00023]
[73]
Y. Gao, Y. Cui, X. Wang, and Z. Liu, "Optimal resource allocation for scalable mobile edge computing", IEEE Commun. Lett., vol. 23, no. 7, pp. 1211-1214, 2019.
[http://dx.doi.org/10.1109/LCOMM.2019.2916075]
[74]
A. Galletta, A. Cuzzocrea, A. Celesti, M. Fazio, and M. Villari, "A scalable cloud-edge computing framework for supporting device- adaptive big media provisioning", In 2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) 1-4 May 2018Washington, DC, USA
[http://dx.doi.org/10.1109/CCGRID.2018.00099]
[75]
W. Chang, and J. Wu, Fog/Edge Computing for Security, Privacy, and Applications., Springer Nature, 2020.
[76]
G. Li, and Y. Xu, "Energy consumption averaging and minimization for the software defined wireless sensor networks with edge computing", IEEE Access, vol. 7, pp. 086-173, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2955691]
[77]
W. Yoo, W. Yang, and J-M. Chung, "Energy consumption minimization of smart devices for delay-constrained task processing with edge computing", In 2020 IEEE International Conference on Consumer Electronics (ICCE) 4-6 Jan 2020, Las Vegas, NV, USApp. 1-3
[http://dx.doi.org/10.1109/ICCE46568.2020.9043049]
[78]
J. Fang, Y. Chen, and S. Lu, "A scheduling strategy for reduced power consumption in mobile edge computing", In IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2020, pp. 1190-1195
[http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162883]
[79]
W-H. Kuo, and Y-C. Wang, "An energy-saving edge computing and transmission scheme for iot mobile devices", In 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), 2019, pp. 1-2
[http://dx.doi.org/10.1109/GCCE46687.2019.9015228]
[80]
N. Vance, M.T. Rashid, D. Zhang, and D. Wang, "Towards reliability in online high-churn edge computing: A deviceless pipelining approach", In 2019 IEEE International Conference on Smart Computing (SMARTCOMP), 2019, pp. 301-308
[http://dx.doi.org/10.1109/SMARTCOMP.2019.00066]
[81]
Q. Peng, H. Jiang, M. Chen, J. Liang, and Y. Xia, "Reliability-aware and deadline-constrained workflow scheduling in mobile edge computing", In 2019 IEEE 16th International Conference on Networking, Sensing and Control (ICNSC),, 2019, pp. 236-241
[http://dx.doi.org/10.1109/ICNSC.2019.8743291]
[82]
J. Huang, J. Liang, and S. Ali, "A simulation-based optimization approach for reliability-aware service composition in edge computing", IEEE Access, vol. 8, pp. 355-50, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2979970]
[83]
L. Dong, W. Wu, Q. Guo, M.N. Satpute, T. Znati, and D.Z. Du, "Reliability-aware offloading and allocation in multilevel edge computing system", IEEE Trans. Reliab., vol. 70, no. 1, pp. 200-211, 2019.
[84]
Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, "Edge intelligence: Paving the last mile of artificial intelligence with edge computing", Proc. IEEE, vol. 107, no. 8, pp. 1738-1762, 2019.
[http://dx.doi.org/10.1109/JPROC.2019.2918951]
[85]
X. Wang, Y. Han, V.C. Leung, D. Niyato, X. Yan, and X. Chen, "Convergence of edge computing and deep learning: A comprehensive survey", IEEE Comm. Surv.and Tutor., vol. 22, no. 2, pp. 869-904, 2020.
[http://dx.doi.org/10.1109/COMST.2020.2970550]
[86]
Z. Lv, D. Chen, R. Lou, and Q. Wang, "Intelligent edge computing based on machine learning for smart city", Future Gener. Comput. Syst., vol. 115, pp. 90-99, 2021.
[http://dx.doi.org/10.1016/j.future.2020.08.037]
[87]
M.A. Guille’n, A. Llanes, B. Imberno’n, R. Martınez-Espan˜a,, A. Bueno-Crespo, J-C. Cano, and J.M. Cecilia, "Performance evaluation of edge-computing platforms for the prediction of low temperatures in agriculture using deep learning", J. Supercomput., vol. 77, no. 1, pp. 818-840, 2021.
[http://dx.doi.org/10.1007/s11227-020-03288-w]
[88]
Y. Dai, D. Xu, S. Maharjan, G. Qiao, and Y. Zhang, "Artificial intelligence empowered edge computing and caching for internet of vehicles", IEEE Wirel. Commun., vol. 26, no. 3, pp. 12-18, 2019.
[http://dx.doi.org/10.1109/MWC.2019.1800411]
[89]
F. Samie, L. Bauer, and J. Henkel, Edge computing for smart grid: An overview on architectures and solutions., IoT Smart Grids, 2019, pp. 21-42.
[90]
X. Li, T. Chen, Q. Cheng, S. Ma, and J. Ma, "Smart applications in edge computing: Overview on authentication and data security", IEEE Internet Things J., vol. 8, no. 6, pp. 4063-80, 2020.
[91]
S. Chen, H. Wen, J. Wu, W. Lei, W. Hou, W. Liu, A. Xu, and Y. Jiang, "Internet of things based smart grids supported by intelligent edge computing", IEEE Access, vol. 7, p. 74, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2920488]
[92]
W. Hou, Y. Jiang, W. Lei, A. Xu, H. Wen, and S. Chen, "A p2p network based edge computing smart grid model for efficient resources coordination", Peer-to-Peer Netw. Appl., vol. 13, no. 3, pp. 1026-1037, 2020.
[http://dx.doi.org/10.1007/s12083-019-00870-9]
[93]
T. Sirojan, S. Lu, B. Phung, and E. Ambikairajah, "Embedded edge computing for real-time smart meter data analytics", In 2019 International Conference on Smart Energy Systems and Technologies (SEST), 2019, pp. 1-5
[http://dx.doi.org/10.1109/SEST.2019.8849012]
[94]
S.A. Chaudhry, H. Alhakami, A. Baz, and F. Al-Turjman, "Securing demand response management: A certificate-based access control in smart grid edge computing infrastructure", IEEE Access, vol. 8, p. 101, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2996093]
[95]
M. Saez, S. Lengieza, F. Maturana, K. Barton, and D. Tilbury, "A data transformation adapter for smart manufacturing systems with edge and cloud computing capabilities", In 2018 IEEE International Conference on Electro/Information Technology (EIT), 2018.
[http://dx.doi.org/10.1109/EIT.2018.8500153]
[96]
C.K. Lee, Y. Huo, S. Zhang, and K. Ng, "Design of a smart manufacturing system with the application of multi-access edge computing and block chain technology", IEEE Access, vol. 8, p. 28, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2972284]
[97]
J. Vater, L. Harscheidt, and A. Knoll, "A reference architecture based on edge and cloud computing for smart manufacturing", In 2019 28th International Conference on Computer Communication and Networks (ICCCN), 2019, pp. 1-7
[http://dx.doi.org/10.1109/ICCCN.2019.8846934]
[98]
X. Li, J. Wan, H-N. Dai, M. Imran, M. Xia, and A. Celesti, "A hybrid computing solution and resource scheduling strategy for edge computing in smart manufacturing", IEEE Trans. Industr. Inform., vol. 15, no. 7, pp. 4225-4234, 2019.
[http://dx.doi.org/10.1109/TII.2019.2899679]
[99]
C. Jiang, J. Wan, and H. Abbas, "An edge computing node deployment method based on improved k-means clustering algorithm for smart manufacturing", IEEE Syst. J., vol. 15, no. 2, pp. 2230-40, 2020.
[100]
S. Jaiganesh, K. Gunaseelan, and V. Ellappan, "Iot agriculture to improve food and farming technology", In 2017 Conference on Emerging Devices and Smart Systems (ICEDSS), 2017, pp. 260-266
[http://dx.doi.org/10.1109/ICEDSS.2017.8073690]
[101]
M.S. Mekala, and P. Viswanathan, A survey: Smart agriculture iot with cloud computing, In: 2017 international conference on microelectronic devices, circuits and systems (ICMDCS), 2017, pp. 1-7.
[102]
F. Bu, and X. Wang, "A smart agriculture iot system based on deep reinforcement learning", Future Gener. Comput. Syst., vol. 99, pp. 500-507, 2019.
[http://dx.doi.org/10.1016/j.future.2019.04.041]
[103]
X. Zhang, Z. Cao, and W. Dong, "Overview of edge computing in the agricultural internet of things: Key technologies, applications, challenges", IEEE Access, vol. 8, p. 141, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3013005]
[104]
P. Boccadoro, D. Striccoli, and L.A. Grieco, "An extensive survey on the internet of drones", Ad Hoc Networks, vol. 122, pp. 1-38, 2021.
[http://dx.doi.org/10.1016/j.adhoc.2021.102600]
[105]
A.K. Luhach, J.A. Kosa, R.C. Poonia, X-Z. Gao, and D. Singh, Advances in Intelligent Systems and Computing., vol. 1045. Springer, 2019.
[106]
M. O’Grady, D. Langton, and G. O’Hare, "Edge computing: A tractable model for smart agriculture?", Artificial Intell. Agri., vol. 3, pp. 42-51, 2019.
[http://dx.doi.org/10.1016/j.aiia.2019.12.001]
[107]
M.A. Zamora-Izquierdo, J. Santa, J.A. Mart’ınez, V. Mart’ınez, and A.F. Skarmeta, ""Smart farming iot platform based on edge and cloud computing", Biosyst. Eng., vol. 177, pp. 4-17, 2019.
[http://dx.doi.org/10.1016/j.biosystemseng.2018.10.014]
[108]
D. Valluru, G. Kotikam, and K. Haribabu, "Smart agriculture management of intelligent things using nb-iot", Inter. J. Modern Agri., vol. 10, no. 1, pp. 78-86, 2021.
[109]
A. Alelaiwi, "Multimodal patient satisfaction recognition for smart healthcare", IEEE Access, vol. 7, p. 174, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2956083]
[110]
Q. Cai, H. Wang, Z. Li, and X. Liu, "A survey on multimodal data-driven smart healthcare systems: approaches and applications", IEEE Access, vol. 7, p. 133, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2941419]
[111]
D.J. Cook, G. Duncan, G. Sprint, and R. Fritz, "Using smart city technology to make healthcare smarter", Proc. IEEE, vol. 106, no. 4, pp. 708-722, 2018.
[http://dx.doi.org/10.1109/JPROC.2017.2787688] [PMID: 29628528]
[112]
B.D. Deebak, F. Al-Turjman, M. Aloqaily, and O. Alfandi, "An authentic-based privacy preservation protocol for smart e-healthcare systems in iot", IEEE Access, vol. 7, p. 135, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2941575]
[113]
A. Abugabah, N. Nizam, and A.A. Alzubi, "Decentralized telemedicine framework for a smart healthcare ecosystem", IEEE Access, vol. 8, p. 166, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3021823]
[114]
P.A. Laplante, and N. Laplante, "The internet of things in healthcare: Potential applications and challenges", IT Prof., vol. 18, no. 3, pp. 2-4, 2016.
[http://dx.doi.org/10.1109/MITP.2016.42]
[115]
O.R. Shishvan, D-S. Zois, and T. Soyata, "Machine intelligence in healthcare and medical cyber physical systems: A survey", IEEE Access, vol. 6, p. 46, 2018.
[116]
X. Li, X. Huang, C. Li, R. Yu, and L. Shu, "Edgecare: leveraging edge computing for collaborative data management in mobile healthcare systems", IEEE Access, vol. 7, p. 22, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2898265]
[117]
A. Ghoneim, G. Muhammad, S.U. Amin, and B. Gupta, "Medical image forgery detection for smart healthcare", IEEE Commun. Mag., vol. 56, no. 4, pp. 33-37, 2018.
[http://dx.doi.org/10.1109/MCOM.2018.1700817]
[118]
C. Dilibal, "Development of edge-iomt computing architecture for smart healthcare monitoring platform", In 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, pp. 1-4
[119]
J. Zhang, D. Li, Q. Hua, X. Qi, and Z. Wen, "3d remote healthcare for noisy ct images in the internet of things using edge computing", IEEE Access, vol. 9, p. 15, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3052469]
[120]
I. Mukherjee, and S. Tallur, "Light-weight cnn enabled edge-based framework for machine health diagnosis", IEEE Access, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3088237]
[121]
J-W. Baek, and K. Chung, "Multi-level health knowledge mining process in p2p edge network", IEEE Access, vol. 9, p. 61, 2021.
[http://dx.doi.org/10.1109/ACCESS.2021.3073775]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy