Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

The Role of Medicinal Plants in the Diabetic Wound Healing Process

Author(s): Rishabh Chaudhary*

Volume 19, Issue 4, 2023

Published on: 12 April, 2022

Article ID: e240222201410 Pages: 9

DOI: 10.2174/1573399818666220224122142

Price: $65

Abstract

Aims: The aim of this study is to determine the relationship between diabetes and delayed wound healing from the literature. Research literature from 2010-2020 was searched and it was found that various medicinal plants and their phytoconstituents are effective in treating wounds associated with diabetes. Potential medicinal plants that are used to treat wounds and can be used to treat diabetes have been determined.

Methods: Research and review articles from 2010-2020 have been researched on a variety of topics such as PubMed, Scopus, Mendeley, Google Scholar, Indian traditional medicine system, Ayurvedic treatment programme using different words such as "diabetes", "treatment of diabetes", "plants in the treatment of diabetes", "wound healing", "wound healing plants".

Conclusion: Other herbs are also traditionally used to treat wounds. In this study, the main focus is on medicinal plants that are used specifically to treat wounds in diabetic conditions. Although quite a few medicinal flora for wound restoration may be observed in the literature, there is a need for the isolation and characterization of the bioactive compounds responsible for the wound restoration properties. Also, cytotoxicity research needs to be conducted on promising agents or bioactive fractions or extracts.

Keywords: Diabetes, wounds, wound-healing process, treatment of diabetes, hyperglycaemia, stress, age, maturation factors, phytochemicals.

[1]
Goboza M, Meyer S, Aboua YG, Oguntibeju OO. Diabetes mellitus: Economic and health burden, treatment and the therapeutical effects of Hypoxis hemerocallidea plant. Med Technol SA 2017; 30(2): 39-46.
[2]
Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 2013; 114(3): 525-31.
[http://dx.doi.org/10.1002/jcb.24402] [PMID: 22991242]
[3]
Guo R, Liu B, Wang K, Zhou S, Li W, Xu Y. Resveratrol ameliorates diabetic vascular inflammation and macrophage infiltration in db/db mice by inhibiting the NF-κB pathway. Diab Vasc Dis Res 2014; 11(2): 92-102.
[http://dx.doi.org/10.1177/1479164113520332] [PMID: 24464099]
[4]
Zhao X, Ye Y, Zhang S. The values of the new American Diabetes Association Diagnostic Criteria for screening of pre-diabetes and diabetes in patients undergoing elective coronary angiography. Zhonghua Nei Ke Za Zhi 2015; 54(4): 302-6.
[http://dx.doi.org/10.3760/cma.j.issn.0578-1426.2015.04.006] [PMID: 26268057]
[5]
Mirza RE, Fang MM, Novak ML, et al. Macrophage PPARg and impaired wound healing in type 2 diabetes. Pathol 2015; s236: 433-44.
[http://dx.doi.org/10.1002/path.4548]
[6]
Alavi A, Sibbald RG, Mayer D, et al. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J Am Acad Dermatol 2014; 70(1): 19-20.
[7]
Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004; 28(3): 321-6.
[http://dx.doi.org/10.1007/s00268-003-7397-6] [PMID: 14961191]
[8]
Anderson K, Hamm RL. Factors that impair wound healing. J Am Coll Clin Wound Spec 2012; 4(4): 8491.
[http://dx.doi.org/10.1016/j.jccw.2014.03.001]
[9]
Mirza R, Koh TJ. Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice. Cytokine 2011; 56(2): 256-64.
[http://dx.doi.org/10.1016/j.cyto.2011.06.016] [PMID: 21803601]
[10]
Aya KL, Stern R. Hyaluronan in wound healing: Rediscovering a major player. Wound Repair Regen 2014; 22(5): 579-93.
[http://dx.doi.org/10.1111/wrr.12214] [PMID: 25039417]
[11]
Senthil Kumar M, Sripriya R, Vijaya Raghavan H, Sehgal PK. Wound healing potential of Cassia fistula on infected albino rat model. J Surg Res 2006; 131(2): 283-9.
[http://dx.doi.org/10.1016/j.jss.2005.08.025] [PMID: 16242721]
[12]
Mathieu D, Linke JC, Wattel F. Non-healing wounds. Handbook on hyperbaric medicine. Netherlands: Springer 2006; pp. 401-27.
[http://dx.doi.org/10.1007/1-4020-4448-8_20]
[13]
Pawar RS, Toppo FA. Plants that heal wounds. A review. Herba Pol 2011; 58(1): 47-65.
[14]
Nguyen DT, Orgill DP, Murphy GT. 4 The pathophysiologic basis for wound healing and cutaneous regeneration. In: Orgill DP, Blanco C, Eds. Biomaterials for Treating Skin Loss. Amsterdam: Elsevier 2009; pp. 25-57.
[http://dx.doi.org/10.1533/9781845695545.1.25]
[15]
Wang PH, Huang BS, Horng HC, Yeh CC, Chen YJ. Wound healing. J Chin Med Assoc 2018; 81(2): 94-101.
[http://dx.doi.org/10.1016/j.jcma.2017.11.002] [PMID: 29169897]
[16]
Campos AC, Groth AK, Branco AB. Assessment and nutritional aspects of wound healing. Curr Opin Clin Nutr Metab Care 2008; 11(3): 281-8.
[http://dx.doi.org/10.1097/MCO.0b013e3282fbd35a] [PMID: 18403925]
[17]
Meszaros AJ, Reichner JS, Albina JE. Macrophage-induced neutrophil apoptosis. J Immunol 2000; 165(1): 435-41.
[http://dx.doi.org/10.4049/jimmunol.165.1.435] [PMID: 10861082]
[18]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[19]
Midwood KS, Williams LV, Schwarzbauer JE. Tissue repair and the dynamics of the extracellular matrix. Int J Biochem Cell Biol 2004; 36(6): 1031-7.
[http://dx.doi.org/10.1016/j.biocel.2003.12.003] [PMID: 15094118]
[20]
Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, et al. Gene expression signature of fibroblast serum response predicts human cancer progression: Similaritires between tumor and wound. PLoS Biology 2004; 2(2): E7.
[http://dx.doi.org/10.1371/journal.pbio.0020007]
[21]
Garg HG. New York Marcel Dekker, Inc.. 2000.Scarless Wound Healing.
[http://dx.doi.org/10.1201/b14004]
[22]
Rostugno MA, Prado JM. Natural product extraction: Principles and applications. Cambridge: RSC Publishing 2013.
[http://dx.doi.org/10.1039/9781849737579]
[23]
Bui NT, Ho MT, Kim YM, Lim Y, Cho M. Flavonoids promoting HaCaT migration: II. Molecular mechanism of 40,6,7-trimethoxyisoflavone via NOX2 activation. Phytomedicine 2013; 13: 419-23.
[PMID: 24388604]
[24]
Oztürk N, Korkmaz S, Oztürk Y, Başer KH. Effects of gentiopicroside, sweroside and swertiamarine, secoiridoids from gentian (Gentiana lutea ssp. symphyandra), on cultured chicken embryonic fibroblasts. Planta Med 2006; 72(4): 289-94.
[http://dx.doi.org/10.1055/s-2005-916198] [PMID: 16557467]
[25]
Drew Bryan T. Salvia united: The greatest good for the greatest number. Taxon 2017; 66: 133-45.
[http://dx.doi.org/10.12705/661.7]
[26]
Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS). Plant Systematics and Evolution 2006; 262(1–2): 1-12.
[http://dx.doi.org/10.1007/s00606-006-0454-5]
[27]
Bryant G, Burnie G. Botanica: The illustrated A-Z of over 10,000 garden plants for New Zealand gardens and how to cultivate them. North Shore City, N.Z.: David Bateman 1997; p. 801.
[28]
Oxelman B, Kornhall P, Olmstead RG, Bremer B. Further disintegration of Scrophulariaceae. Taxon 2005; 54(2): 411-25.
[http://dx.doi.org/10.2307/25065369]
[29]
Beardsley Paul M, Olmstead Richard G. Redefining Phrymaceae: The placement of mimulus, tribe mimuleae, and phryma. Am J Bot 2002; 89(7): 1093-102.
[30]
Xia Zhi, Wang Yin-Zheng, Smith James F. Familial placement and relations of Rehmannia and Triaenophora (Scrophulariaceae S.L.) in-ferred from five gene regions. Am J Bot 2009; 96(2): 519-30.
[http://dx.doi.org/10.3732/ajb.0800195]
[31]
Dholvitayakhun A, Trachoo N, Sakee U, Cushnie TP. Potential applications for Annona squamosa leaf extract in the treatment and prevention of foodborne bacterial disease. Nat Prod Commun 2013; 8(3): 385-8.
[http://dx.doi.org/10.1177/1934578X1300800327] [PMID: 23678817]
[32]
Yadav DK, Singh N, Dev K, et al. Anti-ulcer constituents of Annona squamosa twigs. Fitoterapia 2011; 82(4): 666-75.
[http://dx.doi.org/10.1016/j.fitote.2011.02.005]
[33]
Panda S, Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. BioFactors 2007; 31(3-4): 201-10.
[http://dx.doi.org/10.1002/biof.5520310307]
[34]
Aradhya MK, et al. A phylogenetic analysis of the genus Carica L. (Caricaceae) based on restriction fragment length variation in a cpDNA intergenic spacer region. Genet Resour Crop Evol 1999; 46: 579-86.
[http://dx.doi.org/10.1023/A:1008786531609]
[35]
Badillo VM. Carica L. vs. Vasconcella St. Hil. (Caricaceae) con la rehabilitacion de este ultimo. Ernstia 2000; 10: 74-9.
[36]
Van Droogenbroeck B, Breyne P, Goetghebeur P, Romeijn-Peeters E, Kyndt T, Gheysen G. AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador. Theor Appl Genet 2002; 105(2-3): 289-97.
[http://dx.doi.org/10.1007/s00122-002-0983-4] [PMID: 12582531]
[37]
Borrell B. Papaya genome project bears fruit. Nature 2008.
[http://dx.doi.org/10.1038/news.2008.772]
[38]
Gao W, Xiao P. Peroxidase and soluble protein in the leaves of Aloe vera L. var. chinensis (Haw.) Berger. Zhongguo Zhongyao Zazhi 1997; 22(11): 653-654, 702.
[PMID: 11243179]
[39]
Lyons G. "The Definitive Aloe vera, vera?. Huntington Botanic Gardens 2008.
[40]
Singh Bhagirath. A reinvestigation of the triterpenes of Centella asiatica. Phytochemistry 1969; 8(5): 917-21.
[http://dx.doi.org/10.1016/S0031-9422(00)85884-7]
[41]
Singh B. Chemical examination of Centella asiatica linn-III. Phytochemistry 1968; 7(8): 1385-93.
[http://dx.doi.org/10.1016/S0031-9422(00)85642-3]
[42]
Bárcenas RT, Yesson C, Hawkins JA. Molecular systematics of the Cactaceae. Cladistics 2011; 27(5): 470-89.
[http://dx.doi.org/10.1111/j.1096-0031.2011.00350.x]
[43]
Edwards EJ, Nyffeler R, Donoghue MJ. Basal cactus phylogeny: Implications of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. Am J Bot 2005; 92(7): 1177-88.
[http://dx.doi.org/10.3732/ajb.92.7.1177] [PMID: 21646140]
[44]
Lodé J. Leuenbergeria, a new genus in Cactaceae. Cactus-Aventures International (in French) 2013; 97: 26-7.
[45]
Angiosperm Phylogeny Group. “An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III” (PDF). Bot J Linn Soc 2009; 161(2): 105-21.
[http://dx.doi.org/10.1111/j.1095-8339.2009.00996.x]
[46]
Martynia annua L. India Biodiversity Portal, Biodiversity India 2017.
[47]
Hevly RH. Nomenclatural history and typification of Martynia and Proboscidea (Martyniaceae). Taxon 1969; 18(5): 527-34.
[http://dx.doi.org/10.2307/1218379]
[48]
Ngo QA, Roussi F, Cormier A, et al. Synthesis and biological evaluation of vinca alkaloids and phomopsin hybrids. J Med Chem 2009; 52(1): 134-42.
[http://dx.doi.org/10.1021/jm801064y] [PMID: 19072542]
[49]
Hardouin C, Doris E, Rousseau B, Mioskowski C. Concise synthesis of anhydrovinblastine from leurosine. Org Lett 2002; 4(7): 1151-3.
[http://dx.doi.org/10.1021/ol025560c] [PMID: 11922805]
[50]
Graham S A, Hall J, Sytsma K, Shi S. Phylogenetic analysis of the Lythraceae based on four gene regions and morphology. Int J Plant Sci 2005; 166(6): 995-1017.
[http://dx.doi.org/10.1086/432631]
[51]
Little SA, Stockey RA, Keating RC. Duabanga-like leaves from the Middle Eocene Princeton chert and comparative leaf histology of Lythraceae sensu lato. Am J Bot 2004; 91(7): 1126-39.
[http://dx.doi.org/10.3732/ajb.91.7.1126] [PMID: 21653468]
[52]
Roskov Y, Kunze T, Orrell T, et al. Species 2000 & ITIS Catalogue of Life: 2014 Annual Checklist. Species 2000.
[53]
Sagun VG, Levin GA. Four new species of Acalypha(Euphorbiaceae) from Malesia. Blumea 2007; 52(2): 351-9.
[http://dx.doi.org/10.3767/000651907X609098]
[54]
Steinmann V W, Levin G A. Acalypha herzogiana (Euphorbiaceae), the correct name for an intriguing and commonly cultivated species. Brittonia 2011; 63(4): 500-4.
[http://dx.doi.org/10.1007/s12228-011-9181-5]
[55]
Blankenship JD, Houseknecht JB, Pal S, Bush LP, Grossman RB, Schardl CL. Biosynthetic precursors of fungal pyrrolizidines, the loline alkaloids. ChemBioChem 2005; 6(6): 10161022.
[http://dx.doi.org/10.1002/cbic.200400327]
[56]
Babu PV, Liu D, Gilbert ER. Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 2013; 24(11): 1777-89.
[http://dx.doi.org/10.1016/j.jnutbio.2013.06.003] [PMID: 24029069]
[57]
Hillier SG, Lathe R. Terpenes, hormones and life: Isoprene rule revisited. J Endocrinol 2019; 242(2): R9-R22.
[http://dx.doi.org/10.1530/JOE-19-0084] [PMID: 31051473]
[58]
Hong-Xiang U, Yong X, Yi-Ping Y. Advances in saponin-based adjuvants. Vaccine 2009; 27(12): 17871796.
[http://dx.doi.org/10.1016/j.vaccine.2009.01.091]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy